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A B S T R A C T

The potential of reproducing the 3D geometrical features, e.g., sizes, elongation and flatness, of idealized convex
granular particles from their 2D random projections was investigated based on a superellipsoid model. Using the
random projection method, the relationships between the geometrical features of monosized superellipsoids and
the statistical distributions of the corresponding 2D projected counterparts were examined. The 2D size para-
meters, e.g., r1max, rmean and r2min, obtained from the projected images were well correlated with the semi-axial
principal dimensions of the 3D particles, e.g., R1, R2 and R3. Further studies of randomised superellipsoid par-
ticles with various aspherical shapes and limited projection numbers were performed to validate the findings.
The capability and reliability of predicting 3D sizes and shapes from 2D projections were statistically analysed
and verified. The correlation of prediction accuracy with increasing projection number and varied aspherical
shapes was investigated. Based on the results, a particle geometry prediction framework was proposed, and the
associated performance was examined using realistic cobble particles obtained from 3D laser scanning. The
promising results highlight the potential of this approach in future industrial applications.

1. Introduction

A particle can be defined as an individual three-dimensional body in
a dispersed system of granular assemblies. In addition to the chemical
and mineral constitution of a particle, geometric features, including
particle size [1–3] and shape [4–6], significantly affect the macroscopic
behaviours of granular materials, e.g., packing properties [7–9], shear
strength [10–12], stuffiness [13,14] and other factors. To better un-
derstand the relationships between particle geometries and the corre-
sponding granular behaviours, particle geometry quantification
[15–19] and reconstruction [20–22] are two prerequisite procedures
that have become the focus of a considerable body of research. In the
laboratory, numerous methods, such as laser particle size analyser
(LPSA), segmentation-based gradation analyser (SGA), electrical re-
sistance particle counter (ERPC), particle digital image processor
(PDIP) methods, are used to characterise particle geometries. LPSAs,
SGAs and ERPCs are capable of measuring particle size parameters but
are unable to estimate the shapes of particles. Although PDIPs can
provide information on both types of descriptors, there are several
drawbacks to traditional PDIP methods. (1) The dispersion degree of

particles is often insufficient, which leads to contact and overlap among
grains and influences the accuracy of particle analysis. (2) Particles
remain static, and the orientations of aspherical grains result in statis-
tical divergence. Thanks to advanced measurement technologies, dy-
namic imaging apparatuses (such as the Sympatec QICPIC analyser
[23]) have been developed to overcome these drawbacks and satisfy
research demands. These technologies enable researchers to sample one
particle from different viewpoints, which considerably increases the
number of 2D projections. Thus, compared to static analysis, dynamic
imaging eliminates the orientation error and guarantees high re-
presentativeness and reproducibility.
With the aid of dynamic imaging systems, statistical results of 2D

sizes and shapes can be easily and quickly obtained for both research
and industrial uses. Many researchers [19,24–31] have employed the
size and shape results from dynamic imaging systems (e.g., the QICPIC
analyser) to quantify the relationships among the properties of granular
particles. Cavarretta et al. [31] evaluated the circularity and aspect
ratio of cohesion-less granular materials using QICPIC. Sandler and
Wilson [30] employed QICPIC to acquire the Feret diameter, sphericity,
convexity and aspect ratio of particulate pharmaceutical materials. The
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particle shape parameters obtained with the QICPIC analyser were used
by Altuhafi and Coop [28] to explore the micromorphological changes
in sands under compression and shearing. Among these experimental
studies, it is often hypothesised that, with numerous 2D images of the
same particle, the sizes and shapes of 3D particles can be inferred with
high confidence. However, very few studies have been performed to
examine this hypothesis. Kuo et al. [32] illustrated that the 3D di-
mensions and shapes of particles can be measured using three ortho-
gonal projections. Based on this concept, Ken et al. [33] developed a
triaxial viewer and found that the correlations between 3D and 2D
results are influenced by the orientation of the randomly positioned
particle. The uncertainty of this approach was minimised by rotating
particles with optimised orientations based on an analysis of the prin-
cipal moment of inertia and the vertical image of a particle with an
image analysis system. However, the orthogonal projection method is
applicable only when dealing with large particles and small particle
quantities. Kutay et al. [34] investigated the relationships between 2D
and 3D shape indices among five categories of aggregates (natural
gravel, basalt, granite, diabase and slate). The 2D images were obtained
using AIMS, and the 3D particle models were acquired from X-ray CT.
The correlation results illustrated significant scatter because the AIM
system is a static imaging system and cannot obtain enough projection
images to conduct representative statistical analyses of 2D shapes. Re-
garding the prediction of 3D geometries from dynamically imaged 2D
projections, Fonseca et al. [35] compared the 2D distributions of par-
ticle sizes and shapes with the 3D results obtained from micro-CT data.
The results indicated that the maximum Feret diameters of the 2D
projections closely approximate the major dimensions of the 3D parti-
cles, while the 2D distributions of aspect ratio (AR) do not correlate
well with any of the 3D measures. Additionally, Yan and Su [36] em-
ployed the ellipsoid particle model to reveal the potential correlation
between the 2D average radius and 3D average radius of the original
particles. Then, they presented a novel method for predicting the values
of the elongation index (EI) and flatness index (FI) of 3D particles based
on the statistical distribution of the AR values of the projected 2D
images [37]. For realistic particles, however, ellipsoids sometimes fail
to describe the particle shape due to the lack of details that reflect
angularity. Ueda et al. introduced roughness features into ellipsoid
models and employed a genetic algorithm (GA) to establish a conver-
sion database between 3D and 2D parameter distributions [38]. How-
ever, their GA-based model was specific to the adopted learning sam-
ples. Moreover, the randomly generated ellipsoids with superimposed
Gaussian noise-based roughness exhibited an unrealistic appearance
compared with the real particle shape irregularities. When applying this
method to a particular type of granular particles, to achieve high pre-
diction accuracy, a large learning sample, e.g., 100,000 real particles,
might be required to train the GA model. Thus, the applicability of
using 2D shape results to infer detailed 3D geometries (e.g., the longest,
intermediate and shortest semi-axis lengths; elongation; flatness) re-
mains a research question. Nevertheless, to date, there is no solution for
large geomaterials, e.g., aggregates and ballasts, since the existing dy-
namic imaging system (QICPIC) is limited to sand-sized particles. An
alternative method could involve using a high-speed camera to acquire
random projections of aggregate when particles fall and roll. However,

