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A B S T R A C T

Sandstone usually disintegrates into gap-graded granular materials with a matrix-sustained structure due to
weathering factors. This paper presents an investigation on the small strain stiffness of this type of granular
materials based on Discrete Element Method (DEM) simulations. Our numerical results indicate the percentage
of sliding contact is negligibly small within the small strain range, and the small strain stiffness of fines is well
consistent with the widely recognized Hardin’s equation. Both findings confirm the validity of DEM simulations
on the study of small strain response of granular materials. The simulation results are further analyzed based on
mixture theory. A structure variable is introduced to correlate with the evolution of inter-aggregates structure.
This variable is found to increase with the volume fraction of coarse aggregates but is rather independent of the
confining stress and the initial void ratio of the fine matrix. Based on the insights drawn from DEM simulations, a
homogenization equation is proposed for the small strain stiffness of gap-graded granular soils to reproduce the
small strain stiffness of gap-gaped materials observed in our numerical simulations and is further validated by
laboratory test data from the literature. The equation can be conveniently incorporated into classical elasto-
plastic models to model gap-graded granular materials.

1. Introduction

Gap-graded soils are widely deposited worldwide, e.g., the sand-fine
mixtures in marine deposits (e.g., [60,67]) and dredging activities (e.g.,
[8,15]). As a typical gap-graded soils, rock-soil mixtures prevail in
landslides and weathered areas (e.g., [47,79,48,44,40,59]). The mix-
tures are induced by weathering factors and further accumulation
under gravity or flow [4,62,16,31,11]. The structure of gap-graded soils
can be described by two possible types [48,52]: a matrix-sustained
structure with aggregates floating in the matrix, and an aggregates-
sustained structure when contacts between aggregates prevail. The fine
content is usually beyond the “transitional fine fraction” in intensely
weathered areas [72,12,5], and the gap-graded granular soils have a
matrix-sustained structure. This type of fine-coarse mixtures has been
widely used worldwide as construction materials in engineering pro-
jects, and their deformation is crucial for assessing the workability of
these geo-structures.

Granular materials typically exhibit a semi-elastic behavior within a
small strain range [29,39,9]. As reported by Clayton [10], the strain
levels around well-designed geotechnical structures such as retaining

walls and foundations, are generally small, therefore, small strain
stiffness is usually adopted for studying soils surrounding geo-struc-
tures. The values of small strain stiffness can be measured either using
direct approach (e.g., the local LVDT) or indirect ones (e.g., resonant
column tests). The consistency of the results relies on the sample pre-
paration and measuring accuracy [7]. Additionally, the behavior of
phases in gap-graded soils cannot be distinguished using the mentioned
laboratory testing methods. The DEM becomes appealing in analyzing
the small strain behavior of granular soils, since contacts and contact
forces between grains can be easily tracked through a monotonous
loading process, and state dependent variables of each phase can also
be determined from contact properties [75,71,56,74,78]. This provides
further insight to constitutive modeling.

The small strain stiffness of fine-coarse mixtures has been well
documented in the literature, (e.g., [65,22,19,2,46,57,20]). However,
most of previous studies focus on gap-graded materials with a large
coarse fraction (usually higher than 60%), which is not suitable for
intensely weathered sandstones. Moreover, only empirical equations
based on laboratory works are available for description of small strain
stiffness (e.g., [25]). Actually, the small strain stiffness of gap-graded
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soils cannot be well described using these empirical equations (such as
Hardin’s equation), since the overall stiffness relies on the two factors:
(1) the behavior of fine matrix, (2) a homogenization equation re-
presenting the influence of the inter-aggregate structure on the overall
properties. In this study, a homogenization equation based on mixture
theory will be further proposed to bridge the local and overall behavior
of gap-graded materials, followed by validation based on data from
literature. This equation can be conveniently incorporated into classical
elastoplastic models.

2. State dependent variables of gap-graded granular materials

A gap-graded granular material consists typically of fine particles
and incompressible aggregates. The constitutive relationship of this
type of binary mixture can be analyzed within the homogenization
theory, with the fine particles and void space being treated as the de-
formable matrix and the stiff aggregates being the coarse inclusions
[51]. The coarse aggregates can be assumed to be randomly distributed
within the matrix due to natural disintegration process[52]. In this case,
small strain properties of the mixtures are controlled by the matrix and
inter-aggregate skeleton which is related to the volume fraction of the
coarse inclusions.

