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This paper presents a coupled Computational Fluid Dynamics and Discrete Element Method (CFD–DEM)
approach to simulate the behaviour of fluid–particle interaction for applications relevant to mining and
geotechnical engineering. DEM is employed to model the granular particle system, whilst the CFD is used
to simulate the fluid flow by solving the locally averaged Navier–Stokes equation. The particle–fluid interac-
tion is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM
and the CFD computations. The coupled CFD–DEM tool is first benchmarked by two classic geomechanics
problems where analytical solutions are available, and is then employed to investigate the characteristics
of sand heap formed in water through hopper flow. The influence of fluid–particle interaction on the behav-
iour of granular media is well captured in all the simulated problems. It is shown in particular that a sand pile
formed in water is more homogeneous in terms of void ratio, contact force and fabric anisotropy. The central
pressure dip of vertical stress profile at the base of sandpile is moderately reduced, as compared to the dry
case. The effects of rolling resistance and polydispersity in conjunction with the presence of water on the
formation of sandpile are also discussed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Fluid–particle interaction underpins the performance of a wide
range of key engineering applications relevant to granular media.
Subjected to external loads, the pore fluid in a saturated granular ma-
terial may fluctuate or flow and cause particle motion. This may work
favourably in some cases, such as in sand production in sandstone
oil reservoir, but may be an adverse factor in other occasions, such
as in the case of internal/surface erosion of embankment dams and
soil slopes which may trigger instability and failure of these struc-
tures [21]. Conventional approaches based on continuum theories of
porous media, such as the Biot theory, have considered the interac-
tion between pore fluids and particles in a phenomenological man-
ner. They cannot offer microscopic information at the particle level
relevant to the fluid–particle interaction which may be otherwise
useful in many occasions. Indeed, as mentioned in a recent review
by Zhu et al. [38], a quantitative understanding of the microscale
phenomena relative to fluid–particle interaction could facilitate the
establishment of general methods for reliable scale-up, design and
control of different particulate systems and processes. To this end, a
number of collective attempts have been made on particle-scale
modelling of fluid–particle interaction, among which Discrete Element
rights reserved.
Method (DEM) plays a central role. In particular, numerical approaches
combining the Computational Fluid Dynamics and Discrete Element
Method (CFD–DEM) prove to be advantageous over many other op-
tions, such as the Lattice–Boltzman andDEM coupling (LB–DEM)meth-
od and the Direct Numerical Simulation coupled DEM (DNS–DEM), in
terms of computational efficiency and numerical convenience [37].
A typical CFD–DEM method solves the Newton's equations governing
the motion of the particle system by DEM and the Darcy's law or the
Navier–Stokes equation for the fluid flow by CFD, in consideration of
proper interaction force exchanges between the DEM and the CFD
(see [21,27,32,33,37]). The method has been successfully applied to
the simulation of applications such as fluidization, pneumatic convey-
ing and pipeline flow, blast furnace, cyclone, and film coating (see the
review by [38]).

Relevant to civil and geotechnical engineering, the important
impact of fluid–particle interaction on the overall behaviour of soils
has long been recognized. More recently, there has been a growing
interest in exploring the soil behaviour using discrete modelling
approaches, in sought for key mechanisms and mitigating measures
for various geotechnical hazards (see [21] for a summary). Whilst
the majority of these studies were focused on the dry soil case based
on DEM only, there have been limited investigations considering
the fluid–particle interaction through coupled discrete approaches as
mentioned before. A handful of exceptions include the treatment of
upward seepage flow in soils, sinkhole process, flow under sheet pile
walls [6,7,25]. The current paper aims to develop a coupled CFD–
DEM numerical tool to investigate various geomechanics problems
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relevant to mining and geotechnical engineering. In particular, two
open-source DEM and CFD packages are employed to facilitate the
coupling between fluids and particles, namely, the LAMMPS-based
DEM code, LIGGGHTS [16], and the OpenFOAM (www.openfoam.
com). The computational framework has been based on the CFDEM
program developed by Goniva et al. [13], by further considering both
phases of gas and water in the fluid simulation by OpenFOAM. The
fluid–particle coupling is considered by exchanging interaction forces
between the two packages during the computation. The interaction
forces being considered include the drag force and buoyancy force,
which may generally suffice for granular materials in geomechanics
with relatively low Reynolds number of pore flow. Such complex
interaction forces as unsteady forces like virtual mass force, Basset
force and lift forces and non-contact forces such as capillary force,
Van der Waals force and electrostatic force, may be important for
certain applications, but will not be considered here. It is however
emphasized that the computational framework is general and can
easily accommodate the consideration of these forces if necessary in
the future.