some questions must be addressed when considering this alternative:
(1) How can the obtained 2D projections of each particle be used to
interpret the 3D size and shape of the particle? (2) How will shape
asphericity and limited projection numbers influence the relationship
between 2D geometries and the corresponding 3D geometries?
In this study, based on the numerical ellipsoid approach proposed

by Yan and Su [36,37], a superellipsoid model is employed to in-
vestigate the capability and accuracy of reproducing the 3D sizes and
shapes of particles with descriptors derived from 2D images. First, three
typical geometries (prolate, oblate and scalene) of monosized super-
ellipsoids are generated with three different aspherical shapes (cubic,
spheroid and octahedral) and then randomly projected into numerous
2D images. From the projected images, statistical analyses of the 2D
sizes and shapes are conducted to study their correlations with the
corresponding 3D sizes and shapes. Second, several hypotheses are
proposed to infer the three semi-axial principal dimensions
(R , R , and R1 2 3) and shapes (EI and FI) with 2D projections. The
proposed hypotheses are then verified through analyses of randomised
superellipsoids and the realistic particles obtained from 3D laser scan-
ning to investigate the influences of aspherical shape variations and
limited projection numbers on the applicability of the proposed hy-
potheses.

2. Generation, projection and geometry quantification of
superellipsoids

2.1. Mathematical expression of superellipsoids

A superellipsoid is the three-dimensional version of a superellipse,
which is in turn a cross between a square and a circle. Superellipsoids
have been employed by researchers to capture many of the essential
features of real particle shapes [39]. The surface function of a super-
ellipsoid centred at the origin of a Cartesian coordinate system can be
defined as follows [40]:
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where is referred to as the index of shape asphericity and a, b and c
denote the semi-principal lengths along the x-, y- and z-axes, respec-
tively. To generate the 3D numerical model of a superellipsoid, a polar
representation is used in this study. Given the local spherical coordinate
( , ) of a point on the particle surface, the corresponding local Car-
tesian coordinate x y z( , , ) can be expressed as follows:
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where term xSign( ) is the signum function, which can be defined as
follows.
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Fig. 1. 3D views of superellipsoid shapes varying with when = = =a b 1 and c 1.25
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As illustrated in Fig. 1, changing yields a wide range of shapes:
0.5 produces a cubic shape, and 0.5 corresponds to an octa-

hedral shape. In particular, = 0 yields a perfect spheroid shape. The
proposed superellipsoid model provides a broad range of aspherical
irregular particle shapes, smoothly transitioning through a range of
surface curvatures (by changing ) and aspect ratios (by changing a b,
and c). Through this approach, we can explore how the degree of ir-
regular shape variations affects the prediction accuracy of 3D particle
geometries with 2D images.

2.2. Computation of random projected images

As stated by Yan and Su [36,37], particle scanning in most dynamic
imaging systems can be regarded as projecting particles in random

directions to obtain projected images due to the extremely short scan-
ning time and insignificant air buoyancy effect when randomly or-
ientated particles are dropped into the scanner.
As shown in Fig. 2a, the vector n n nv( , , )x y z representing the pro-

jection direction in the Cartesian coordinate system can be obtained
from the spherical coordinate vector v ( , , r). This conversion can be
expressed as follows.

=
=
=

n r
n r
n r

cos ( ) sin ( )
sin ( ) cos ( )
cos ( )

x

y

x (4)

In this case, and for a random unit vector in 3D space can be
generated as follows [36,37]:

Fig. 2. (a) unit vector v in the Cartesian coordinate system; (b) 1000 random vectors for particle projection.

Fig. 3. (a) projection plane P of vector v ; (b) projection of surface points in the direction of vector v onto plane P; (c) plan view of the projected surface points on
plane P.

Fig. 4. Plan view of projective surface points on plane P with (a) =n 703; (b) =n 2701; and (c) =n 16471
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where 1 and 2 are two uniformly distributed random variables in the
range [0,1]. As shown in Fig. 2b, 500 random vectors are generated for
particle projections. The generated projection vectors have random
orientations and are uniformly distributed around the target object in
3D space.

