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Universality of internal structure characteristics in granular media under shear
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We examine the signatures of internal structure emerged from quasistatic shear responses of granular
materials based on three-dimensional discrete element simulations. Granular assemblies consisting of spheres
or nonspherical particles of different polydispersity are sheared from different initial densities and under
different loading conditions (drained or undrained) steadily to reach the critical state (a state featured by
constant stress and constant volume). The radial distribution function used to measure the packing structure
is found to remain almost unchanged during the shearing process, regardless of the initial states or loading
conditions of an assembly. Its specific form, however, varies with polydispersities in both grain size and grain
shape. Set Voronoi tessellation is employed to examine the characteristics of local volume and anisotropy,
and deformation. The local inverse solid fraction and anisotropy index are found following inverse Weibull
and log-normal distributions, respectively, which are unique at the critical states. With further normalization,
an invariant distribution for local volume and anisotropy is observed whose function can be determined by
the polydispersities in both particle size and grain shape but bears no relevance to initial densities or loading
conditions (or paths). An invariant Gaussian distribution is found for the local deformation for spherical packings,
but no invariant distribution can be found for nonspherical packings where the distribution of normalized local
volumetric strain is dependent on initial states.
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I. INTRODUCTION

Granular materials are typical complex systems featuring
large numbers of discrete particles interacting nonlinearly
through contacts and rolling and forming strongly heteroge-
neous and amorphous internal structures. The characteristics
of internal structure (also called fabric) are widely considered,
bearing close correlations with the physical properties and
mechanical behaviors of a granular material [1–3]. However,
it remains challenging to identify the key features of internal
structure to directly relate them to the macroscopic properties
to render rigorous cross-scale understandings. To demystify
the complexity of granular systems, statistical mechanics
theories have been developed, exemplified by those proposed
by Edwards and coauthors [4,5], highlighting the role of
volume (or density) in describing the jammed behavior of
static granular media. The local properties, especially the local
volume fluctuation, have been a focus of interest in numerous
experimental and numerical studies [6–11]. For example,
Aste and coauthors [7,8] revealed an invariant distribution in
local volume for static monodisperse sphere packings. This
universality was further confirmed for monodisperse ellipsoid
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packings [12]. However, its validity remains to be verified for
general granular materials with polydispersity in both particle
size and shape, i.e., for polydisperse and poly-shaped non-
spherical particles, which are widely encountered in nature,
industry, and engineering.

The majority of existing studies on local properties have
been focused on certain specific states such as the stationary
state [8], the jamming transition state [13], or the sheared
steady state [14]. Evidently, particles will experience steady
rearrangement when subjected to shear, resulting in constantly
evolving local structures and unrecoverable (plastic) defor-
mation, often incurring strain localization. Investigating the
evolution of local structure and deformation during a typical
shearing process may shed new light on the local properties
of sheared granular materials. Indeed, based on discrete el-
ement simulations, Guo and Zhao [11] found some invariant
distributions in local properties such as local volume and local
anisotropy during constant-volume shearing of dense sphere
assemblies. Despite the fact that the mechanical responses
of sheared granular materials have been extensively explored
in the past (see Refs. [2,15–19]), there are relatively scarce
studies on the fluctuations of local properties of sheared
granular materials in the literature, especially for nonspherical
assemblies.

This study aims to rigorously examine the significance of
polydispersity in both particle size and shape on the mechan-
ical behaviors of granular materials [18,20–23]. Using the
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FIG. 1. Poly-superellipsoids with r+
x = 1.0, r−

x = 0.5, r+
y =

0.8, r−
y = 0.9, r+

z = 0.4, r−
z = 0.6 and (a) ε1 = 0.4, ε2 = 1.5,

(b) ε1 = ε2 = 1.0, (c) ε1 = ε2 = 1.5.

discrete element method (DEM), we analyze and compare
the shear responses of specimens composed of monodis-
perse and polydisperse spheres and nonspheres, with differ-
ent initial states and under different loading conditions. The
loading conditions include both constant confining pressure
and constant-volume (or drained and undrained, in soil me-
chanics) triaxial shear. The characteristics of local structure
and deformation are examined, with special attention on the
differences observed in sphere and nonsphere assemblies. In
particular, we wish to explore whether there is a universality in
local structure and deformation of sheared granular materials
if the effects of polydispersity in particle size and shape, initial
states, and loading conditions are all taken into account.

This paper is organized as follows. The details of numerical
approach and model setup are introduced first in Sec. II,
followed by analysis of the mechanical responses at the
macroscopic scale in Sec. III. The main focus is placed in
Sec. IV on the analysis of the granular microstructure to
identify the characteristics of local structure and deformation.
Major findings of this work are summarized in Sec. V.