Three problems will be employed to demonstrate the predictive
capacity of the numerical tool. They include the single-particle settling
in water which simulates a typical sedimentation process, the one-
dimensional consolidation and the formation of conical sand pile through
a hopper into water. The first two examples are chosen due not only to
their simplicity but also the availability of analytical solutions for both,
and consequently, they serve as benchmarks for the developed CFD–
DEMpackage. The sand pile formation problemhas receivedmuch atten-
tion in a wide range of branches of engineering and science. Of particular
interest is the phenomenon of pressure dip in sandpile observed in
experiments. Various analytical approaches and numerical studies have
been devoted to the explanation of this phenomenon, such as the fixed
principal axes model [31], the arching theory based on limit analysis
by Michalowski and Park [20], as well as DEM simulations [12,17]. The
occurrence of pressure dip in sandpile has been found dependent on
the construction method, particle shape and other factors [1,39]. Despite
the intensive studies on this topic, no widely accepted consensus has
been reached regarding the major mechanism for the observed pres-
sure dip. In particular, very scarce studies have been found exploring
the effect of water on the formation of a sandpile and on the charac-
teristics of the pressure dip. Relevant studies in this respect may
have a far wider engineering background closely related to such is-
sues as dredging and land reclamation, mining production handling,
soil erosion and debris flow wherein the interaction between soil
and water proves to be important. The CFD–DEM tool developed
in this paper will be employed to investigate the characteristics of
sandpile formed through hopper flow in water, and careful compar-
ison will be made against the dry case.
2. Methodology and formulation

Key to the coupling between the Computational Fluid Dynamics
method and Discrete Element Method (CFD–DEM) is proper consid-
eration of particle–fluid interaction forces. Typical particle–fluid in-
teraction forces considered in past studies include the buoyancy
force, pressure gradient force, drag force due to the particle motion
resistance by stagnant fluid, as well as other unsteady forces such as
virtual mass force, Basset force and lift forces (see, [37]). Following
the approach proposed by Tsuji et al. [27,28], we assume that the
motion of particles in the DEM is governed by the Newton's laws of
motion and the pore fluid is continuous which can be described by
locally averaged Navier–Stokes equation to be solved by the CFD [3].
The interactions between the fluid and the particles are modelled by
exchange of drag force and buoyancy force only. Detailed formalisms
governing the three aspects and numerical solution procedures are
described as follows.
2.1. Governing equations for the pore fluid and particle system

For a particle i treated by the DEM [9], the following equations are
assumed to govern its translational and rotational motions

mi
dUp

i

dt
¼
Xnci
j¼1

Fcij þ F f
i þ F g

i

Ii
dωi

dt
¼
Xnci
j¼1

Mij

8>>>>><
>>>>>:

ð1Þ

where Ui
p and ωi denote the translational and angular velocities of

particle i, respectively. Fijc andMij are the contact force and torque act-
ing on particle i by particle j or the wall(s), and ni

c is the number of
total contacts for particle i. Fif is the particle–fluid interaction force
acting on particle i, which includes both buoyancy force and drag force
in the current case. Fig is the gravitational force. mi and Ii are the mass
and moment of inertia of particle i. In the DEM code, either the Hooke
or Hertzian contact law is employed in conjunction with Coulomb's
friction law to describe the interparticle contact behaviour.

In the CFD method, the continuous fluid domain is discretized into
cells. In each cell variables such as fluid velocity, pressure and density
are locally averaged quantities. In particular, a specific cell can be occu-
pied by immiscible liquid and air, and the density of a cell is theweight-
ed average of the two phases (excluding the volume of particles if they
are present in a cell). The following continuity equation is assumed to
hold for each cell:

∂ ερð Þ
∂t þ∇⋅ ερU f

� �
¼ 0 ð2Þ

where Uf is the average velocity of a fluid cell. ε=vvoid/vc=1−vp/vc
denoting the porosity (void fraction) (vvoid is the total volume of void
in a cell whichmay contain either air or water or both; vp is the volume
occupied the particle(s) in a cell; vc is the total volume of a cell). ρ is the
averaged fluid density defined by: ρ=αρw+(1−α)ρa, where α=vw/
vc=1−va/vc. α is defined in the CFD simulation by the nominal vol-
ume fraction of water phase in a cell, where vw is the nominal
water phase volume in the cell and va the nominal air phase volume,
and vw+va=vc. Evidently, the total void volume in a cell can be
written as vvoid=ε(va+vw). If α=1, the void of a cell will be fully oc-
cupied by water, and if α=0, the void is full of air. The case of 0bαb1
normally refers to a cell with void filled by both air and water. This def-
inition of average fluid density in conjunction with the porosity ε leads
to a neatly expressed continuity equation in Eq. (2), and has beenwide-
ly followed. In addition, as will be shown, this definition offers a conve-
nient way to simulate the transition process of particles passing
between the interface between (pure) air phase and water phase. The
CFD method solves the following locally averaged Navier–Stokes equa-
tion in conjunction with the continuity equation in Eq. (2)

∂ ερU f
� �
∂t þ∇⋅ ερU fU f

� �
−ε∇⋅ μ∇U f

� �
¼ −∇p−fp þ ερg ð3Þ

where p is the fluid pressure in the cell; μ is the averaged viscosity; fp

is the interaction force averaged by the cell volume the particles inside
the cell exert on the fluid. g is the gravitational acceleration.