The structure of gap-graded granular materials is homogeneous on a
macroscale due to random distributions of coarse aggregates in the fine
matrix. Therefore, the state dependent variables of each phase and the
overall values can be well defined and computed from numerical re-
sults. Two assumptions are made in the study: (1) No macro pores exist
in the inter-aggregate space. Obviously, this assumption may be valid
for intense weathered sandstones, but may not be suitable in case of a
relatively large coarse fraction [55,63,37,52], (2) The coarse aggregates
are much stiffer than the deformable matrix (usually two orders of
magnitude higher), therefore, the deformation of coarse aggregates is
assumed to be negligible ([36,35]). The total volume of a Re-
presentative Elementary Volume (denoted as RVE) of gap-graded soils
is partitioned into three parts: the solid volume of fine particles, Vf; the
volume of void space, Vv; and the solid volume of coarse aggregates, Va.
The volume fraction of coarse aggregates, defined as the ratio of the
volume of aggregates to the overall volume, is given as

= + +ϕ V
V V Va

a

v a f (1)

Due to extremely high stiffness of aggregates, the volume change of
RVE can be regarded identical to that of the matrix. For a given coarse
fraction, the volume fraction increases with rising stress level. It can
reasonably bridge between the overall state variables and those of the
constituents. Therefore, it is widely used in mixture theory to homo-
genize state variables, e.g., stresses and strains. It can be formulated as
follows:

= −+ϕ e e
e e ea

m

m m (2)

with em being the void ratio of fine matrix, and e being the overall
void ratio of gap-graded materials. The void ratio of the matrix is a
function of the overall value of gap-graded materials:

⎜ ⎟= ⎛⎝ + − ⎞⎠e
ψ ρ

ψ ρ
e1

(1 )m
a f

a a (3)

where ρa and ρm are the densities of coarse aggregates and fine
particles, respectively; ψa is the mass fraction of coarse aggregates. Note
that Eq. (3) is derived from the conservation of the masses and volumes
of each phase of the gap-graded materials. For a given initial state, the
overall void ratio e depends uniquely on the current overall volumetric
strain of the gap-graded materials εv:= + − −e e exp ε(1 ) ( ) 1v0 (4)

where e0 is the overall initial void ratio of gap-graded materials. The

current strain εv can be computed from the change of size of a specimen
in a numerical simulation. Substitution of Eqs (3) and (4) into Eq. (2),
the volume fraction of coarse aggregates can be obtained.

Nonhomogeneous structure between the phases induces a non-uni-
form stress distribution (Harshin, 1983; [14,13,50]. It is recognized that
the variables defined based on volume fraction scheme provide sa-
tisfactory descriptions of the mechanical behavior of gap-graded ma-
terials [61,52]. Therefore, the stresses are estimated by the Love’s
equation and the volume average scheme [45]:∑′ = + ∈ +σ

V V
f d1
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where ′σij is the overall stress tensor of gap-graded materials, ′σij
m( )

and ′σij
a( ) are the stress tensors of the matrix and aggregates, respec-

tively; dj
cand fi

c are the branch vector between two adjacent particles
and the contact force vector, respectively. The summations in Eqs.
(5a)–(5c) are performed over contacts of all particles within corre-
sponding volumes.

3. DEM simulations

DEM simulations are performed to measure the small strain stiffness
of gap-graded mixtures. Both the fine particles and coarse aggregates in
a gap-graded soil are modelled as rigid particles with an extremely high
shear stiffness. The coarse aggregates are created randomly within the
fine matrix. There are many factors influencing the stiffness of gap-
graded granular materials, including the coarse fraction of aggregates,
the particle size distribution and particle shape of fines and aggregates
[67,43,53,51,15,52]. It is recognized that the initial state significantly
affects the stiffness of geo-materials (e.g., [3,42,4,66,33,18,68]).
Therefore, the influence of initial void ratio of the matrix in gap-graded
materials should be distinguished. To this end, three main factors are
considered in DEM simulations: (1) the fraction of coarse aggregates,
(2) the initial state of fine matrix, and (3) the shape of coarse ag-
gregates. The generation of DEM packings will be first presented, fol-
lowed by a triaxial loading process.

3.1. Generation of DEM specimens

In this study, cubic specimens are generated by DEM as approx-
imation of REVs for a gap-graded granular material (side
length ≈ 4.0 × 10−2 m). The coarse inclusions (spherical or natural
aggregates) are randomly distributed in each specimen. Three different
types of particles are used for the generation of DEM specimens (Fig. 1):
(1) Fine particles with a diameter of 1.5 × 10−3 m, (2) spherical coarse
aggregates with a diameter of 6.0 × 10−3 m, and (3) natural coarse
aggregates with the same volume of solid as the spherical coarse ag-
gregates. The natural aggregates are created by clumping small sphe-
rical particles ([76,77]). Three descriptors are used for the shape
characteristic of the natural aggregates[64], with aspect ratio, mean
curvature and sphericity of 0.828, 0.641 and 0.869, respectively: the
aspect ratio reflects the proportions of aggregates; mean curvature re-
presents variations at corners; and sphericity is the ratio of specific area
between the spherical aggregates and the natural aggregate. 123 small
particles are used to create a single natural aggregate (see Fig. 1).