II. NUMERICAL PROCEDURES

A. Particle shape

In this study, we model nonspherical particle shape using a
poly-superellipsoid-based approach recently proposed [24]. It
has been proved to be versatile and efficient in capturing the
major shape features (such as elongation, flatness, asymmetry,
and angularity) of realistic particles in nature, such as sand.
In this method, a poly-superellipsoid particle is constructed
by assembling eight pieces of superellipsoids according to
the following surface function defined in a local Cartesian
coordinate system:(∣∣∣∣ x

rx

∣∣∣∣ 2
ε1 +

∣∣∣∣ y

ry

∣∣∣∣ 2
ε1

) ε1
ε2

+
∣∣∣∣ z

rz

∣∣∣∣ 2
ε2 = 1, (1)

with

rx = r+
x if x � 0 else r−

x , (2a)

ry = r+
y if y � 0 else r−

y , (2b)

rz = r+
z if z � 0 else r−

z , (2c)

where r+
x , r+

y , r+
z and r−

x , r−
y , r−

z are the principal elongation
along the positive and negative directions of x, y, z axes,
respectively; ε1, ε2 control the squareness or blockiness of the
particle surface; and their possible values are within (0,2) for
convex shapes. Figure 1 demonstrates how ε1 and ε2 control
the generated particle surface. To quantify particle shape, two

auxiliary descriptors, namely, principal length lx, ly, lz and
principal eccentricity ex, ey, ez, are introduced such that

r+
x = lxex, r−

x = lx(1 − ex ), (3a)

r+
y = lyey, r−

y = ly(1 − ey), (3b)

r+
z = lzez, r−

z = lz(1 − ez ). (3c)

B. Simulation setup and packing preparation

The simulations are carried out by means of the discrete
element method with an open-source DEM platform Sudo-
DEM [19,24,25], developed by the authors. The basic particle
element is the poly-superellipsoid, as introduced in Sec. II A,
based on which a rich library of particle shapes with moderate
increase in computational complexity (e.g., in contact detec-
tion) as compared with sphere elements can be generated. For
the sake of computational efficiency, a linear spring contact
model [11] in conjunction with a Coulomb sliding model is
employed according to the following expressions to compute
the normal and tangential contact forces f c

n and f c
t at a given

contact c:

f c
n = −knδnc, (4a)

f c
t = − min

{
μ

∣∣ f c
n

∣∣, ∣∣ f c′
t − kt uc

∣∣}uc/|uc|, (4b)

where kn and kt are normal and tangential contact stiffness,
respectively; δ is the overlap between two particles calculated
by using the common normal method (referring to our previ-
ous work [24] for details), which should be sufficiently small
(smaller than 10−2 particle size in this work) to reduce its side
effect on the configuration of a granular system [26]; μ is
the coefficient of sliding friction; nc is the outward contact
normal; f c′

t is the tangential contact force at the last time
step but rotated into the current contact plane; and uc is the
tangential displacement during the current time step. Note that
particle size is defined as the radius of an equivalent sphere
with the same volume as the nonspherical particle. As for
the material property, the friction coefficient μ is set to 0.3
(a typical value for quartz sands), while the contact stiffness
is empirically set as kn = ks = r × 100 MPa (where r is the
average particle size) to yield reasonable Young’s modulus
and Poisson’s ratio for quartz sands [17,19]. Although the con-
tact stiffness affects the mechanical behaviors of a granular
material [27], the magnitudes of kn and ks adopted here ensure
comparable results with using the Hertz-Mindlin model as
reported in the literature [19].

Three groups of numerical specimens for nonspheres and
spheres are prepared with the following protocol: (a) There
are 10 000 particles with random orientations and positions
generated within a cubic container, where particle shape pa-
rameters are uniformly selected from the intervals given in
Table I. Note that the selected range of particle blockiness
covers a broad diversity of the particle shape due to the fact
that the particle surface varies in an exponential-like decay
manner with ε1 and ε2 away from 1.0. With the given ranges
of shape parameters, the most distorted shape has a maximum
aspect ratio of 3.0 and a maximum eccentricity of 4.0, which
is an extreme case for realistic sandy grains in nature. (b)
Isotropic compression is performed on each initial assembly,
and all confining plates maintain a constant confining stress σ0
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TABLE I. Three groups of particle shape parameters.