2.2. Fluid–particle interaction forces

The motion of submerged particles can be significantly influenced
by the fluid through either hydrostatic or hydrodynamic forces. Buoy-
ancy force is a typical hydrostatic force, whilst hydrodynamic forces
may include drag force, the virtual mass force and the lift force,
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Fig. 1. Schematic of two different approaches to calculate the void fraction for a fluid
cell. (a) The centre void fraction method; (b) the divided void fraction method.
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among others [21,37]. In this study, we consider the drag force Fd and
the buoyancy force Fb as the dominant interaction forces. Specifically,
the expression of drag force used by Di Felice [11] is employed:

Fd ¼ 1
8
Cdρπd

2
p U f−Up
� �

U f−Up
��� ���ε1−χ ð4Þ

where dp is the diameter of the considered particle. Cd is the particle–
fluid drag coefficient which depends on the Reynolds number of the
particle, Rep

Cd ¼ 0:63þ 4:8ffiffiffiffiffiffiffiffi
Rep

q
0
B@

1
CA

2

ð5Þ

in which the particle Reynolds number is determined by:

Rep ¼
ερdp U f−Up

��� ���
μ

: ð6Þ

ε−χ in Eq. (4) denotes a corrective function to account for the presence
of other particles in the system on the drag force of the particle under
consideration, wherein χ has the following expression

χ ¼ 3:7−0:65exp −
1:5− log10Rep
� �2

2

2
64

3
75: ð7Þ

As indicated by Kafui et al. [15], the Di Felice expression leads to
a smooth variation in the drag force as a function of porosity. The
expressions in Eqs. (4) and (5) work well for our applications with
relatively low Reynolds numbers.

Regarding the hydrostatic force, we employ the following average
density based expression for the buoyancy force (c.f. [15,21]):

Fb ¼ 1
6
πρd3pg: ð8Þ

2.3. Numerical solution schemes for coupled CFD–DEM computation

In the coupled CFD–DEM scheme, the fluid phase is discretized
with a typical cell size several times of the average particle diameter.
At each time step, the DEM package provides such information as
the position and velocity of each individual particle. The positions of
all particles are then matched with the fluid cells to calculate relevant
information of each cell such as the porosity. By following the
coarse-grid approximation method proposed by Tsuji et al. [27], the
locally-averaged Navier–Stokes equation in Eq. (3) is solved by the
CFD program for the averaged velocity and pressure for each cell.
The obtained averaged values for the velocity and pressure of a cell
are then used to determine the drag force and buoyancy force acting
on the particles in that cell. Iterative schemes may have to be invoked
to ensure the convergence of relevant quantities such as the fluid
velocity and pressure. When a converged solution is obtained, the
information of fluid–particle interaction forces will be passed to the
DEM for the next step calculation. LIGGGHTS has been adopted as
the DEM package and the finite-volume-method based OpenFOAM
code is employed as the CFD solver. A customized OpenFOAM library,
CFDEM, developed by Goniva et al. [13], has been modified to wrap
the OpenFOAM fluid solver into the LIGGGHTS solution procedure to
solve the coupled problem. The InterDyMFoam solver is modified in
the OpenFOAM to solve the locally averaged Navier–Stokes equation.
Ideally, information on interaction forces should be exchanged imme-
diately after each step of calculation for the DEM or the CFD. This,
however, may request excessive computational effort in practice.
For the problems to be treated in this paper, numerical experience
shows that for each CFD computing step, exchanging information
after 100 steps of DEM calculation will ensure sufficient accuracy
and efficiency. If the time steps for DEM and CFD are sufficiently
small, more steps for DEM are also acceptable.

2.4. Two approaches calculating the void fraction of a fluid cell

The CFD–DEM method employed here generally considers a fluid
cell with a size several times of the mean particle diameter. It is inter-
esting to compare two different methods in calculating the void frac-
tion for a fluid cell which are shown in Fig. 1 in a demonstrative
2D view (our code is 3D). Fig. 1a illustrates the centre void fraction
method. In this method, if the centre of a particle i is found located
in a fluid cell j, the total volume of the particle will be counted into
the calculation of the void fraction for that cell. For example, Particles
A, B, C and D in Fig. 1a will all be counted into the calculation of void
fraction for Cell 2. Whilst for the case of Particle E, it can be considered
either entirely to Cell 2 or Cell 4, but not both. Apparently, this
approach will overestimate the void fraction for some cells whilst
underestimating it for others in the neighbourhood. An improved
method is shown in Fig. 1b, where the exact volume fraction of a par-
ticle i in a fluid cell j,ϖij, is accurately determined (ϖij=vij

p/vip, where
vi
p is the total volume of particle i and vij

p is the exact portion of
volume of particle i in cell j). Evidently, ϖij∈ [0,1]. When a particle
is entirely located in Cell j (such as the case of Particles B and C
with respect to Cell 2), ϖij=1; when it is totally outside that cell,
ϖij=0. Otherwise, its value is in between 0 and 1. ϖij is then used
to calculate the void fraction of the concerned cells. The latter ap-
proach is termed as the divided void fraction method. Evidently, the
first approach can be regarded as a special case of the second, with
ϖij either equal to 1 or 0, depending on its centroid location with
respect to the cell.