In order to reflect the influence of coarse fraction and state of fine
matrix, DEM specimens with two different initial state of fine matrix
and four various volume fractions of coarse aggregates are tested. As
listed in Table 1, a denser one with a void ratio of (0.614–0.618) and an

X.S. Shi, et al. &RPSXWHUV�DQG�*HRWHFKQLFV������������������

�



intermediate one (0.650–0.653) are adopted. The specified volume
fractions of coarse aggregates of DEM specimen are 4.9–5.1%,
9.7–9.8%, 18.9–19.0%, and 35.5–36.3%, respectively. For natural ag-
gregates, an additional simulation with a volume fraction of 27.6% is
performed. Note that the void ratio of fine matrix and the volume
fraction of aggregates show a slight variation at different stress levels.

The coarse aggregates are created randomly within the fine matrix.
A two-step procedure is used in this study for the creation of coarse
aggregates, according to the following algorithm: (1) coarse aggregates
(the size is larger than the desired values) are created within a re-
presentative volume surrounded by rigid walls. The centroid is ran-
domly generated, and there may be overlaps between the aggregates.
(2) The inter-aggregate structure is perturbed due to possible overlaps
between the aggregates, and the algorithm for the motion follows the
laws in DEM (Cundall and Strack, 1979). After a semi-equilibrium state
being reached, the aggregates will be reduced to the desired size, and
the position of each aggregates is recorded. In this case, the gap be-
tween coarse aggregates can be user-defined, which should exceed the
order of the size of fine particles.

The created aggregates are inserted into the fine matrix to obtain a
geometric model for the DEM simulations. The fine particles with
centroids inside the coarse aggregates will be deleted from the REV.
This intersection induces excessive forces, which disturbs the original
structure of the gap-graded specimens. As a result, contacts may occur
between the coarse aggregates, and the void ratio of fine matrix in-
creases. The overall void ratio of gap-graded materials after mixing
process is given in Table 1. Note that the overall void ratio is higher
than that predicted by “ideal” mixing model [70]. “ideal” denotes that
the two types of materials are fully mixed with no disturbance of the

fine matrix. This phenomenon coincides with the observations in pre-
vious work (e.g., [63,54,30,70]) that the ideal mixing model under-
estimates the porosity of binary mixtures due to non-ideal mixing. Only
the DEM specimens with mass fraction of coarse aggregates below 53%
is investigated in this work, which is consistent with the intense
weathered sandstones in field cases [79,52,5,6]. For an extremely high
coarse fraction, the fine mass may not be sufficient to fill the inter-
aggregates space, leading to macro-pores in gap-graded materials.

3.2. Numerical simulations

The numerical simulations in this study are performed based a
commercial DEM code, Itasca PFC3D (version 5.0). Details of the spe-
cimens for DEM simulations are presented in Table 1. Specimens with
different coarse fractions are prepared according to the procedures
described in the previous section. In this study, a simplified Hertz-
Mindlin contact model with a constant shear stiffness in conjunction
with the Coulomb’s friction law is used to describe the inter-particle
interactions [34]. The model is defined by two parameters: shear
modulusM and Poisson’s ratio ν of two contacting particles. The normal
contact stiffness knand shear stiffness kt are calculated as

= − +k M
ν

r r
r r

δ2
1n n

1 2

1 2 (6a)

= − +k M
ν

r r
r r

δ4
2t n

1 2

1 2 (6b)

where δn is the contact overlap which is a function of normal force,
and r1 and r2 are radii of two contacting particles. The Hertz-Mindlin
contact model has been adopted in many previous simulations (e.g.,

Fig. 1. Geometry of three types of particles used in discrete element simulation.

Table 1
Details of the samples for numerical simulation.

Notation ψa (%) σ3 (kPa) e фa (%) Nf Na

Series-1 (Spherical aggregates) 0.0 50,100,200 0.618,0.617,0.614 0.0 20,000 0
8.1 0.588,0.587,0.584 5.1 18,954 26
15.4 0.564,0.563,0.561 9.8 17,948 51
28.9 0.518,0.517,0.515 19.0 15,929 101
52.3 0.443,0.442,0.440 36.3 11,781 202

Series-2 (Spherical aggregates) 0.0 50,100,200 0.653,0.652,0.650 0.0 20,000 0
8.1 0.633,0.631,0.630 4.9 18,968 26
15.6 0.608,0.607,0.605 9.7 17,959 52
29.5 0.564,0.562,0.561 18.9 15,893 104
53.1 0.479,0.478,0.477 35.9 11,713 207

Series-3 (Natural aggregates) 8.1 100 0.589 5.1 18,954 26
15.4 0.566 9.8 17,954 51
28.8 0.527 18.9 15,942 101
41.2 0.493 27.6 13,912 152
51.9 0.460 35.5 12,005 202