Groupa ε1, ε2 lx, ly, lz (mm) ex, ey, ez

NS [0.5,1.4] [0.25,0.75] [0.2, 0.8]
PS [1.0,1.0] [0.25,0.75] [0.5,0.5]
MS [1.0,1.0] [0.50,0.50] [0.5,0.5]

aNS: polydisperse nonspheres; PS: polydisperse spheres; MS:
monodisperse spheres.

of 100 kPa via the so-called stress-controlled numerical servo
mechanism. (c) The isotropic compression terminates with
α f � 0.01, β f � 0.01, γ f � 0.001, where α f is the mean
stress ratio, β f the deviatoric stress ratio, and γ f unbalanced
force ratio, respectively given by

α f = |p − σ0|
σ0

, β f = q

p
, γ f =

∑
Bj∈V

∣∣∑
c∈Bj

f c
j + f b

j

∣∣
2

∑
c∈V | f c| ,

(5)

in which p and q denote the mean stress and deviatoric stress,
respectively, given later in Eqs. (7a) and (7b), f c

j and f b
j are

total contact force and body force of the jth particle, and f c

is contact force at contact c.
Each group consists of three packings with different initial

densities. A total of nine packings are prepared with corre-
sponding characteristics summarized in Table II, where e0

is the initial void ratio (i.e., ratio of void volume to solid
volume within a packing) of a packing before shear, and
〈Z〉 is the mean coordination number (average number of
contacts per particle). Snapshots of two initial specimens with
nonspherical and spherical particles, NS-D and PS-D, are
exemplified in Fig. 2.

C. Numerical shear

The specimens are sheared under triaxial compression
conditions, where the top and bottom plates push the specimen
from both sides at a constant axial strain rate ε̇z to trigger
a continuous shear process. All specimens are subjected to
two typical loading conditions commonly encountered in soil
mechanics: drained and undrained. For drained loading, the
four side plates exert a constant confining stress σ0 onto

TABLE II. Characteristics of initial specimens for nonspheres
and spheres.

Group Labela e0 〈Z〉 Description

NS NS-D 0.429 8.897 Dense
NS-M 0.554 5.907 Medium dense
NS-L 0.641 5.489 Loose

PS PS-D 0.564 5.509 Dense
PS-M 0.594 5.391 Medium dense
PS-L 0.725 3.965 Loose

MS MS-D 0.622 6.171 Dense
MS-M 0.708 5.244 Medium dense
MS-L 0.766 4.773 Loose

aA-B: A for group tag; B for dense (D), medium dense (M) or
loose (L).

(a)

(b)

FIG. 2. Snapshots of initial assemblies (a) NS-D and (b) S-
D composed of 10 000 nonspherical and spherical particles,
respectively.

the specimen when the top and the bottom plates move; for
the undrained case, a specimen is so sheared to maintain
a constant volume by adjusting the positions of the four
side plates according to ε̇x = ε̇y = −ε̇z/2. It is worth noting
that particles in the simulations are dry and the constant-
volume condition is used as a mere approximation as the
real undrained condition in the laboratory [17,28]. To ensure
quasistatic shear, the axial strain rate ε̇z is set to a small value
of 0.01/s, fulfilling the criterion that the inertia number I =
ε̇z〈d〉√ρ̄/σ0 � 10−3 [15,16], where 〈d〉 is the average particle
diameter and ρ̄ is the material mass density (2650 kg/m3 for
quartz sands). Note that the mass density is scaled up by
6 orders of magnitude for achieving a large time step, i.e.,
5 × 10−5 s in DEM simulations. More details on the numer-
ical shear can be found in [19]. Specimens subjected to the
undrained loading, except for the loose ones, are compressed
to a sufficiently large level of axial strain εz = 50%, at which

012906-3



SHIWEI ZHAO, JIDONG ZHAO, AND NING GUO PHYSICAL REVIEW E 101, 012906 (2020)

the specimens reach the steady flow regime (or critical state
in soil mechanics). We label the different specimens under
variable loading conditions according to the following A-B-C
grouping to facilitate discussion: A stands for the group tag
(NS for polydisperse nonspheres, PS for polydisperse spheres,
and MS for monodisperse spheres); B denotes either drained
(D) or undrained (U) loading conditions; and C stands for the
initial state, either dense (D), medium dense (M), or loose (L).

III. MECHANICAL BEHAVIOR AT THE MACROSCALE

The following stress tensor defined by [29] based on
volume average contact forces of an assembly is adopted to
represent the macroscopic mechanical response of a specimen
during shearing:

σ = 1

V

∑
c∈V

f c ⊗ lc, (6)

where V is the total volume of the assembly, f c is the contact
force at contact c, lc is the branch vector joining the centers
of the two contacting particles at contact c, and ⊗ denotes the
dyadic product. Two commonly used invariants of σ, the mean
stress p and the deviatoric stress q, are defined as

p = 1

3
tr σ, (7a)

q =
√

3

2
dev σ : dev σ. (7b)

The deformation of a specimen is quantified by the axial strain
εz and the volumetric strain εv , which can be approximately
calculated from the positions of the boundary walls, i.e., εz =
ln(H0/H ), εv = ln(V0/V ), where H and V are the height and
volume of the specimen during shearing, respectively, and H0

and V0 are their initial values before shear. Negative values of
volumetric strain indicate dilation.