Given a specific projection vector v(n , n , n )x0 y0 z0 , the corresponding
projection plane P (shown in Fig. 3a) passing through the origin can be
expressed as follows.

+ + =n x n y n z 0x y z0 0 0 (6)

It is assumed that a surface point x y zQ( , , )0 0 0 is projected onto plane
P of vector n n nv( , , )x x z0 0 0 . The corresponding projective point

x y zQ ( , , )0 0 0 can be obtained by solving the following equation.
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As shown in Fig. 3b, n surface points {Q , , Q , ,Q }i n1 are uniformly
sampled from the superellipsoid ( = = = =a b c1, 1.5, 1) and then
projected in the direction of the projection vector v(1, 1, 1) onto the
plane P. The plane view of the obtained projected points
{Q , , Q , ,Q }i n1 on plane P is shown in Fig. 3c. Fig. 4 shows that the
cluster of obtained projected points approximates the 2D projection
image as the number (n) of sampled surface points increases. In this
study, =n 16471 is adopted for particle generation to ensure that the 2D
geometries measured from the obtained projected points are identical
to those of the real 2D projection image.

2.3. Quantification of particle sizes and shapes

For a superellipsoid, the 3D particle size can be characterised by
three descriptors, namely, R1, R2 and R3, which denote the longest, in-
termediate and shortest semi-axis lengths.

=
=
=
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2

3 (8)

After acquiring R1, R2 and R3, the 3D particle shapes of a super-
ellipsoid can be described using two descriptors, EI and FI, [41] which
represent the elongation index and flatness index, respectively.

=
=

EI R /R
FI R /R

2 1

3 2 (9)

For each projected image of a superellipsoid, we can measure two
size parameters, e.g., r1 and r2, which can be obtained by measuring the
semi-length of the major and minor axes of the circumscribed rectangle
using the bounding box method [22]. Subsequently, the aspect ratio
(AR) of a 2D particle projection is computed as follows.

=AR r
r
2

1 (10)

Based on these definitions, AR (which also applies to EI and FI)
varies from 0 and 1, and a more equant shape is obtained as AR in-
creases.
Additionally, if n number of projections of one superellipsoid are

acquired, three sets of 2D size and shape parameters can be obtained,
including {r , , r , , r }i n11 1 1 , {r , , r , , r }i n21 2 2 and {AR , , AR , ,AR }i n1 .
Based on this 2D data, the following 2D indices can be computed:

=r max(r , , r , , r )max i n1 11 1 1 (11)

=r min(r , , r , , r )min i n1 11 1 1 (12)

=r max(r , , r , , r )max i n2 21 2 2 (13)

=r min(r , , r , , r )min i n2 21 2 2 (14)

=AR max(AR , ,AR , ,AR )max i n1 (15)

=AR min(AR , ,AR , ,AR )min i n1 (16)

Table 1
Geometry data of the generated monosized superellipsoids.

Geometry type Asphericity
type

Longest, Intermediate and
Shortest semi-axis lengths

Particle name

R1 R2 R3

Prolate > =R R R1 2 3 Cubic = 0.5 1.5 1 1 C[1.5/1/1]
2.0 1 1 C[2.0/1/1]
2.5 1 1 C[2.5/1/1]
3.0 1 1 C[3.0/1/1]

Spheroid
= 0.0

1.5 1 1 S[1.5/1/1]
2.0 1 1 S[2.0/1/1]
2.5 1 1 S[2.5/1/1]
3.0 1 1 S[3.0/1/1]

Octahedral
= 0.5

1.5 1 1 O[1.5/1/1]
2.0 1 1 O[2.0/1/1]
2.5 1 1 O[2.5/1/1]
3.0 1 1 O[3.0/1/1]

Oblate > =R R R1 2 3 Cubic = 0.5 1.5 1.5 1 C[1.5/1.5/1]
2.0 2.0 1 C[2.0/2.0/1]
2.5 2.5 1 C[2.5/2.5/1]
3.0 3.0 1 C[3.0/3.0/1]

Spheroid
= 0.0

1.5 1.5 1 S[1.5/1.5/1]
2.0 2.0 1 S[2.0/2.0/1]
2.5 2.5 1 S[2.5/2.5/1]
3.0 3.0 1 S[3.0/3.0/1]

Octahedral
= 0.5

1.5 1.5 1 O[1.5/1.5/1]
2.0 2.0 1 O[2.0/2.0/1]
2.5 2.5 1 O[2.5/2.5/1]
3.0 3.0 1 O[3.0/3.0/1]

Scalene > >R R R1 2 3 Cubic = 0.5 1.44 1.2 1 C[1.44/1.2/1]
1.96 1.4 1 C[1.96/1.4/1]
2.56 1.6 1 C[2.56/1.6/1]
3.24 1.8 1 C[3.24/1.8/1]

Spheroid
= 0.0

1.44 1.2 1 S[1.44/1.2/1]
1.96 1.4 1 S[1.96/1.4/1]
2.56 1.6 1 S[2.56/1.6/1]
3.24 1.8 1 S[3.24/1.8/1]

Octahedral
= 0.5

1.44 1.2 1 O[1.44/1.2/1]
1.96 1.4 1 O[1.96/1.4/1]
2.56 1.6 1 O[2.56/1.6/1]
3.24 1.8 1 O[3.24/1.8/1]