The two approaches affect how the fluid–particle interaction
forces are calculated. In calculating the interaction force applied to a
DEM particle i, a simplified centre-position approach (similar to the
centre void fraction method mentioned above) has been followed
for all cases. Specifically, the average fluid velocity Uf in Eq. (4) and
the average fluid density ρ in both Eqs. (4) and (8) are chosen entirely
according to the cell the particle centre is located in. As such, the total
interaction force applied to particle i is

F f
i ¼ Fdi þ Fbi : ð9Þ
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Fig. 2. Comparison of the CFD–DEM prediction and the analytical solution for single-
particle settling in water with the centre and divided void fraction methods. (a) Particle
velocity (inset: the settling problem and CFD mesh); (b) Fluid cell velocity at different
locations: around the particle, the centre interface (transition) cell and the bottom
centre cell.
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This expression is followed in both the centre and the divided void
fraction methods. However, in calculating the interaction forces for a
fluid cell j, the contributing weight of each particle relevant to the cell
has been considered as follows

fpj ¼
Xnp

j

i¼1

ϖij Fdi þ Fb
i

� �
=v j

c ð10Þ

where ϖij is the weight of volume fraction of particle i in cell j. njp is
the total number of particles relevant to fluid cell j, and vc

j is the cell
volume. For the divided void fraction method ϖij can be accurately
determined, whilst for the centre void fraction method we may sim-
ply set ϖij=1 for a particle whose centre is located in cell j, and
ϖij=0 otherwise.

3. Benchmarking examples

It is instructive to benchmark the coupled CFD–DEM program
presented above first. Two simple problems with analytical solutions
available are chosen for this purpose. The first is the single spherical
particle settling from air into water, and the second is the classical
one-dimensional consolidation problem in soil mechanics.

3.1. Single spherical particle settling from air to water

Sedimentation, or the settling of particle(s) into water, has been a
problem of interest for hundred years. Stokes [24] was among the
earliest who has attempted to describe the sedimentation of a sphere
analytically. He has found that the settling velocity of a sphere in a
fluid is directly proportional to the square of the particle radius, the
gravitational force and the density difference between solid and fluid
and is inversely proportional to the fluid viscosity, as follows (see also,
[8])

up tð Þ ¼ 1
18

ρp−ρf

� �
d3pg

μ f
1− exp − 1

27
μ f

ρpd
3
p
t

 !" #
ð11Þ

where up(t) denotes the settling velocity of the spherical particle. dp is
the diameter of the particle. g is the standard gravity. The term outside
the bracket of the RHS of Eq. (11) is the so-called terminal velocity. No-
tably, the finding by Stokes [24] applies to the slow particle motion case
with low Reynolds numbers.

In the benchmarking simulation of the problem by the CFD–DEM
method, a spherical particle of dp=1mm is dropped from 45 mm
high from the centre of a container (see inset of Fig. 3a) with a dimen-
sion L×W×H=20mm×10mm×50mm. The container is divided
into a homogeneous mesh of 20×10×30. The cells are decomposed
into three regions. The upper (20×10×14) cells are pure air cells
where α=0, and the bottom (20×10×15) cells are pure water cells
where α=1. There is one layer (20×10×1) of transitional cells
where α is specified as 0.5. The viscosity of water and air used in
the calculation are specified to be: μf=9.982×10−4Pa⋅s and μa=
1.78×10−5Pa⋅s. The densities use the following values: ρp=3×
103kg/m3, ρf=998.2kg/m3, and ρa=1.2kg/m3. Hertzian contact law
is used and the container wall is assumed to have the same contact
parameters as the particle: Young's modulus E=5×106Pa, Poisson's
ratio ν=0.45, and the coefficient of restitution ζ=0.3.

The predictions are compared in Fig. 2 against the analytical solu-
tion. Also compared in the figure are the two methods on calculating
the void fraction of the fluid cell. It is evident from Fig. 3a that the pre-
dicted settling velocities of the particle by both methods agree well
with the analytical solution. The numerical predictions capture well
the sharp reduction of velocity when the particle hits the water and
bounces back when it hits the container bottom. The settling process
in the water also compares well with the analytical solution. Interest-
ingly, the centre void fraction method appears to perform slightly
better than the divided method. This may have been caused by the
use of identical cell size with the particle diameter. However, a rather
different scenario is observed in the next example. Fig. 2b presents
the fluid cell velocity at three locations: around the particle, at the
centre of the transition zone and at the bottom of the container
(all along the centre line). As can be seen, the velocity of the fluid
cell around the particle bears close correlation with the motion of
the particle. The particle motion impacts the cell at the transitional
interface only temporarily, and its interaction with the bottom cell
is clearly observed before the particle hits the bottom.
3.2. One-dimensional consolidation

The proposed method has also been benchmarked by the classical
one-dimensional (1D) consolidation problem in soil mechanics. A
similar problem has been discussed by Suzuki et al. and Chen et al.
[7,25]. According to the 1D consolidation theory by Terzaghi [26],
the dissipation of excess pore pressure in a one-way drained soil
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layer subjected to surface surcharge can be described by the following
equation:

∂p
∂t ¼ Cv

∂2p
∂z2

ð12Þ

where p denotes the excess pore pressure during the consolidation, z
is the vertical coordinate in the drainage direction, and Cv is the coef-
ficient of consolidation given by

Cv ¼
kp

ρwgmv
ð13Þ

where kp is the permeability, kp ¼ d2ε3ρwg
150μ 1−εð Þ2 [30]. mv is the coefficient

of volume change, mv=Δεv/Δσv (Δεv and Δσv are the variations of
vertical strain and vertical stress, respectively) which can be deter-
mined from the material properties and problem specification. In
addition, a non-dimensional time can be defined to conveniently de-
scribe the normalized time process [41]