Figure 3 shows the stress paths for the three groups of spec-
imens under the two drainage conditions. Notably, the stress
paths for the drained cases (e.g., NS-D-D, NS-D-M, and NS-
D-L in NS) are approximately straight lines with a slope of
3 : 1, which is consistent with the theoretical slope (dq/d p =
3), typically for a conventional triaxial compression test in
soil mechanics. As for the undrained cases, the loading path
is strongly affected by the initial state of a specimen. While
a dense specimen shows a general nonlinear increase of the
deviatoric stress q with the mean stress p before reaching
a critical state line (CSL), a medium dense specimen may
experience an initial drop in p before p and q reach the so-
called phase transformation point and both increase with shear
again. For a loose specimen, p shows a steady decrease during
shearing (i.e., losing effective confining stress), accompanied
by an initial increase in q followed by a steady drop, until both
p and q become zero (see, e.g., NS-U-L, PS-U-L, and MS-U-
L). The specimen reaches the so-called liquefaction state and
can no longer undertake any external loading. The quasistatic
shear-induced liquefaction under constant volume suggests
that a jamming transition may be triggered by shear even at a
constant global solid fraction. The underlying mechanism can

FIG. 3. Loading paths performed on the three groups of speci-
mens. Insets are the extensions of upper-right corners of plots. CSL:
critical state line.

be related to the associated changes in local internal structures
(see Refs. [30,31]), which is, however, beyond the focus of
this work.

We also note that all stress paths reach a unique CSL
(i.e., a line denoted by a unique ratio of q/p), regardless of
the initial states and loading conditions. This can be more
clearly revealed from the evolution of q/p against the axial
strain εz plotted in Fig. 4. The figure shows that q/p for the
undrained cases is slightly larger than that for the drained
cases, until they all reach an almost identical value at the
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FIG. 4. Evolution of deviatoric stress ratio q/p for the three
groups of specimens during shearing. Note: q/p is not available when
liquefaction happens.

critical state for a given initial assembly, which is consistent
with that observed in the laboratory. Moreover, it appears that
the shear strength for nonsphere assemblies at the critical state
is substantially enhanced due to interlocking attributable to
irregular particle shapes, even though the initial assemblies
may possess almost the same global solid fraction, e.g., in the
cases of NS-M and PS-D (see the initial void ratio in Table II).
Detailed discussion on the effects of particle shape on the
stress transmission in a granular packing is beyond the scope

FIG. 5. Evolution of (a) void ratio and (b) volumetric strain for
drained loading cases during shearing.

of this work, but its significance has indeed been investigated
in some early studies, e.g., Refs. [2,20–22]. Furthermore, a
quick comparison of Figs. 4(b) and 4(c) reveals that the devia-
toric stress ratio q/p is hardly affected by the polydispersity at
the critical states (where q/p � 0.71 for all sphere packings).
Similar observations had been made by Cantor et al. [23]
when they examined the response of polydisperse spheres
subjected to simple shear.

The deformation of these specimens under drained shear-
ing are analyzed by two macroscopic quantities, void ratio
and volumetric strain, as shown in Fig. 5. As expected, all
three groups of specimens reach their corresponding unique
void ratios at the critical states in Fig. 5(a). It is evident that
critical void ratio is a function of the constituent particles,
particle shape and polydispersity being two typical factors.
We show that the significance of these factors may vary in
terms of their influence on shear strength and deformation.
For instance, polydispersity has an insignificant effect on the
critical deviatoric stress ratio but may markedly affect the
critical void ratio. Furthermore, for each group of specimens
in Fig. 5(b), the denser specimens experience larger volu-
metric strain, i.e., more significant dilation and higher peak
shear strength. However, the effect of both particle shape
and polydispersity on granular deformation (e.g., volumetric
strain) in loose assemblies is much less apparent.
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The structural and deformation characteristics of these
specimens subjected to shear are further examined from a
particle-scale perspective in the following sections. Three
typical levels of axial strain, εz = 0, 26%, and 45%, are
chosen for the analyses. Note that all specimens have almost
reached their corresponding steady flow regimes (or critical
states) at εz = 26%.

IV. GRANULAR MICROSTRUCTURE

A. Radial distribution function

We employ the radial distribution function (RDF) g(r) to
examine the spatial structure of a granular packing. RDF gives
the probability of finding the center of a particle at a distance
of r from a reference particle. A normalized form of g(r) is
usually given as [32]

g(r) = ρ̃(r)

ρ
= n(r)

4πr2
rρ
, (8)

where n(r) is the number of particles within a spherical shell
occupying the space from a radial distance r to r + 
r from
the center of the reference particle; ρ̃(r) is the number density
at a distance of r, equal to n(r)/(4πr2
r), i.e., the number
of particles per unit volume within the spherical shell; and ρ

is the average number density of the whole packing, i.e., the
number of particles per unit volume within the packing. With
such normalization, g(r) tends to 1 for large r, implying that
there is no long-range order. In this work, 
r = 0.1〈d〉, where
〈d〉 is the mean particle diameter; g(r) is averaged over all
reference particles within the packing. The RDFs of the three
groups of specimens at different shearing states are shown
in Fig. 6, where the subscripts in the legend INIT, 26 and 45

respectively denote the initial state and the studied states with
εz = 26% and εz = 45%.