Additional 0.0 50,100,200 0.705,0.704,0.702 0.0 20,000 0

X.S. Shi, et al. &RPSXWHUV�DQG�*HRWHFKQLFV������������������

�



[1,41,73]).
Following the physical properties of quartz sands, the value of the

Poisson’s ratio, shear stiffness and density of the particles (both fines
and coarse aggregates) are adopted as 0.15, 10 GPa and 2.65 × 103 kg/
m3, respectively. Note that the solid density is magnified 106 times here
to speed up the simulation, and a large fixed timestep (10−5) is set in
the DEM simulation. At this timestep, the corresponding normalized
unbalance force in our simulation has been found less than 10−6, which
is small enough for the quasi-static analysis in this study. To prepare
specimens with different densities for the pure fine matrix, the friction
coefficient μ is set to 0.01, 0.15, and 0.30, respectively, during the
consolidation stage. After equilibrium is achieved at an initial con-
solidation stress of 10 kPa, the aggregates are inserted into the fine
matrix, and the system is allowed to reach a new equilibrium state at
the constant confining stress. The consolidation pressure is then gra-
dually increased to a target value (50–200 kPa) by applying numerical
servo-mechanism. Finally, a friction coefficient of 0.30 is assigned to
the particles, and the specimens are compressed under a constant
confining stress (50 kPa, 100 kPa and 200 kPa).

The overall deviatoric stress of the gap-graded soils can be com-
puted from the homogenized stress tensor in Eq. (5). The principal
strain variants are defined as the logarithm of the ratio of the current
values to their initial ones. The overall shear stiffness of gap-graded
soils G is calculated as

=G q
ε3 s (7)

where q and εs are deviatoric stress and deviatoric strain, respec-
tively. The change of stiffness with deviatoric strain for pure fine matrix
is presented in Fig. 2. It shows that the stiffness is approximately con-
stant before decreasing dramatically. This semi-elastic stiffness is de-
noted as the small strain stiffness. In this study, since we only focus on
the small strain properties, the shear tests are stopped if the axial strain
approaches 10−5.

The results of the overall small strain stiffness of the gap-graded
materials with various coarse fractions are summarized in Fig. 3 in
terms of stiffness and volume fraction of coarse aggregates. Both the
void ratio of fine matrix and the coarse fraction affect the overall small
strain stiffness. The overall small strain stiffness of gap-graded materials
decreases with the void ratio of fine matrix. The change of overall small
strain stiffness with the volume fraction depends critically on the void
ratio of matrix. For gap-graded specimens with a lower void ratio of
matrix (Series-1), the overall small strain stiffness shows a stable in-
crease with increasing coarse fraction. However, it shows only a neg-
ligible increase in case of a higher void ratio of fine matrix (Series-2),
and it even decreases for small coarse fractions. This is due to the
combining effect of the initial state and the coarse fraction. Mixing
process may disturb the structure of fine matrix, therefore, the mixture
becomes loose and the stiffness decreases. However, the reinforcement

of aggregates leads to an increase of the stiffness. The decrease of void
ratio is dominated at low coarse fraction, hence the small strain stiffness
decreases. With the increase of coarse fraction, the influence of re-
inforcement plays a more important role, leading to an increase of small
strain stiffness decreases of mixtures. This is consistent with the la-
boratory data reported by Ruan et al. [46].

There are two probable mechanisms governing the small strain
stiffness of gap-graded soils: (1) adding coarse aggregates may disturb
the original structure of fine matrix, causing a decrease of the overall
small strain stiffness; (2) The reinforcement of coarse inclusions due to
partial contacts between coarse aggregates (arises from the random
distribution of coarse inclusions) and “densified soil layer” between
adjacent coarse aggregates (forms due to the gradual densification of
fine particles) [28,15,52]. This induces an increase of the overall small
strain stiffness. The combination of the above two mechanisms controls
the change of small strain stiffness after adding coarse aggregates.

4. Microscopic structure variables within small strain range

The small strain stiffness corresponds to the mechanical response of
granular materials with neither significant plastic dissipation nor
structure change. In this work, it equals the semi-constant stiffness
within an axial strain of 10−5. The following microscopic structure
variables will be analyzed to validate the assumption of negligible
change of internal structure. These variables describe the contact
properties, including the percentage of sliding contact, the coordination
number, and the contact anisotropy. Since there are only a few contacts
between coarse aggregates for strongly weathered gap-graded soils,
three categories of contacts are considered in this study: fine-fine, fine-
coarse, and the overall contacts.

The change of percentage of sliding contact is shown in Fig. 4. It is
defined as the ratio of the number of sliding contacts to the number of
total contacts. The percentage of sliding contact is extremely small (less
than 0.05%) within a deviatoric strain of 10−6. It shows a slight in-
crease afterwards, however, it is still below 0.6%. This indicates that
the sliding of contact as well as the plastic dissipation are negligible
within the small strain range.