Fig. 5. Visualisation of the generated 3D superellipsoids in a Zingg diagram.
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3. Study of monosized superellipsoids with specific geometries

In nature, particles can have various sizes and shapes. To simplify
the problem, monosized superellipsoids (with the same minimum
principal dimension) with three typical shapes, e.g., cubic ( = 0.5),
spheroidal ( = 0), and octahedral ( = 0.5), and three specific geo-
metries, e.g., prolate > =(R R R )1 2 3 , oblate = >(R R R )1 2 3 , and scalene

> >(R R R )1 2 3 , are generated. The sizes and shapes of the generated
superellipsoids are listed in Table 1. As shown in Fig. 5, the generated
3D superellipsoids are plotted in a Zingg diagram for visualisation and
comparison. To better understand the relationships between the 3D
geometries and the 2D projected results, each particle with a given
geometry is randomly projected into 5000 images for statistical ana-
lysis. The same number of projections was also employed to study the
statistics of ellipsoids by previous researchers [36,37]. This process
mimics the experiment in which a single particle is analysed with a
scanner to obtain a large quantity of 2D random projections. Then, the
2D sizes and shapes of all projected particles are measured for statistical
analysis.

3.1. Statistical results of 2D projections

3.1.1. Case I: Monosized prolate superellipsoids
Fig. 6a–c compares the cumulative distribution curves of the 2D

sizes (r , r )1 2 and aspect ratio (AR) of monosized prolate superellipsoids
for = 0.5 (cubic shape) and = 0 (spheroid shape). Generally, both r1
and AR exhibit broader distributions when the =EI R

R
2
1
value of the

prolate superellipsoid decreases. For both cubic and spheroid shapes

(shown in Fig. 6a), the cumulative distribution curves of r1 present re-
latively moderate gradients at r r1 1min and very steep gradients at
r r1 1max. This phenomenon reflects the high proportion of r1 values
clustered around their largest value r1max. Additionally, when EI de-
creases (R1 increases), the r1max values of cubic shapes approach R1. As
demonstrated in Fig. 6b, the spheroid-shaped particles present

= = = =r r R R 12max 2min 2 3 , and the r2 curves of cubic-shaped particles
overlap and illustrate a steep slope within r [1.0, 1.2]2 . In contrast to
r1, the AR curves of both spheroid and cubic shapes display steep gra-
dients at AR ARmin. The gradients become moderate as AR ap-
proaches = = =AR FI 1max

R
R

3
2

.
As shown in Fig. 6d–f, the monosized prolate superellipsoids with

= 0.5 (octahedral shape) and = 0 (spheroid shape) are statistically
compared. As shown in Fig. 6d, the maximum value of r1 for the octa-
hedral superellipsoids becomes increasingly similar to that of the
spheroid superellipsoids as R1 increases (EI decreases). For r2, the oc-
tahedral superellipsoid exhibits a steep slope with the values varying
from 0.8 to 1.0. Similar to the cubic case, the distribution of AR in the
octahedral superellipsoid case is similar to that in the spheroid case
when EI decreases (R1 increases). In all cases, ARmax is always equal to

= =FI 1R
R

3
2

.

3.1.2. Case II: Monosized oblate superellipsoids
Fig. 7 shows the cumulative distribution curves of the 2D sizes (r , r )1 2

and ARs of monosized oblate superellipsoids for = 0.5, 0, and 0.5.
Generally, similar to prolate superellipsoids, r2 and AR exhibit broad
variations as the =FI R

R
3
2
value of the 3D superellipsoid decreases. As

shown in Fig. 7a, r1 of spheroid superellipsoids always equals R1, and for

Fig. 6. Comparison of prolate superellipsoids involving spheroids (denoted as S with solid lines) with cubic (denoted as C with dotted lines) (a)–(c) and octahedral
(denoted as O with dotted lines) (d)–(f) shapes.
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cubic superellipsoids, r1 displays a quasi-logarithmic increase from
r R1min 1 to a much larger >r R1max 1. In contrast to cubic super-
ellipsoids, octahedral superellipsoids increase from <r R1min 1 and fi-
nally cluster around =r R1max 1. Moreover, for both cubic and octahedral
shapes, the r1 distributions exhibit greater deviations than those of
spheroid superellipsoids when =FI R

R
3
2
decreases. For the r2 values of

spheroid and octahedral superellipsoids, the cumulative distribution
curves display very sharp increasing trends at = =r r R 12 2min 3 . When

=FI R
R

3
2
decreases, the difference between r2max and R2 for octahedral

superellipsoids increases. In contrast, the r2 values of cubic super-
ellipsoids display a distribution similar to that of spheroid super-
ellipsoids, where r2min is always equal to =R 13 and r2max is very close to
R2. For AR, both the octahedral and spheroid superellipsoids are
characterised by = = =AR EI 1max

R
R

2
1

and = =AR FImin
R
R

3
2
, and small

deviations between ARmin and FI are observed for cubic superellipsoids
when FI decreases.