For the specimens of monodisperse spheres in Fig. 6(c), a
clear sharp peak of g(r) is found to appear at a distance of
one particle diameter 〈d〉, and a split peak appears in between
r = √

3〈d〉 and 2〈d〉, which is consistent with observations
reported in the literature, e.g., [11,18]. It is worth noting
that g(r) is theoretically zero at short distances (less than
one particle diameter) for hard sphere packing due to the
strong repulsive forces, but nonzero g(r) is observed for
r → 〈d〉 due to a finite interval of measured radial distance
(i.e., 0.1〈d〉 here). The presence of secondary local peaks
following the first primary one in RDFs implies characteristic
structures with rather different local patterns [6]. For example,
the second local peak is dominated by spheres arranged in
nearly coplanar equilateral triangles [18]. As for polydisperse
spheres, i.e., PS in Fig. 6(b), the corresponding RDFs are
similar to that of MS, with the first local peak appearing
at a distance of one mean particle diameter. With additional
distortion in particle shape, i.e., NS in Fig. 6(a), the RDFs
still possess a similar shape to that for PS and MS but
with apparent changes in location and amplitude of peaks.
Overall, the first local peak of a RDF appears at a distance
of approximately one mean particle diameter for polydisperse
specimens, regardless of particle shape. It is also evident
that the number of local peaks of RDFs decreases due to
the effect of polydispersity and particle shape, suggesting

FIG. 6. Radial distribution functions (RDFs) for the three groups
of specimens: (a) NS, (b) PS, (c) MS at different shearing states. The
measured radial distance interval is 0.1 mean particle diameter.

that the dominant local patterns of structure within a pack-
ing are expected to be lost. However, the RDF may not be
particularly suitable for disclosing local ordered structures for
poly-shaped particles as it does for mono-shaped particles
(e.g., Ref. [33]). Furthermore, most interestingly, for each of
the three groups of specimens, despite certain small fluctu-
ations, the RDFs remain almost unchanged during shearing
and appear to be independent of initial states (dense or loose)
and loading conditions (at least for the two typical loading
conditions considered here). Similar observations have been
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(c)

(b)

(a)

(f)

(e)

(d)

FIG. 7. Voronoi cells constructed by means of the Set Voronoi
tessellation for spheres (upper) and nonspheres (lower): (a, d) net-
works of Voronoi cells; (b, e) a Voronoi cell enclosing a particle; (c,
f) a slice of networks of Voronoi cells.

reported by Guo and Zhao [11], who simulated shear tests on
sphere packings under a constant-volume shearing.

B. Local structure

1. Partition of local cells

The particle-centered method, e.g., the Voronoi tessella-
tion, has been popular in the construction of local cells for
sphere packings [6,8,11,34,35]. It is, however, nontrivial to
partition local cells of nonsphere packings. Herein we employ
a recently developed method named Set Voronoi tessellation
to partition local cells of nonsphere packings [12,36–39]. The
Set Voronoi tessellation partitions the point clouds from par-
ticle surfaces within a packing based on the general Voronoi
tessellation. It yields a series of subcells partitioning the entire
space of a packing where each subcell encloses one particle
surface point. The subcells with particle surface points from
the same particle are then merged to form the Voronoi cell
enclosing the particle.

Figure 7 comparatively shows the Voronoi cells of sphere
and nonsphere packings. It is clear that the shape of Voronoi
cells of a nonsphere packing differs characteristically from
that of a sphere packing, i.e., nonconvex shape with curved
facets in Fig. 7(e) vs convex polyhedron in Fig. 7(b). Further-
more, it is worth noting that the accuracy of a Voronoi cell is
dependent on the resolution of particle surface discretization,
which was discussed in our previous study and others [38,40].
In this work, the surface of each particle is discretized into
600 points, yielding a relatively high resolution.

FIG. 8. Probability distribution functions (PDFs) of inverse local
fraction φ−1

L for the three groups of specimens at different drained
shearing states. Lines are the best fitting with inverse Weibull distri-
butions given in Eq. (10).