Three coordination numbers (CN) are computed and their change in
small strain range are summarized in Fig. 5, where the subscripts “t”,
“ff” and “fa” denote the overall contact, fine-fine contact and fine-
coarse contact, respectively. It is seen that the coordination numbers at
different stress levels are approximately the same, and they seem to
remain constant within the simulated strain range. Therefore, the co-
ordination numbers for gap-graded specimens with a given coarse
fraction can be approximated by a scalar, and their evolution against
the volume fraction of coarse aggregates are shown in Fig. 6. The CN of
overall contacts and fine-fine contacts decreases with the increasing
coarse content, while the CN of fine-coarse contact shows a slight in-
crease. The decrease of CN of fine-fine contact reveals a disturbance of
fine matrix with adding of coarse inclusions, suggesting an increase of
porosity and decrease of small strain stiffness of the fines.

The mechanical response of granular soils relies on the contact
anisotropy. After Guo and Zhao [23], the overall contact anisotropy of
gap-graded mixtures is defined as

= ′β a σ a asign( ) 3
2t ij

c
ij kl

c
kl
c

(8)

with = ′a ϕij
c

ij
15
2 being the second-order anisotropy tensors of contact.′ϕij is the deviatoric part of second-order anisotropy tensor ϕij:∑= ∈ + +ϕ

N
n n1

ij
c c V V V

i j
v f a (9)

where Nc is the number of contact, and ni is the unit vector along the
normal direction of the contact plane. Analogously, the contact aniso-
tropy of fine-fine contact and fine-coarse contact can be defined,

Fig. 2. Change of small strain stiffness with deviatoric strain for pure fine
matrix.
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Fig. 3. Change of small strain stiffness with volume fraction of coarse aggregates at various stress levels.

Fig. 4. Change of sliding of contacts with overall deviatoric strain.

Fig. 5. Evolution of coordination number with overall deviatoric strain
(Series1, ψa = 29%).

Fig. 6. Change of coordination number with volume fraction of aggregates
(σ'3 = 100 kPa).
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denoted by the subscripts “ff” and “fa”, respectively. The results are
summarized and presented in Fig. 7. Only the simulation of Series-1
with 29% coarse fraction is presented, since the results in all cases are
similar. It is seen that the contact anisotropy in all three types of con-
tacts is relatively small, and it remains almost unchanged within small
strain regime. This indicates a negligible change of internal structure
within the small strain loading regime. This is consistent with the
structure of strong weathered residual soils. Some other researchers
create the coarse aggregates and fines within a predefined space, the
constituents adjust the internal structure till it reaches an equilibrium
state. This mixing process may produce direct contacts between the
aggregates, leading to a nonnegligible anisotropic structure even at low
coarse fractions.

5. Analysis of small strain stiffness using homogenization
approach

As noted by Shi and Yin [51], for a fine matrix reinforced by stiff
inclusions, the overall stiffness of gap-graded materials can be com-
puted based on the following consideration: (1) the stiffness of fine
matrix in gap-graded soils, (2) a homogenization equation representing
the influence of the inter-aggregate structure on the overall properties.
In this section, a reference model will be selected for the small strain
stiffness of the fines, and the change of inter-aggregate structure with
coarse fraction will be investigated.

6. Reference model for the small strain stiffness of fine matrix

The small strain stiffness of fine granular materials is influenced by
both soil structure (e.g. over-consolidation ratio, void ratio, gradation,
structural anisotropy) and testing conditions (e.g. confining stress,
stress anisotropy). Normally consolidated specimens with mono-
disperse particles and isotropic structure are considered in this study.
Focus will be placed upon the effect of void ratio and confining stress.
In the literature, various empirical models have been proposed for es-
timating the small strain stiffness of granular materials (e.g.,
[24,25,58]). We adopt the following general form of Hardin’s re-
lationship that has been widely used in past studies [65,19,22,46]

⎜ ⎟= ⎛⎝ ′ ⎞⎠G
σ

f e σ
σ

( )m

r
m

m

r

n
3

( )

(10)

where n is a model parameter for the matrix, ′σ m
3

( ) is the effective
confining stress of the fine matrix, σr=100 kPa is a reference stress, and
f(em) denotes a function of the void ratio of the matrix. The following
function has been proposed by Hardin and co-workers [25]:= −f e Ae( )m m α (11)

where A and α are model parameters for the fine matrix. The change
of small strain stiffness with void ratio for pure fine particles is shown in
Fig. 8 (the solid lines are fitting lines using power function Eq. (11),
α = 0.37). The small strain stiffness decreases with the increase of void
ratio, and their relationship can be well represented by a power law
function. Calibration of model parameters based on a power function
Gm-em relationship is shown in Fig. 9, revealing an excellent regression.
This confirms that DEM can be used for simulating the small strain
response of granular materials. In the sequel, Hardin’s equation (Eqs
(10) and (11)) will be used as the reference model for small strain
stiffness of the pure fine matrix. The value of concave parameter α is
comparable to that reported by Goudarzy et al. [22], which is due to
similarity in the value of parameters.