Tv ¼
Cvt
H2 ð14Þ
where H is the height of the soil layer (its initial value being H0).
The initial and boundary conditions for the one-way drainage prob-
lem are:

p z;0ð Þ ¼ p0; p 0; tð Þ ¼ 0;
∂p
∂z

����
z¼H

¼ 0: ð15Þ

The analytical solution to Eqs. (12)–(15) for the excess pore water
pressure during the consolidation process is (see [10])

p ¼
Xn¼∞

n¼1

2p0
nπ

1− cosnπð Þ sinnπz
H

exp
−n2π2Tv

4

 !
ð16Þ

where n denotes an integer number.
In simulating the one-dimensional consolidation problem, we con-

sider a soil column comprised of 100 equal radius spheres (r=0.5mm)
which are supposed to be saturated in water. The dimension of the
column is 1 mm wide and 100 mm high, the same as that treated by
Suzuki et al. and Chen et al. [7,25]. The column is discretized into fluid
cells of 2 mmhigh each. Hooke contact law is adopted for the DEM com-
putation, and the values of relevant parameters are adopted as the same
in Suzuki et al. [25] (ρp=2650kg/m3, contact stiffness kn=100N/m,
ρf=998.2kg/m3, fluid viscosity μf=0.9982×10−3Pa-s, Gravity constant
g=9.81m/s2). All particles are initially placed at the centre line of the
columnwithout any overlap and are emerged inwater. The gravitational
force and buoyancy force are then switched on to allow the particles to
settle to a hydrostatic state (see also [7]). Once the initial consolidation
is finished, a surcharge load p0=100Pa is then applied at the top of
the column.

The simulated settlement of the top particle and the dissipation of
excess pore water with time are compared in Fig. 3 against the analyt-
ical solutions. The performances of the two void fraction calculation
methods are also compared. As shown in Fig. 3a, the predicted settle-
ments of the top particle by both methods compare well with the
analytical solution, except at Tv=0. Whilst the analytical solution as-
sumes an instantaneous buildup of excess pore pressure throughout
the column once the surcharge is applied, the CFD–DEM calculation
needs certain time to build up the whole excess pore water. The
numerical and analytical solutions hence are not totally comparable
at the instant of Tv=0. Following a similar strategy as suggested by
Chen et al. [7], we have shifted the time measure of the numerical
computation to certain small time to match the initial excess pore
water pressure field for the analytical case, from which instant
of time the two solutions are then compared. Nevertheless, it is
suggested that the predicted quantities, including both the settlement
and the excess pore water pressure, at the early stage of the consoli-
dation remain less reliable due to the same reason. This explains
the discrepancy between the numerical methods and the analytical
solution for the dissipation of excess pore pressure in the case of
Tv=0.175 in Fig. 3b (note that the Tv=0 case has been imposed by
the initial conditions for p).

As shown in Fig. 3b, except in the early stage and the case of Tv=
0.8, the predicted dissipations of excess pore pressure using both
methods of void fraction calculation are in good agreement with the
analytical solution. It is of particular interest to discuss the case of
Tv=0.8 in Fig. 3b. The curve in red circle (see online) represents
the predictions by the centre void fraction method. As compared to
the analytical solution, the divided void fraction method evidently
provides significantly better predictions than the centre void fraction
method, which exemplifies the potential pitfall associated with the
latter. A further inspection of the results reveals that the initial con-
solidation (driven by gravitational force and buoyancy force) has
resulted in a settlement around 0.4 mm for some particles on the
top. At Tv=0.8 of the normal consolidation stage, there is an extra
settlement around 0.09 mm occurring for these particles. The total



Fig. 4. Illustration of the formation of a sand pile through hopperflow inwater: (a) during
the formation of the sandpile; (b) the final state of the sandpile.
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settlement of such particles thus reaches around 0.5 mm, which may
exactly lead to a situation that the centre of the concerned particle
comes across the boundary of two neighbouring cells (similar to the
case of Particle E in Fig. 1). According to the centre void fraction
method, there will be a sudden jump of void fraction for neighbouring
cells and hence the drag forces as well, which may lead to the ob-
served erroneous results shown in Fig. 3b. Whilst the divided void
fraction method offers improved accuracy, the centre void fraction
method is advantageous in terms of efficiency, especially when the
simulated system is extremely large. Evidently, if the particle size is
very small relative to the fluid cell, the difference in predictions be-
tween the two void fraction methods is expected to become small.