3.1.3. Case III: Monosized scalene superellipsoids
In Fig. 8, the 2D sizes (r and r )1 2 and ARs of monosized scalene su-

perellipsoids are statistically illustrated using cumulative distribution
curves. As shown in Fig. 8a and d, the variations in r1 for different and

=EI R
R

2
1
values exhibit trends similar to those for prolate super-

ellipsoids, as shown in Fig. 7a and d. Notably, r1 varies within a broader
interval as =EI R

R
2
1
decreases, and the curves for both cubic and octa-

hedral superellipsoids exhibit less divergence from the curves for
spheroid particles. Likewise, the variations in r2 for different and

=FI R
R

3
2
values are similar to those for oblate superellipsoids, as shown

in Fig. 7b and e. However, greater deviations with respect to r2min

( <r R2max 2) are observed for the octahedral shape when =FI R
R

3
2
in-

creases. Moreover, r2max for the cubic shape ( >r R2max 2) and octahedral
shape ( <r R2max 2) display large deviations from R2 as =FI R

R
3
2
increases.

For AR, as shown in Fig. 8c and f, the ARmax values of all three types of
superellipsoids approach 1.0. The ARmin values for the spheroid shape
exhibit good agreement with EI and FI ( =EI FI for the generated
scalene particles). However, the ARmin values of the cubic-shaped su-
perellipsoids are slightly larger than those for spheroid superellipsoids,
and the ARmin values of octahedral superellipsoids are smaller than
those of spheroid superellipsoids.

3.2. Correlation between 3D geometries and 2D results

Based on the above observations from the statistical distribution of
the sizes (r and r )1 2 and AR values obtained from the 2D projections,
some hypotheses can be concluded as follows:

(1) R1 of the 3D particles is correlated with r1max of the 2D projections;
(2) R2 of the 3D particles is correlated with r1min and r2max;
(3) R3 of the 3D particles is related to r2min of the 2D projections; and
(4) EI and FI are potentially correlated with ARmin and ARmax.

To test the above hypotheses, the r1max, r1min, r2max, r2min, ARmax and
ARmin values of the generated superellipsoids are compared with R1, R2,
R3, EI and FI using correlation analysis. The scatter diagrams of 3D
descriptors plotted against those of the 2D descriptors are shown in
Figs. 9–13.
As illustrated in Fig. 9, for spheroid (in red) and octahedral (in

Fig. 7. Comparison of oblate superellipsoids involving spheroids (denoted as S with solid lines) with cubic (denoted as C with dotted lines) (a)–(c) and octahedral
(denoted as O with dotted lines) (d)–(f) shapes.
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green) superellipsoids, all r1max values match the corresponding R1 va-
lues. For cubic superellipsoids (in blue), r1max exhibits good agreement
with R1 for the prolate and scalene cases but is slightly larger thanR1 for
the oblate case. For R3, Fig. 10 shows that r2min is always very close to R3
for spheroid (in red) and cubic (in blue) superellipsoids but that the
values for octahedral superellipsoids (in green) display slight devia-
tions.
As illustrated in Fig. 11, for spheroid superellipsoids, r1min, r2max and

their mean value rmean are equal to R2 in all cases. Cubic superellipsoids
exhibit r1min values very close to R2, while their r2max and rmean values
that are slightly larger than R2. In terms of octahedral superellipsoids,

r2max is quite similar to R2 for the prolate and scalene cases, but the
corresponding values are smaller for the oblate case. The r1min and rmean
values of octahedral superellipsoids are linearly related to R2 but con-
sistently smaller.
As shown in Fig. 12, ARmin is linearly correlated with EI for all

prolate- and scalene-shaped superellipsoids but exhibits no correlation
with EI for the oblate case. In contrast, ARmax displays no correlation
with EI for the prolate and scalene cases but is equal to EI for the oblate
case.
As illustrated in Fig. 13, ARmax is only equal to FI for prolate-shaped

particles, and there is no correlation between ARmax and FI for oblate or

Fig. 8. Comparison of scalene superellipsoids involving spheroids (denoted as S with solid lines) with cubic (denoted as C with dotted lines) (a)–(c) and octahedral
(denoted as O with dotted lines) (d)–(f) shapes.

(a) Prolate                (b) Oblate                (c) Scalene 
Fig. 9. Comparison of R1 versus r1max for prolate (a), oblate (b) and scalene (c) superellipsoids.
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scalene particles. In contrast, ARmin exhibits a significant correlation
with FI for oblate and scalene particles and no correlation with FI for
prolate particles. In conclusion, both ARmin and ARmax have incon-
sistent relationships with EI and FI for various particle shapes.

3.3. Conclusions from the study of monosized superellipsoids

The correlation analysis provides preliminary insight into the po-
tential of interpreting 3D descriptors with 2D parameters. The fol-
lowing conclusions can be drawn from the results of the proposed

prediction methods:

(1) r1max of 2D projections can be directly used to predict R1 for a 3D
particle;

(2) r1min, r2max and their mean value = +r (r r )/2mean 1min 2max can all es-
timate R2 with minor error. In this study, rmean is used to infer R2
directly;

(3) r2min from particle projections can be employed as an estimator of
R3;

(4) ARmax and ARmin cannot be used to predict EI or FI because the

(a) Prolate                (b) Oblate                (c) Scalene 
Fig. 10. Comparison of R3 versus r2min for prolate (a), oblate (b) and scalene (c) superellipsoids.