6.1. Homogenization model for gap-graded materials

Since we adopted the same physical properties of fine particles for
specimens with pure fines and the ones containing coarse aggregates, it
is reasonable to assume that the small strain stiffness of the matrix in
gap-graded materials follows the reference model for the pure fine
matrix (Eqs. (10) and (11)) regardless of the coarse fractions. Therefore,
the small strain stiffness of the fine matrix in gap-graded materials can
be calculated as

⎜ ⎟ ⎜ ⎟= ⎛⎝ + − ⎞⎠ ⎛⎝ ′ ⎞⎠
− −G

σ
A

ψ ρ
ψ ρ

σ
σ

e µ1
(1 )

m

r

a f

a a

α

r

n
α

σ
n3

(12)

where ′σ3 denotes the overall stress of the gap-graded materials,
which can be computed by Eq. (5c), a stress ratio µσ is introduced to
interpret the stress distribution in gap-graded materials. It is defined as
the ratio of the average stress in the fine matrix and the overall stress in

Fig. 7. Change of contact anisotropy with overall deviatoric strain (Series1,
ψa = 29%).

Fig. 8. Relationship between small strain stiffness and void ratio for pure fine
particles.

Fig. 9. Calibration of model parameters of Hardin’s relationship (Eqs (10) and
(11)).
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gap-graded materials. The evolution of the stress ratio with different
initial state of matrix, different confining stresses, and various coarse
fractions stress are summarized in Fig. 10. It reveals that the stress ratio
of the gap-graded materials is not sensitive to the confining stress level,
however, it shows a continuous decrease with the increasing volume
fraction of coarse inclusions. In addition, the stress ratio of gap-graded
materials with a loose matrix is lower than that with a denser matrix.
This reveals a different behavior from the sand-clay mixtures that the
initial void ratio of matrix does not affect the stress distribution in the
mixtures [51].

The structure of gap-graded materials can be bounded by two
configurations within mixture theory: series model (lowest stiffness)
and parallel model (highest stiffness). The weathering process induces a
random distribution of coarse aggregates in the fine constituent, and
the gap-graded mixture has a matrix-sustained structure. The shear
stiffness of coarse aggregates is much higher than that of matrix, and
the general “volume average approximation” concept cannot capture
the overall small strain stiffness with a good accuracy. To this end, the
following general homogenization relationship is proposed for the small
strain stiffness of gap-graded materials:

=ξ σ e ϕ G
G

( , , )m a
m

3 (13)

where ξ is a structure variable, which is a function of the stress level,
initial void ratio of the fine matrix and the volume fraction of coarse
aggregates. It creates a bridge between overall small strain stiffness and
that of the fine matrix. The small strain stiffness of fine matrix is cal-
culated from Eq. (12), and the structure variable of gap-graded mate-
rials with various confining pressures and coarse fractions can be
computed (per Eq. (13)). Fig. 11a shows the evolution of structure
variable ξ against the volume fraction of coarse spherical aggregates.
The structure variable increases with the increasing volume fraction of
the coarse inclusions. However, it appears that this structure variable is
rather independent of the confining stress as well as the initial void
ratio of the fine matrix. Therefore, it is reasonable to assume that
structure variable ξ depends only on the volume fraction of coarse ag-
gregates.

The structure variable shows a highly nonlinear increase with the
increasing coarse fraction. In the sequel, two limit cases are considered
for the small strain stiffness of gap-graded materials: (1) the lower
bound of structure corresponding to a negligible coarse fraction, and (2)
the upper bound of the structure variable corresponding to the max-
imum coarse fraction. The overall void ratio of gap-graded soils is equal
to that of the fine matrix if the coarse fraction is negligible, and the
corresponding overall small strain stiffness is reduced to that of the
matrix, i.e., the structure variable ξ = 1. The gap-graded material has a
matrix-sustained structure until the coarse fraction approaches the
minimum packing density of the aggregates [37]:

̂ = +ϕ
e

1
1a a

max (14a)

where e a
max is the maximum void ratio of the coarse aggregates. A

granular-sustained structure forms gradually with a further increase of
coarse fraction. The gap-graded materials achieve the densest packing
state when the coarse aggregate approaches its maximum packing
density ϕ~a:= +ϕ

e
~ 1

1a a
min (14b)