The overall performance of the CFD–DEM program has been found
satisfactory with the above two benchmarking examples. The fluid–
particle interaction appears to be reasonably captured. The numerical
algorithms solving the governing equations of both the CFD and the
DEM parts are generally stable and robust.
4. Application to conical sandpiling in water

Handling and processing of granular materials are commonplace
in many engineering branches and industries. The piling of granular
media, for example, has been common in open stockpiles in agricul-
ture, chemical engineering and mining industries. The angle of repose
and the stress distribution in a sand pile have been the focus of DEM
studies on sand pile formation (see [38] on a review of this topic). In
particular, the pressure minimum in the vertical stress profile of the
base of a sand pile has been an interesting phenomenon attracting
much attention in classic granular mechanics. The occurrence of pres-
sure dip can be caused by many factors, e.g., the base deflection [36],
the particle shape [34,40] and the construction methods [4,29].
Appreciable pressure dip has been observed in a sand pile prepared
by localized flow source such as hopper, whilst using raining sieve
produces a sand pile with a central peak normal stress. Whilst a dom-
inant body of existing studies on sandpiling has been focused on the
case of dry granular materials, research on sandpile formation in an
environment of water is scarce. The latter case may find rather inter-
esting applications in practice, ranging from silos to road and dam
constructions, land reclamation and dredging, mine product and tail-
ing handling as well as soil erosion and debris flow. A deeper under-
standing towards the fundamental principles governing the stress
transmission in static granular solids submerged in water may lead
to not only considerable advances in the theory of granular mechan-
ics but also improved technologies for relevant practical applications
mentioned above. The CFD–DEM method developed above will be
employed in this paper to examine the behaviour of sandpiling in
water. Particles are poured from a hopper through a container filled
with water to form conical sand piles on a circular flat panel placed
at the bottom of the container (see Fig. 4). To ensure proper conical
sandpiles can be formed, the circular panel is limited by a round baffle
with 2 mm high (similar to way employed in the tests by [17]). The
particles flowing beyond the baffle will drop off and will be removed
from consideration. Meanwhile the corresponding cases without the
presence of water (hereafter referred to as the dry cases) will also
be simulated for comparison.

Whilst the particle shape is found affecting the characteristics of
the pressure dip in a sandpile (see [2,34,35,40]), it is considered ap-
proximately here by considering the rolling resistance among spher-
ical particles. Following the model by Zhou et al. [35], one has

Mr ¼ −μrFnRr
ωrel

ωrelj j ð17Þ

whereMr is the torque between two contacted particles. Fn is the con-
tact normal force. Rr is the rolling radius defined by Rr=rirj/(ri+rj)
where ri and rj are the radii of the two spherical particles in contact.
μr is the coefficient of rolling resistance. Zhou et al. and Zhou and
Ooi [34,35] have emphasized the importance of rolling friction in
achieving physically/numerically stable sandpiles. To highlight its
role in the wet case, a comparative study of two rolling resistance
cases, μr=0 and μr=0.1, is conducted. Note that a small baffle used
for the ground panel is especially useful to ensure the forming of
proper sandpiles in the case of free rolling (μr=0). In addition, we
have examined both monosized and polydisperse grain size distribu-
tion. The polydisperse packing follows a typical grain size distribution
of sand. To render the two cases comparable, the mean grain size of
the polydisperse packing is chosen to be equal to the particle size of
the monosized case. Table 1 summarizes the relevant parameters used
in the subsequent computation.

We simulate a real case of forming a sand pile in 10 s, among
which around 6 s is spent in pouring all particles through the hopper
into the water and onto the circular panel and around 4 s for the
relaxation of all particles (some may fall off the receiving panel)
until they finally settle down (with an overall kinetic energy reaching
a magnitude around 10−14 J). Because very small time steps have
been used in both the DEM and CFD computations to solve the prob-
lem, adequate accuracy can be achieved by stepping 1000 DEM calcu-
lations after one step of CFD computation. The total computing time
for each realization of sandpile in water, on a 4-core Intel CPU
(3.0 GHz) desktop computer, is around 2 days. The final stable-state
sandpile will be used to extract such information as stress distribu-
tion, repose angle, void ratio distribution and contact force chains
for the subsequent analysis. In particular, both the centre and divided
void fraction methods have been used for the problem. Only marginal



Table 1
Physical and geometric parameters used in the sandpiling simulations.

Characteristics of the packings Monosized 15,000 particles, 2 mm in diameter.
Polydisperse 15,000 particles, diameter ranged from 1 to 3 mm

(mean=2 mm, the cumulative grain size distribution shown in Fig. 5)
Particle and contact parameters Particle density 2700 kg/m3

Interparticle friction coefficienta μ=0.7
Young's modulus
(Hertz model)

70 GPa (particle–particle contact)
700 GPa (particle–wall contact)

Poisson's ratio 0.3
Restitution coefficienta 0.7
Rolling friction (using the torque model of [35]) μr=0&0.1

Geometry of the hopper &
the circular panel

Hopper diameter 14 mm
Hopper height (from the hopper bottom to the receiving panel) 40 mm
Radius of the receiving panel 5 cm
Baffle height 2 mm

Simulation control Time step (DEM) 5×10−7 s
Time step (CFD) 5×10−4 s
Simulated real time 10 s (20,000,000 steps in DEM)

a Note that in practice, different values for both the coefficient of interparticle friction and the coefficient of restitution should be used for the in air and in water cases, i.e., according
to Malone and Xu [19]. For simplicity, they are kept the same in both cases in this study to highlight the pure effect of water presence (e.g., interaction forces).
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difference has found between the predictions by the two methods.
Hence only the simulations by the divided void fraction method will
be presented in the subsequent sections.