(a) Prolate                (b) Oblate                (c) Scalene 

(d) Prolate                (e) Oblate                (f) Scalene 
Fig. 11. Comparison of R2 versus r1min and r2max for prolate (a), oblate (b) and scalene (c) superellipsoids; comparison of R2 versus = +r (r r )/2mean 1min 2max for prolate
(d), oblate (e) and scalene (f) superellipsoids.
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relationships between them are unpredictable if the shape (prolate,
oblate or scalene) of a particular particle is unknown; and

(5) Because R1, R2, and R3 can be well estimated by r1max, rmean and r2min,
two alternative 2D shape parameters, namely, =EI2D r /rmean 1max
and =FI2D r /r ,2min mean are proposed to interpret EI and FI for 3D
particles.

4. Study of randomised superellipsoids with various geometries

In practice, the dimensions (R , R , R1 2 3) and shapes ( ) of target
particles are always unknown, and these values can be randomly dis-
tributed within certain ranges. Moreover, when scanning real particles
with a dynamic imaging system, only a certain number of projection
images can be obtained for a single particle. Additionally, various errors
may influence the results if the projection number is small or if the
shapes of superellipsoids vary over a broad range. We can obtain fur-
ther insight into the influences of these factors through studies of ran-
domised superellipsoids with various geometries. Three groups of su-
perellipsoids are generated with variousR1,R2,R3 and values using the
uniform random operator. For each group, R1, R2 and R3 are uniform
random variables ranging from 1.0 to 4.0. The values of are randomly
taken from three ranges: = 0, ( 0.5, 0.5), and ( 1, 1). Each
group consists of 500 particles. Fig. 14 shows 100 example particles in a
Zingg diagram. Notably, the generated superellipsoids become equant
in shape when EI and FI approach 1.0 and exhibit disc-like, rod-like and
blade-like shapes when EI and FI decrease.

4.1. Influence of variations in shape asphericity on the prediction
performance

The degree to which the shape of a superellipsoid deviates from a
spheroid is reflected by the adopted index of shape asphericity . The
more the value deviates from 0, the more aspherical a particle shape.
In this section, the variations in shape asphericity are constrained by
the absolute maximum value | |max. To study the influence of variations
in shape asphericity on prediction performance, particles are generated
with =| | 0max ( = 0i ), =| | 0.5max ( ( 0.5, 0.5)i ), and =| | 1max
( ( 1, 1)i ), as shown in Fig. 14. To simulate a limited number of
projections, all particles are equally projected 5 times each. Then, 2D
descriptors, including r1max, rmean, r2min, EI2D and FI2D, are measured
from projected images and plotted against the 3D parameters R1, R2, R3,
EI, and FI of the same particle.
Fig. 15a–c illustrates the scatter diagrams when r , r1max mean and r2min

are used to predict the values of R1, R2 and R3, respectively. Clearly,
linear correlations between R1, R2 and R3 and r1max, rmeanand r2min can
still be observed (similar to the results of monosized superellipsoids
shown in Section 3.2). Although the degree of scatter generally in-
creases between individual r R2D 3D pairs when | |max increases from
0.0 to 1.0, the data points are essentially clustered around the
equivalent line of =r R2D 3D in all three cases. The R1 points above the
diagonal are more concentrated than those below the diagonal. For
both R2 and R3, more points are plotted above the diagonal for

=| | 0,max and the degree of scatter drastically varies as | |max changes.
The statistics associated with R2 and R3 contribute more to the scatter

(a) Prolate                (b) Oblate                (c) Scalene 
Fig. 12. Comparison of ARmax and ARmin versus EI for prolate (a), oblate (b) and scalene (c) superellipsoids.

(a) Prolate                (b) Oblate                (c) Scalene 
Fig. 13. Comparison of ARmax and ARmin versus FI for prolate (a), oblate (b) and scalene (c) superellipsoids.
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than those of R1. For shapes, the degree of scatter of EI above the di-
agonal increases with increasing | |max, and FI exhibits more scatter
below the diagonal when | |max increases.

4.2. Influence of projection number on the prediction performance

To determine the effect that the projection number has on the
prediction of 3D descriptors, superellipsoids with =| | 0.5max are gen-
erated, and 2D descriptors are measured for various numbers of pro-
jections ( = =n 2, n 5 and =n 20).
Fig. 16a–c shows the scatter diagrams used to estimate R , R1 2 and R3

for projection numbers of 2, 5 and 20. The predictions of all 3D size
parameters display fewer deviations as the projection number in-
creases. The values of particles with 2 projections exhibit notable
fluctuations, and those of particles with 5 and 20 projections diverge
less. The results for shape factors EI and FI are plotted in Fig. 16d–f.
Both the correlation and concentration of points with respect to the
diagonal decrease with decreasing projection number.
In conclusion, a decrease in the projection number has an adverse

impact on the precision of predicting 3D parameters from 2D de-
scriptors. For superellipsoids with =| | 0.5max , 5 and 20 projections lead

to relatively high precision (more projection time yields a more accu-
rate result), and 2 projections result in much lower accuracy.

4.3. Strategy for predicting the sizes and shapes of particles with unknown
geometries

The average relative errors ĒSize and ĒShape are used to quantify the
prediction accuracy of particle sizes (R , R , R1 2 3) and particle shapes
(EI, FI). The ĒSize and ĒShape values for m numbers of randomly gener-
ated superellipsoids are computed as follows.