The shear stiffness of the gap-graded soils becomes extremely high
at the densest packing state, which is comparable to the stiffness of the
solid aggregates. Therefore, the external loading is primarily sustained
by the solid inter-aggregate skeleton, and the stress in the fine matrix
becomes negligibly small. From Eq. (12), the small strain stiffness
should be much smaller compared with the overall value. Therefore,
the structure variable should meet the following requirements:≈ → ≈ ≈ → ≈ +∞ϕ ξ ϕ ϕ ξ0 1; and ~

a a a (15)

A tentative equation satisfying the above requirements can be ex-
pressed as follows:

⎜ ⎟= ⎛⎝ − ⎞⎠ξ
ϕ

ϕ ϕ

~
~ a

a a

η

(16)

where η is a constant structure parameter for a given type of coarse
aggregates. It controls the change of structure variable on the coarse
fraction. Fig. 11b illustrates the change of structure variable ξ with the
volume fraction of natural aggregates. It is seen that the structure
variable is more sensitive to the coarse fraction than the gap-graded
soils with coarse spherical aggregates. Substitution of Eq. (16) into Eq.
(13) leads to

Fig. 10. Change of stress ratio with volume fraction of coarse aggregates.

Fig. 11. Relationship between structure parameter and volume fraction of
coarse aggregates.
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⎜ ⎟= + ⎛⎝ − ⎞⎠G G η
ϕ

ϕ ϕ
log log log

~
~m

a

a a (17)

Eq. (17) is a homogenization equation for the small strain stiffness
of gap-graded materials. The overall stiffness is uncorrelated to the
stiffness of the coarse aggregates, which is different from previous
homogenization laws in classical mixture theory, e.g., Eshelby model
[17], self-consistent method [27], Mori-Tanaka method [38], Lielens
method [32], and the homogenization equation for lumpy soils [49].
The structure parameter η is affected by the nature of aggregates, e.g.,
particle shape and roughness of aggregates, and the particle size dis-
tribution of aggregates. However, the influence of coarse stress level,
coarse fraction and the initial state is negligible. The value of structure
parameter of natural aggregates is higher than that of spherical ones,
and it also increases with the size ratio between aggregate and fines.
Note that if significant fracturing of coarse aggregates occurs during the
loading process, the structure parameter η will not be a constant. It is
well recognized that sand particles in uniformly-graded granular soils
may be broken into fine ones, especially at high stress levels. However,
for the gap-graded granular mixtures, the aggregates are confined
within the fine matrix. Hence, the stress in aggregates becomes more
uniform. The confining stress from surrounding matrix prevents further
breakage of the coarse aggregates [69].

7. Application of the proposed homogenization equation

Substitution of Eq. (12) into Eq. (17) gives a model for the small
strain stiffness of gap-graded soils. There are one material parameter η
for the homogenization law and three parameters for the small strain
stiffness of the fine matrix, A, α and n. The structure parameter η can be
calibrated from the small strain stiffness of gap-graded materials with a
given fraction of coarse aggregates. The structure parameter depends on
the inter-aggregate structure, which changes with the size and shape of
coarse aggregates [26]. The other three parameters A, α and n can be
calibrated from the relationship between small strain stiffness and the
confining stress (or void ratio) of matrix. Four gap-graded granular
materials are used for validation of the homogenization equation: two
are the numerical gap-graded soils considered in this study, and the
other two are from the literature [21,46]. Note that only the specimens
with a coarse fraction less than 70% are adopted for validating the
homogenization equation.

7.1. Materials in this study (Numerical simulation)

The gap-graded granular materials considered in the previous DEM
simulations are mixtures of fine and coarse (rigid) particles, with the
coarse particles (spherical aggregates or natural irregular aggregates)
being the inclusions and fine particles being the matrix. The values of
model parameters are listed in Table 2, and their calibration are shown
in Figs. 8, 9 and 11. Comparisons between the model prediction and
numerical simulations for the gap-graded materials are shown in
Figs. 12 and 13. The comparison indicates that the overall small strain
stiffness of gap-graded granular materials can be well reproduced by
the proposed analytical model. Fig. 13 reveals that the proposed
homogenization equation can reproduce the phenomenon of stiffness
reduction (fraction of 9.7–9.8%) for gap-graded materials at a higher

void ratio of matrix.