4.1. Repose angle

The repose angle ϕ of sandpile formed in water (referred in the
sequel as “wet case”) has been compared to that for the dry case,
for both monosized and polydisperse packings. In measuring the re-
pose angle, the position of each particle is projected onto the plane
of r−z where r denotes its horizontal distance to the axis of the
pile (assumed to be identical to the axis of the hopper). The peak of
all sandpiles obtained in our study has been found rather flat with a
vertical height H slightly less than the conical apex Ha as shown in
Fig. 6. The apex height Ha will be used to normalize the vertical pres-
sure profile. The obtained results are summarized in Table 2 for the
case of μ=0.7.

It is observed from Table 2 that, for the monosized case without
consideration of rolling resistance, the repose angle for a sandpile
formed in water is fairly close to that in the dry case. However, if
the rolling resistance is considered, it becomes considerably smaller
than that in the dry case. From our simulation the difference is
found to be around 9∘. However, the observation is quite different for
the polydisperse case, where the obtained repose angle in the dry case
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Fig. 5. Cumulative grain size distribution of the polydisperse packing used for sandpiling
simulation.
differs only around 1∘ from the wet case. Its value in dry case is slightly
greater than thewet case for the free rolling case (μr=0), but ismargin-
ally smaller than the latter in consideration of rolling resistance. In any
of these cases, considering rolling resistance leads to appreciably in-
creased repose angle for a sandpile than otherwise. This is consistent
with the observation by Zhou and Ooi [34]. Meanwhile, our study indi-
cates that there is a mixed effect of the polydispersity of a packing on
the obtained sandpile. Without consideration of rolling resistance, the
monosized and polydisperse packings produce roughly the same repose
angle. When the rolling resistance is considered, a much smaller repose
angle is found for a dry polydisperse packing than a dry monosized
case, whereas it is greater in the wet polydisperse case than in the
wet monosized case.

4.2. Pressure dip

Fig. 7 depicts the vertical pressure profiles at the base of sandpiles
obtained from our simulations. Clear pressure dip at the centre is
found for all cases. Table 2 also presents the specific values of the
normalized dip and peak pressures. In particular, the effects of the
following factors on the observed pressure dip can be identified

(a) Water. A sandpile formed in water generally has a flatter dip
(a smaller relative pressure dip) than the dry case. The differ-
ence in the relative pressure dip can be two times as much.

(b) Rolling resistance. Under otherwise identical conditions, the
consideration of rolling resistance may lead to an increase in
the relative pressure dip formonosized packings, but amoderate
decrease for the polydisperse case.

(c) Polydispersity. A polydisperse sample generally leads to a smaller
relative pressure dip than a monosized one.

4.3. Void ratio

It is interesting to explore the features of both average void ratio
and the local void ratio in each sandpile. We employ the Voronoi
Fig. 6. Determination of the repose angle for a sand pile.



Table 2
Comparison of the characteristics of sandpiles obtained for the dry/wet cases and monosized and polydisperse packings (interparticle friction coefficient μ=0.7).

Sandpile characteristics Monosized packing Polydisperse packing

μr=0 μr=0.1 μr=0 μr=0.1

Dry Wet Dry Wet Dry Wet Dry Wet

Repose angle ϕ (o) 22.4 20.6 31.5 22.6 23.3 20.6 27.4 26.0
Final particle number in the sandpile 13,348 13,138 11,604 9476 14,681 15,000 14,328 14,989
Normalized dip stress 0.3865 0.661 0.345 0.668 0.572 0.81 0.63 0.719
Normalized peak stress (by gHa) 0.654 0.724 0.721 0.776 0.869 0.93 0.87 0.878
Relative pressure dipa(%) 40.90 8.70 52.15 13.92 34.18 12.90 27.59 18.11
Average void ratio 1.243 1.27 1.376 1.397 1.459 1.481 1.545 1.571
Fabric Anisotropy 0.2717 0.2368 0.4988 0.3919 0.0516 0.0839 0.1825 0.1853

a Relative pressure dip=(peak stress−dip stress)/peak stress.

a
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tessellation of a sandpile to calculate these quantities. Shown in
Fig. 8a are the Voronoi tessellation cells for a typical sandpile. Since
each Voronoi cell is occupied by a single particle, the local void ratio
can be conveniently determined. Based on the local void ratio, the
average void ratio can also be obtained. In calculating the void ratios,
particles/cells in the bottom layers which are below the height of the
baffle have been excluded for consideration.
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As shown in Table 2, the presence of water leads to a slightly
increased void ratio as compared to the dry case. The consideration
of rolling resistance and polydispersity, however, may result in signif-
icantly looser sandpile than otherwise. Shown in Fig. 8 are the local
void ratio distributions and fittings for both the monosized and poly-
disperse cases. As can be seen, a Gamma distribution fits much better
for the monosized cases (regardless dry or wet, considering rolling
resistance or not) than for the polydisperse cases. In each of the
monosized cases, a best fit Gamma distribution slightly underesti-
mates the peak probability of the local void ratio. In the polydisperse
cases, the optimal Gamma distribution provides systematically over-
estimation in the small void ratio region and underestimation in the
tail part, but nevertheless captures the peak well. The polydisperse
case reaches a peak probability at a slightly smaller void ratio than the
corresponding monosized case. In all cases, the presence of water or
considering rolling resistance may lead to the peak void ratio shifted
rightwards to a bigger value. Such an effect caused by the consideration
of rolling resistance is more obvious than by the presence of water.