2. Inverse local fraction

The inverse local fraction φ−1
L (i.e., the inverse of the local

solid fraction within a Voronoi cell) is used to examine the
fluctuation of local volume:

φ−1
L = Vc

Vp
, (9)

where Vc and Vp are volumes of a given Voronoi cell and its
enclosing particle. Here emphasis is placed on the effect of
loading conditions and initial states on the probability distri-
bution of φ−1

L . We plot the data of φ−1
L for the three groups of

specimens at drained and undrained shearing states, respec-
tively, in Figs. 8 and 9. For the case of monodisperse samples
(MS), the theoretical minimum of φ−1

L is around 1.325 for a
random packing [7], which is reproduced as the lower bound
of φ−1

L in our simulated results and is plotted in the subfigures
as a reference. Moreover, it has also been reported that φ−1

L
yields a γ distribution in MS [7,11], which, however, does not
hold well in the case of polydispersity. Thus, Guo and Zhao
[11] proposed a mixed-γ distribution to fit the distribution
of φ−1

L in bidisperse and tridisperse sphere packings, where
each monodisperse group of particles (grouped by particle
radius) was fitted by a γ distribution and then weighed into
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FIG. 9. Probability distribution functions (PDFs) of inverse local
fraction φ−1

L for the three groups of specimens at different undrained
shearing states. Lines are the best fitting with inverse Weibull distri-
butions given in Eq. (10).

the total distribution. Nevertheless, it is not convenient, even
impossible to use the mixed-γ distribution to fit the distribu-
tion of φ−1

L for a specimen with a continuous particle size
distribution as adopted in the current study. Thus, instead
of using the mixed-γ distribution, we introduce the inverse
Weibull distribution to fit the distribution of φ−1

L as follows:

PDF
(
φ−1

L , α, s, l
) = α

s

(
s

φ−1
L − l

)α+1

e
−( s

φ−1
L −l

)α

, (10)

where α, s, and l are respectively shape, scale, and location
parameters.

As shown in Figs. 8 and 9, the PDF of φ−1
L can be

well fitted by the inverse Weibull distribution, regardless of
polydispersity in grain size or shape. We first examine the
critical states (εz = 26% and 45%) of the drained case in
Fig. 8 where the global solid fraction remains almost constant
for each group of specimens. It is clear that the distributions
of φ−1

L for each group roughly collapse into a single PDF. This
feature also holds for the critical states of the undrained case
in Fig. 9. Therefore, it can be concluded that the inverse local
fraction follows a unique distribution for assemblies with the
same constituent particles at the critical states (or steady flow
regimes). An (approximately) identical global solid fraction
may serve as a necessary condition for the unique PDF of φ−1

L .
Indeed, previous studies on packings of monodisperse ellip-
soids reported that φ−1

L has an almost persistent distribution
independent of particle shape for a given global solid fraction
[36,38]. However, in the presence of both polydispersities in
particle size and shape, the PDF of φ−1

L is no longer unique
for a given global solid fraction, which can be readily verified
by comparing D-L26 for NS in Fig. 8(a) and U-M26 for PS
in Fig. 9(b). The shearing plays an extra important role. For
example, referring to Fig. 9, for each group of specimens, the
global solid fraction is identical due to the constant-volume
condition, but one finds that the PDF of φ−1

L at the initial
state evidently differs from that at the critical states for dense
specimens.

Based on normalization of the inverse local fraction
according to

φ̂L = φ−1
L − φ−1

Lmin〈
φ−1

L

〉 − φ−1
Lmin

, (11)

where 〈φ−1
L 〉 and φ−1

Lmin are the mean and minimum of φ−1
L ,

and it has been found that φ̂L follows a k-γ distribution,
independent of the global solid fraction for MS [7,8,11].
Figure 10 shows that the normalized inverse local fraction col-
lapses to a single probability distribution not only for packings
with monodisperse spheres but also for packings with poly-
disperse spheres or nonspheres. Moreover, this universality
still holds for different loading conditions. Furthermore, this
unique probability distribution of φ̂L, which holds regardless
of initial states and loading conditions, can be well fitted by
the following log-normal distribution:

PDF(x, σ, μ) = 1

xσ
√

2π
e− [ln(x)−μ]2

2σ2 , (12)

where σ and μ are respectively scale and location parameters
for the normally distributed logarithm ln(x).