=
+ +( )

Ē
/3

mSize

|R r |
R

|R r |
R

|R r |
R

1 1max
1

2 mean
2

3 2min
3

(17)

=
+( )

Ē
/2

mShape

|EI EI2D|
EI

|FI FI2D|
FI

(18)

Superellipsoids with R1, R2 and R [1, 4]3 are randomly generated
and projected with various combinations of | |max and projection num-
bers. For each combination, the average relative errors, ĒSize and ĒShape,
are subsequently computed. To guarantee the stability of the resulting
ĒSize and ĒShape values, for each | |max and projection number pair, 5000
superellipsoids are generated. The results of ĒSize and ĒShape versus | |max
and the projection number are plotted in Fig. 17 and Fig. 18, respec-
tively. The minimum projection number= 2 and the largest value of

=| | 1.0max results in peaks in the ĒSize and ĒShape plots, indicating low
accuracy in predicting the 3D size and shape factors from 2D projec-
tions. The maxima of ĒSize and ĒShape are 0.170 and 0.175, respectively.
As the projection number increases and the divergence of shape as-
phericity decreases, ĒSize and ĒShape both rapidly decrease. The valleys
of both ĒSize and ĒShape in the plot corresponding to the most accurate
prediction occur at a projection number of 20 and =| | 0max . The
minima of ĒSize and ĒShape are 0.01 and 0.02, respectively.
Based on these results, a preliminary prediction strategy for as-

pherical particles with unknown geometries is suggested as follows.

(1) Determine the shape variation | |max and the allowable values of the
prediction error ĒSize and ĒShape according to the target application
or case.

(2) Based on the estimated | |max and the desired ĒSize and ĒShape values,
find the corresponding projection numbers mSize and mShape based
on the results shown in Fig. 17 and Fig. 18.

(3) If only the size or shape is of interest, use the corresponding pro-
jection numbers mSize or mShape for particle projection and 3D geo-
metry prediction. If both the size and shape are of interest, use the
maximum value among mSize and mShape.

5. Applications and future work

5.1. Application to 3D laser-scanned cobble particles

Real cobble particles scanned by 3D laser scanning were used to
assess the performance of the proposed approach for aspherical real
particles. The cobble is named Xiangjiang River cobble (XRC), and it is
a typical aggregate material in South China. Nie et al. [42] evaluated
the 3D shapes of cobblestones scanned at a 3D laser scanner facility
located at Central South University, China. In total, 50 cobbles with
sphere-, blade-, disc- and rod-like shapes were selected according to the
classification system suggested by Zingg (see Fig. 19). As shown in
Fig. 20, the cobbles had a minimum mean curvature-based roundness
value of 0.3. Based on [42], the mean curvature-based roundness
changes as varies (shown as a blue dashed line in Fig. 20). It can be
inferred from the figure that the most aspherical cobble (with a mean
curvature-based roundness of 0.3) roughly corresponds to a super-
ellipsoid with = 0.7.
To examine the performance of the proposed approach, the

Fig. 14. Examples of randomised 3D superellipsoids in a Zingg diagram (a)
=| | 0max ; (b) =| | 0.5max ; (c) =| | 1.0max
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projection number of each particle is first determined based on the
prediction strategy proposed in Section 4.3. Given that the acceptable
prediction error is 0.1 and | |max is 0.7, the optimal projection number
was determined to be 10. Subsequently, each cobble particle was ran-
domly projected 10 times to acquire 2D images. With the obtained 2D
projections of the cobbles, the proposed prediction method was em-
ployed to estimate the 3D sizes and shapes. The statistical results of the
predicted sizes and shapes are compared with the actual values in
Fig. 21. The cumulative distribution curves of the sizes exhibit good
agreement, and the shape results are promising. Overall, based on the
suggested prediction strategy, the sizes (R , R , R1 2 3) and shapes (EI, FI)
of the real cobbles were reasonably predicted based on a limited
number of 2D random projections.

5.2. Discussion of future developments

The proposed work still has several limitations. Thus, the following
work will be performed in the future to promote the prediction of the
3D geometry of large granular particles with 2D random projections.

(1) Predicting the geometry of real aggregates during particle falling
and rolling

Instead of acquiring the virtual digital projections from the 3D laser-
scanned particle model, the real 2D random projected images can be
obtained through the falling and rolling of the 3D particle along an
inclined slope with high-speed shooting. The conceptual plan for the
dynamic scanning of large aggregates is illustrated in Fig. 22. As long as
the random projected images are acquired, the proposed method can be
used to predict the principal dimensions, elongations and flatness of the

particles.

(2) Assessing complex shape effects on prediction accuracy

The adopted superellipsoids cannot fully represent realistic granular
particles with high complexity and irregular shape; e.g., the effects of
asymmetry are not considered. The extensive shape variations of rea-
listic granular particles will decrease the prediction accuracy and re-
quire high projection numbers during scanning. The studied particle
shapes include only elongation and flatness properties, which are as-
sociated with the particle form. The angularity and roughness proper-
ties are not considered. Possible solutions to address these drawbacks
are suggested as follows:

I. Effect of particle asymmetry

The proposed superellipsoid model is good at evaluating the particle
asphericity effect. However, there is very little research on particle
asymmetry. Future work will be performed to employ special models,
e.g., the egg-shaped particle (ESP) model [43] and the poly-ellipsoidal
grain (PEG) model [44], to quantitatively investigate the effect of the
asymmetric shape on the relationship between 3D and 2D geometries.