Meanwhile, we have further visualized the distribution of local void
ratio in a sandpile in Fig. 9. In the monosized case as shown in Fig. 9a,
two clear dense areas are observed in the dry sandpile which serve
as the anchoring points for an arch to be formed around the sandpile
centre and induce the observed pressure dip. In the wet case the distri-
bution of void ratio at the bottom has been much smoothed and no
particular denser areas are present. In the polydisperse case, the pres-
ence of water appears to have rather limited impact on the local void
Fig. 9. Comparison of the local void ratio contour (μr=0). (a) The monosized case, (b) the p
bottom the wet packing.
distribution where similar local void ratio distributions are found in
both the dry and the wet cases.

4.4. Fabric structure and fabric anisotropy

Indicative information of pressure dip can be obtained from the
contact force network (or fabric) of a sandpile [5,18,23], which is
shown in Fig. 10 for the μr=0 case in the present study. In the dry
monosized case (Fig. 10a upper panel), the strong force chains show
an appreciable orientation with an inward inclination angle of around
70∘. This indicates that the weights of the upper particles of the sand-
pile are transferred to the bottom along these inclined chains rather
than along the vertical direction. The bottom centre part of the sand-
pile is shielded from supporting the weights, which explains the
strong pressure dip observed in this case. In contrast, in the wet
monosized case (Fig. 10a bottom panel), the contact force chains
are more preferably oriented to the vertical direction, and no effective
shield can be formed to deflect the upper weights. A much reduced
pressure dip is naturally found for this wet case. The observation dif-
fers for the polydisperse cases shown in Fig. 10b. The polydispersity
appears to totally change the force transmission pattern, as has
been noticed by Luding [18] as well. In both the dry and wet cases,
the strong force chains are more vertically oriented, and result in re-
duced pressure dip in these cases. Moreover, for both monosized and
polydisperse cases, the presence of water renders the entire contact
force network more homogeneous than in the dry case, and the
olydisperse case. In each case, the upper figure corresponds to the dry packing and the



Fig. 10. Comparison of contact force networks in the sandpile for (a) the monosized case and (b) the polydisperse case. Free rolling (μr=0) is considered for both cases.

257J. Zhao, T. Shan / Powder Technology 239 (2013) 248–258
greatest contact forces are larger in the dry case than in the wet case.
Not presented here, the consideration of rolling resistance renders
the force chains more vertically oriented, in a similar manner as the
effect of polydispersity.

Evidently, the fabric structure in Fig. 10 is not isotropic, and the
degree of fabric anisotropy in these contact networks can indeed be
quantified. To this end, we employ a interparticle-contact-based fab-
ric tensor proposed by Satake [22] and use its second invariant to
quantify the degree of fabric anisotropy in a sandpile (see [14] on a
similar way of using the fabric tensor and its invariant). The results
are summarized in Table 2. As is shown, the fabric anisotropy is mod-
erately reduced in the presence of water for monosized samples,
whereas the opposite trend is observed in the polydisperse case.
The consideration of rolling resistance generally leads to significant
increase of fabric anisotropy, whereas the polydispersity results in
reduced fabric anisotropy. A positive correlation is observed between
the fabric anisotropy and pressure dip ratio for the monosized cases.
No apparent correlation can be found for the polydisperse cases.

5. Concluding remarks

A coupled CFD–DEM method has been presented to simulate the
interaction between fluid and particles in granular media. In the meth-
od, we employ the DEM to simulate the motion and interactions of
particles for a granular particle system, and use the CFD to solve the lo-
cally averaged Navier–Stokes equation for fluid flow. The interaction
between fluid and particle is considered by exchanging such
interaction forces as drag force and buoyancy force between the DEM
and the CFD. Through two benchmarking examples and another appli-
cation to the formation of sandpile in water, the following conclusions
can be made:

• The proposedmethod is adequately robust and efficient to be applied
to the simulation of fluid–particle interaction for a wide variety of
problems in geomechanics.

• The behaviour of fluid–particle interaction in granular media can be
reasonably captured by the proposed method, as has been demon-
strated by benchmarking with the single particle settling in water
problem and the one-dimensional consolidation problem.

• Based on the CFD–DEM simulation of the conical sandpile problem,
it is observed that, (a) the presence of watermay help to form a sand-
pile with more homogeneous internal structures in terms of local
void ratio, contact force network and fabric anisotropy. It may also
help to reduce the relative pressure dip; (b) considering the rolling
resistance among particles may lead to a greater relative pressure
dip for the monosized case and a smaller one for the polydisperse
case. The observation holds for both dry and wet cases; (c) a sandpile
formed by using polydisperse granular material may have a smaller
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relative pressure dip than using a monosized material; and (d) the
local void ratio in a sandpile with monosized particles yields Gamma
distribution. The characteristic is not so obvious for a sandpile formed
by polydisperse particles.

The observations made above still need rigorous verifications by
experiments in the future. The study nevertheless constitutes a first
step towards effective modelling the complex interaction between
fluids and particles in porous media such as sand. Further improve-
ments may be made by considering more realistic particle shape and
more reasonable interaction forces in the coupling analysis. Whilst it
has been developed for applications relevant to geotechnical engineer-
ing, the proposed approach can be equally useful for problems in other
fields such asmining and chemical engineeringwhere thefluid–particle
interaction is considered important.
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