3. Anisotropy of local cells

The Minkowski functionals and Minkowski tensors have
been widely applied to analyzing the morphology of complex
spatial microstructures [41,42]. In this study, we employ
the following Minkowski functional W1 and the Minkowski
tensor W0,2

1 to quantify the morphology of each individual
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FIG. 10. Probability distribution functions (PDFs) of normalized
inverse local fraction φ̂L for the three groups. The collapsed symbols
include all data at the three shearing levels (εz = 0, 26% and 45%)
for all initial states and loading conditions. Lines are the best fitting
with log-normal distributions given in Eq. (12).

local cell:

W1 = 1

3

∫
�

dA, (13)

W0,2
1 = 1

3

∫
�

n ⊗ ndA, (14)

where � is the cell surface, dA is the scalar infinitesimal
area element, and n is the outward normal vector of the cell
surface. Using W1 to normalize W0,2

1 yields a dimensionless
tensor � with a unity trace:

� = W0,2
1

W1
, (15)

so that the cell is defined to be isotropic if and only if the three
eigenvalues of � (|λ1| � |λ2| � |λ3|) are equal. Anisotropy
of a local cell is characterized by the deviation from isotropy.
We introduce the following anisotropy index β according to
[11,42]

β =
∣∣∣∣λ3

λ1

∣∣∣∣ − 1, (16)

FIG. 11. Probability distribution functions (PDFs) of local
anisotropy β for the three groups of specimens at different drained
shearing states. Lines are the best fitting with log-normal distribu-
tions given in Eq. (12).

where β � 0; β = 0 corresponds to an isotropic cell,
and a larger value of β suggests the cell is more
anisotropic.

The probability distribution functions (PDFs) of β at dif-
ferent shearing states for drained and undrained shear are
respectively shown in Figs. 11 and 12. Notably, all PDFs
of β can be well fitted according to the log-normal distri-
bution given in Eq. (12), which appears to hold universally
for all loading conditions. Unsurprisingly, the case of PS
shows wider distributions of β than MS due to significantly
increased irregularity in cell shape caused from polydispersity
in particle size, referring to Fig. 11(b) or Figs. 12(b) and 12(c).
In addition to size polydispersity, nonspherical particles in
Figs. 11(a) and 12(a) are expected to render the cell shape
more irregular (see Fig. 7), thereby leading to wider distribu-
tions of β, i.e., stronger anisotropy in cell shape. Moreover,
notably, at the critical (steady) states for both drained and
undrained shear, the PDFs of β collapse into a single PDF,
similar to the distribution of φ−1

L in the last section. As for the
initial state, whether its PDF of β collapses into the PDFs at
the critical states dominantly depends on how far the initial
state is from the critical states. A medium-dense initial state is
much closer to the critical state, so that the PDFs of β collapse
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FIG. 12. Probability distribution functions (PDFs) of local
anisotropy β for the three groups of specimens at different undrained
shearing states. Lines are the best fitting with log-normal distribu-
tions given in Eq. (12).

into a single one for both sheared and unsheared states (see the
insets in Fig. 12).

To sum up, the distribution of anisotropy index β is found
to remain almost unchanged during steady shearing for both
spherical and nonspherical packings, which is independent of
the initial states and loading conditions. For sheared pack-
ings with specified constituent particles, the corresponding
PDFs of β are strongly determined by the global solid

FIG. 13. Probability distribution functions (PDFs) of normalized
local anisotropy β/〈β〉 for the three groups. The collapsed symbols
include all data at the three shearing levels (εz = 0, 26% and 45%)
for all initial states and loading conditions. Lines are the best fitting
with log-normal distributions given in Eq. (12).

fraction. Based on a normalization of β with its corresponding
average 〈β〉 [11], all PDFs of β/〈β〉 consistently collapse into
a single curve which can be fitted by a log-normal distribution,
as is shown in Fig. 13. This universality holds for both
spherical and nonspherical packings and is not affected by the
initial states and loading conditions.

C. Local deformation

The Voronoi cells partitioning the entire space of a packing
undergo nonuniform deformation during shearing. Assuming
the subspace occupied by each local Voronoi cell is deformed
uniformly, we introduce the following two quantities εvL and
εsL to characterize the local deformation

εvL = ln

(
Vc

Vc0

)
, εsL = ln

(
Sc

Sc0

)
, (17)

where Vc and Vc0 are cell volumes at the sheared and
unsheared (initial) states, respectively, and Sc and Sc0 are
anisotropy of cell shape at the sheared and unsheared (ini-
tial) states, respectively, with Sc = (λ1 − λ2)2 + (λ1 − λ3)2 +
(λ2 − λ3)2, where λi(i = 1, 2, 3) are the three eigenvalues of
� in Eq. (15).
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With the above definition, εvL can be regarded as a local
volumetric strain quantifying the degree of volumetric change
for a given cell during shearing, while εsL measures the
distortion in cell shape excluding the change in volume so
that it is reasonable to use εsL to partially represent the shear
strain experienced by the cell. We note that it is nontrivial to
define local shear strain in terms of the distortion of cell shape
due to its extreme irregularity. There are indeed alternative
approaches for defining local strain within a granular material,
e.g., Bagi’s strain [43] based on tetrahedral cells constructed
by tessellating particle centers. The Bagi method, however,
by which the tetrahedral cell definitely intersects with its
associated particles, is not applicable to our case for a Voronoi
cell enclosing a single particle. εsL can be called a local
pseudoshear strain.