II. Effect of particle angularity and roughness

Considering that the abovementioned particle models, e.g., super-
ellipsoid, egg-shaped particle, poly-ellipsoidal grain, can hardly re-
produce very complex particle shapes, e.g., angularity and roughness,
spherical harmonic (SH) analysis [45] will be employed to randomly
reconstruct virtual particles with quantitatively controlled angularity

Fig. 15. R , R , andR1 2 3 predicted by r , r , and r1max mean 2min with (a) =| | 0max , (b) =| | 0.5max , and (c) =| | 1.0max ; EI and FI predicted by EI2D and FI2D with (d)
=| | 0max , (e) =| | 0.5max , and (f) =| | 1.0max
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and roughness features. By evaluating the 2D angularity and roughness
of the projections of SH-based particles, it will be possible to quanti-
tatively investigate the ability of predicting more complex 3D particle
shapes with 2D random projections.

(3) Reconstructing 3D particles with 2D random projections

Reverse construction of a 3D digital model of real particles has at-
tracted research interest, motivated by the objective to generate rea-
listic shapes for the discrete element modelling of granular particles.
Since the 3D sizes of the real particle can be well predicted based on the
proposed approach, future work will be conducted to reconstruct the
3D particle from its 2D random projections. Possible solutions will

Fig. 16. R1, R2 and R3 predicted by r1max, rmean and r2min with (a) =n 2, (b) =n 5, and (c) =n 10; EI and FI predicted by EI2D and FI2D with (d) =n 2, (e) =n 5, and
(f) =n 20.

Fig. 17. Contour plot of the average relative error of the predicted particle size
ĒSize versus the projection number and variations in shape asphericity.

Fig. 18. Contour plot of the average relative error of the predicted particle
shape ĒShape versus the projection number and variations in shape asphericity.
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involve using the appropriate 2D projected images to form a 3D solid
skeleton, followed by using surface interpolation to generate the 3D
particle. By combining this approach with the dynamic scanning device
being designed (shown in Fig. 22), a cost-efficient 3D particle re-
construction system will be developed as an alternative scheme to the
existing high-cost systems, e.g., X-ray CT and 3D laser scanner.

6. Conclusions

Superellipsoids and their projected images were used to examine the
relationships among 3D and 2D particle size and shape characteristics.
A prediction strategy for aspherical particles with unknown geometries
was suggested based on a statistical analysis of the results. A verifica-
tion of the methodology was performed based on an application in-
volving real cobble particles. The following major observations were
made in this study.

(1) The cumulative distribution curves of 2D sizes and shapes exhibit
specific trends for different types of monosized superellipsoids.

(2) The r1max, rmean and r2min values of the 2D projections can be used to
predict R1, R2 and R3 for a 3D particle.

(3) The EI and FI values of the 3D particles are difficult to infer with
AR values but can be predicted by EI2D (r /rmean 1max) and FI2D

Fig. 19. Zingg diagram summarising the EI and FI values of the 50 cobbles
obtained.

Fig. 20. Mean curvature-based roundness of cobbles and the corresponding
-value range of superellipsoids.

Fig. 21. Statistical distributions of the real (measured from 3D) and predicted (measured from 2D) sizes (a) and shapes (b).

Fig. 22. Illustration of conceptual plan for dynamic scanning of large ag-
gregates.
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(r /r2min mean), respectively.
(4) The particle asphericity and projection number significantly influ-
ence the prediction accuracy and should be considered when de-
veloping dynamic imaging and scanning methods for industrial
applications.

(5) The proposed prediction strategy displayed promising prediction
capability, as demonstrated by comparing the cumulative dis-
tributions of the sizes and shapes of 3D laser-scanned real cobble
particles with the values inferred from their 2D projections.

In summary, based on easy-to-visualise superellipsoids, this study

has clearly demonstrated the applicability and reliability of inferring
particle size (R , R , R1 2 3) and shape (EI, FI) characteristics from pro-
jected 2D images. The authors acknowledge that there are several
limitations of the proposed work. Future work is expected to be per-
formed to further apply the proposed approach in industrial practice.
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Appendix A. Abbreviations

LPSA Laser particle size analyser
SGA Segmentation-based Gradation Analyser
ERPC Electrical resistance particle counter
PDIP Particle digital image processor
EI Elongation index
FI Flatness index
AR Aspect ratio
EI2D Predicted elongation index from 2D projections
FI2D Predicted flatness index from 2D projections

Appendix B. Symbols

R1 Longest semi-axis length for a 3D particle
R2 Intermediate semi-axis length for a 3D particle
R3 Shortest semi-axis length for a 3D particle

Index of shape asphericity
r1 Longest semi-axis length for a 2D projected particle
r1max Maximum value of r1 among random 2D projections
r1min Minimum value of r1 among random 2D projections
r2 Shortest semi-axis length for a 2D projected particle
r2max Maximum value of r2 among random 2D projections
r2min Minimum value of r2 among random 2D projections
rmean Average value between r1min and r2max
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