7.2. Materials from literature (Laboratory tests)

The gap-graded soils investigated by González-Hurtado and Newson
[21] is a mixture of Ottawa silica sand (fine matrix) and spherical glass
beads (coarse inclusions). The two phases have a similar mineralogical
composition. The d50 of the fine particles and the coarse aggregates are
0.26 mm and 10.26 mm, respectively, leading to a size ratio of the
coarse and fine particles at approximately 40. The maximum volume
fraction of coarse aggregates corresponds to the densest packing state,
ϕ~a=0.741. The particle densities of fine particles and aggregates are
2.66 × 103 kg/m3 and 2.50 × 103 kg/m3, respectively. Five different
mass fractions of coarse fractions of the gap-graded materials (0, 0.236,
0.455, 0.637 and 1.00) have been tested by González-Hurtado and
Newson [21], and the corresponding volume fractions are 0, 0.168,
0.353, 0.541, and 1.00, respectively. The pure coarse aggregates are not
used for validation of the homogenization equation. The specimens
were prepared by air pluviation method and consolidated at three
vertical stresses (60 kPa, 120 kPa and 240 kPa), before being sheared
with a displacement rate of 0.02 mm/min. Torsional resonant fre-
quency tests were performed for computing the small strain stiffness of
the mixtures.

Another gap-graded material was examined by Ruan et al. [46]. A
sandy soil from the costal land in China was sieved with a mesh opening
of 0.075 mm. The coarse particles larger than 0.075 mm were used as
inclusions, and the fine ones were chosen as matrix. The average size
ratio between the coarse aggregates and the fine particles is 2.85, with
the d50 of the phases being 0.114 (coarse aggregates) and 0.040 (fine
particles), respectively. The minimum void ratio of coarse aggregates is
0.662, hence the maximum volume fraction of coarse inclusions
isϕ~a = 0.602. The density of granular particles for the coarse aggregates
and fine particles are 2.67 × 103 kg/m3 and 2.72 × 103 kg/m3, re-
spectively. Three influencing factors, including the coarse fractions (0,
0.30, 0.50, 0.70, 0.80, 0.90, 1.00), stress levels (100 kPa, 200 kPa,
250 kPa, 300 kPa and 400 kPa), and relative density (35%, 50% and
60%), were examined. The cylinder specimens were prepared by the
moist tamping method, and the compression tests were done using the
dynamic triaxial apparatus.

The confining stress in the fine matrix is unknown (Eq. (12)) in the
laboratory tests. However, this stress is related to the volume fraction of
the coarse inclusions. Therefore, the confining stress in the matrix can
be replaced by the overall confining stress, and its effect can be in-
corporated into the structure variable ξ. The values of model para-
meters are listed in Table 2. Note that the structure parameter η in-
corporates the effect of stress localization. Fig. 14 shows the change of
structure parameter with the volume fraction of coarse inclusions, and
Fig. 15 presents a comparison between the experimental data and

Table 2
Parameters for numerical simulation and laboratory data from literature.

Sources η A α n ϕ~a

This study (Spherical aggregates) 2.80 0.14 3.9 0.37 0.74
This study (Natural aggregates) 2.45 0.14 3.9 0.37 0.63
González-Hurtado and Newson [21] 0.64 0.13 3.7 0.55 0.74
Ruan et al. [46] 1.35 0.91 1.3 0.54 0.60

Fig. 12. Comparison between the numerical simulations and model predictions.
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analytical model predictions of the two gap-graded materials. Evi-
dently, the model can well represent the effects of confining stress,
relative density and coarse fraction as observed in the experimental
tests.

8. Conclusions

Systematic DEM simulations have been performed to estimate the
small strain stiffness of gap-graded materials. An analytical homo-
genization equation has been proposed based on volume fraction con-
cept and mixture theory to estimate the small strain stiffness of gap-
graded mixtures, with further comparisons with laboratory tests and
numerical simulations. Major findings of the study are summarized as
follows.

(1) The small strain stiffness of a gap-graded material is affected by

Fig. 13. Comparison between the numerical simulations and model predictions at different stress levels.

Fig. 14. Relationship between structure parameter and volume fraction of
coarse aggregates (data from literature).

Fig. 15. Comparison between the numerical simulations and model predictions
(data from literature 1: Gonzalez-Hurtado and Newson, 2015; data from lit-
erature 2: [46]).
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both the void ratio of fine matrix and the coarse fraction. For gap-
graded specimens with a lower void ratio of matrix, the overall
small strain stiffness shows a continuous increase with increasing
coarse fraction. However, it shows only a negligible increase in case
of a higher void ratio of fine matrix.

(2) Both the percentage of sliding of contact and the contact anisotropy
are relatively small within the small strain range. Hence, the sliding
of contact as well as the plastic dissipation are negligible. The small
strain stiffness of sand matrix is well consistent with the widely
recognized Hardin’s equation. These confirm the feasibility of DEM
for simulating the small strain response of granular materials.

(3) A structure variable is introduced to represent the change of inter-
aggregates structure. The structure variable increases with the in-
creasing volume fraction of coarse inclusions, but shows an in-
dependence of the confining stress and the initial void ratio of the
fine matrix.

(4) The proposed analytical homogenization equation combined with
Hardin’s equation reproduces well small strain stiffness of gap-
gaped materials from both laboratory tests and numerical simula-
tions.
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