For the local volumetric strain, it is normalized as ε̂vL =
(εvL − εvg)/σεvL , where εvg is the global volumetric strain (see
Fig. 5) that is equal to the volume-averaged εvL over all cells
and σεvL is the standard deviation of εvL. The distributions of
ε̂vL for all sheared states are plotted in Fig. 14, which can be
well fitted by using the Gaussian distribution. Specifically, in
the cases of MS, all data of ε̂vL collapse to a single distribution
(resembling a standard normal distribution); however, in the
presence of polydispersity in PS cases, fluctuations occur at
peaks of the distributions of ε̂vL. In the cases of NS, it is of
interest to observe that all data of ε̂vL collapse to three dif-
ferent distributions corresponding to the three different initial
states, respectively, suggesting that the local deformation of
nonsphere packings is dependent more on the initial states
than in the case of sphere packings. Similar universality is
also found in the distribution of local pseudoshear strain. As
shown in Fig. 15, the shifted local pseudoshear strain ε̂sL

(= εsL − 〈εsL〉, where 〈εsL〉 is the mean of εsL) follows almost
identical Gaussian distributions for each group of specimens,
despite certain fluctuations in peaks for NS. Compared with
sphere packings in PS and MS, nonsphere packings in NS
exhibit narrower distributions in ε̂sL, implying that stronger
localization takes place within nonsphere packings.

V. SUMMARY

A comprehensive comparison was presented for the shear
response of granular materials composed of spherical and
nonspherical particles with different polydispersities (mono-
and ploy-dispersed), initial states (dense, medium dense, and
loose), and loading conditions (drained and undrained) based
on 3D discrete element simulations. The following conclusive
observations are reached:

(1) As a measure of local structure, the radial distribution
function (RDF) shows similar shapes for granular materials
regardless of their polydispersity in both particle size and
shape. The first primal peak of RDF is found to appear at
a distance of one mean particle diameter. For a specimen
with given constituent particles (i.e., constant polydispersity
in both particle size and shape), all RDFs collapse into a single
curve independent of initial states and loading conditions,
despite certain small fluctuations during shearing. The number
of local peaks in a RDF decreases with increased polydisper-
sity in particle size and shape, suggesting that the dominant
local patterns of structure within a packing are weakened and

FIG. 14. Probability distribution functions (PDFs) of normalized
local volumetric strain ε̂vL for the three groups. Lines are the best
fitting with Gaussian distributions.

the entire local structure becomes more homogenized. In this
case, the RDF may lose its strength to disclose more details of
the spatial structure.

(2) The Set Voronoi tessellation [40] has been used to
analyze the local structure and deformation of sphere and non-
sphere packings. At the particle scale, both the inverse local
fraction φ−1

L and anisotropy index β are found to respectively
follow the inverse Weibull and the log-normal distributions,
and both distributions become unique at the critical state,
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FIG. 15. Probability distribution functions (PDFs) of shifted lo-
cal pseudoshear strain ε̂sL for the three groups. Lines are the best
fitting with Gaussian distributions.

totally erasing their memory of initial states and loading
conditions (or paths). With certain normalization of φ−1

L and
β, their corresponding distributions further collapse into a
single curve for all states during shearing, which can be well
fitted by using the log-normal distribution. This universality
holds not only for monodisperse sphere packings as reported
in previous studies [7,11] but also for packings of polydisperse
poly-shaped nonspheres, regardless of initial states and load-
ing conditions. In other words, the distribution is only affected
by the polydispersity in both particle size and shape.

(3) The local deformations during shear, measured by the
local volumetric strain εvL and local pseudoshear strain εsL,
are found to follow Gaussian distributions. For both monodis-
perse and polydisperse spherical packings, the normalized εvL

and εsL follow almost identical Gaussian distributions which
are independent of the initial states and loading conditions.
However, for polydisperse nonsphere packings, the collapsed
Gaussian distribution of the normalized εvL is dependent
on the initial states, while the normalized εsL collapses to
a single distribution with certain fluctuations at peaks. The
above comparison between spherical and nonspherical pack-
ings suggests that the universality in sphere packings might
not hold for nonsphere packings, highlighting the importance
of considering the role played by particle shape in the shear
response of granular materials.

This paper constitutes a first step towards exploring the role
of grain shape in the universal internal structure properties
of granular materials under shear. In line with this, there are
several aspects worthy of future research: (1) the validation
of the presented conclusions for extremely distorted particle
shapes, e.g., needlelike particles with a significant large aspect
ratio, and for nonconvex particles (e.g., by clumping convex
shapes); and (2) possible provision of rigorous analytical
derivations and explanations on the observed universal distri-
bution based on statistical mechanics.
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