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Abstract

This paper presents a simple concept which can be used for simulating a range of soil mechanics problems. The study is motivated by
the observation that many experimental results are commonly described in terms of lines or curves according to a phenomenological
approach. Frequently, these relations are based on rather different formulations from one application to another, and in complex forms
for some cases. This leads to complications for the calibration of parameters as well as constitutive modelling. Thus, a general framework
referred to as ‘‘reference curves” has been developed. This framework provides a unique treatment of the macroscopically observed
behaviour of clays, sands, and structured materials under isotropic compression, as well as the water retention characteristics of granular
materials and geotextiles. Several examples are provided illustrating the good accuracy of models developed with this concept. The pro-
posed framework may be equally applied to any other behaviour where reference lines are easily identifiable from a macroscopic scope,
such as some non-linear failure envelopes for granular materials. In addition, we show that the incorporation of the proposed equations
into constitutive models is quite straightforward.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of soil mechanics has long been based on
experimental investigations, where a common practice in
determining various relations for soils is through observa-
tions and curve-fitting techniques seeking to provide linear
or non-linear approximations for some predefined state
variables. A well known example is the Cam clay theory,
where the bilinear relations between the void ratio and
the logarithm of mean effective stress for the isotropic nor-
mal compression line (NCL) and for the unloading–reload-
ing line (URL) were adopted [14]. Linear relations, though
having obvious advantages of simplicity and ease to cali-
brate and implement, are difficult to find in many
occasions.
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The relation between the void ratio of most sands and
the applied compression pressure, for example, generally
yields a curve rather than a line as in clays. Indeed, this
non-linear compression relation for sands holds regardless
whether it is plotted in a semi-log plane or in a double-log
plane (e.g. [6,11,18,17]). Other examples of non-linear rela-
tions in soil mechanics include the isotropic compression of
some naturally deposited soils that exhibit inherent initial
structure [5,8], and the water retention characteristics of
unsaturated media [3,16,15].

In order to consider non-linear relations in constitutive
modelling of soils, various forms of mathematical formulae
have been proposed, which, in many cases, are either too
simple to fully describe the material behaviour, or too com-
plex with many parameters without clear physical mean-
ings. More importantly, these formulations are always
problem-specific and thus only useful for some particular
behaviour while mostly inapplicable to others. A general,
flexible yet convenient framework is therefore much sought.
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Fig. 1. General isotropic behaviour of sands.
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In this paper, considering a phenomenological
approach, where no explicit reference to microscale proper-
ties such as porosity, grain size, or density are made, we
propose to employ reference lines as foundation for the
prediction of some studied behaviour. Overall combined
effects of the microstructure are modelled by casting the
macroscale theory in terms of macroscale variables that
are realistic to measure in the laboratory. In this manner,
the slopes of the references lines are determined directly
from results from mechanical or hydraulic tests, observed
by means of relations between predefined state variables
and plotted as experimental curves. Analytical formula-
tions for simple cases are developed and incremental rela-
tions for more complex situations are provided. Both set
of equations can be easily incorporated into constitutive
models and, thus, be used with boundary problems solvers
such as the finite element method.

Three set of equations are developed following the ‘‘ref-
erence curves” concept: the first one applies to situations
where two reference lines can be easily identified; the sec-
ond set of formulae can be used for the case where three
references can be observed in which one reference line is
near horizontal; and the last one is similar to the previous
case; however, one of the reference lines is near vertical.
The equations proposed are then applied to the simulation
of the behaviour of isotropic compression of sands and
structured materials and to the water retention characteris-
tics of unsaturated soils and geotextiles, where the determi-
nation of all parameters is explained. In all these cases, the
predictions agree very well with the experimental data.
Therefore, we conclude that this technique is quite versatile
and accurate. In addition, we believe that the simulation of
the non-linear failure envelopes of some granular materials
can also be predicted using this technique, as will be shown
in a future study.

In the remainder of this paper, we will give an overview
of some common observed behaviour in soil mechanics,
deduce the equations of the three cases based on the ‘‘ref-
erence curves” concept mentioned above, compare model
predictions with experimental data, and, in the appendixes,
present all computer code necessary for the computation of
predicted results after some conclusions are made.

2. Some common observations of different problems of soil

mechanics

2.1. Isotropic compression of sands

A typical isotropic compression curve for sands exhibits
three characteristic stages, AB, BC and CD as in Fig. 1.
Each stage is associated with a particular deformation
mechanism. The first stage (AB) is typically characterised
by particle rearrangements in the form of sliding and rota-
tion, whilst during the second stage (BC) particle crushing
and further rearrangements occur when the applied
pressures are high. The last stage (CD) represents a residual
state where particle crushing is no longer the main
deformation mechanism. Regarding the plane with coordi-
nates being the void ratio and logarithmic mean effective
stress (e–lnp0), it is convenient to define three parameters,
k0, k1, and k2 in order to represent the main inclinations
observed at each stage. Note that these three inclinations
can be directly determined from experimental data and also
are related to a certain physical behaviour.

The transition from one state to another is somehow
regulated by the energy of deformation involved. This
energy may be measured by the area below the volumetric
strain–mean stress curve. A parameter related to this rela-
tion may be defined. Thus, the area below the A–B–C sec-
tion, related to the rearrangement-crushing transition, is
defined by a parameter, symbolised by b. For the transition
B–C–D, if the curvature is very different than that for the
A–B–C section, an additional parameter, related to the
residual phase transition and symbolised by b, can be
introduced.

The notation with two bars over the beta symbol is due
to the way the formulae are deduced, as shown later, in
which the equations using b are obtained after the equa-
tions with b. Thus, the equations for the ‘‘final” portion
of the predicted curve, for higher values of abscissa (e.g.
mean stress or suction), are deduced firstly, considering b.

2.2. Water retention characteristics

Fig. 2 shows typical water retention curves for unsatu-
rated soils and geotextiles. The drying curve can be charac-
terised by three reference lines. At lower values of suction,
the tangent to the drying curve has an inclination close to
k0, while at higher suction levels a tangent line to the resid-
ual part with inclination of k2 can be observed. Note that in
some existing models, both k0 and k2 have been assumed
equal to zero for simplicity. For intermediate level of suc-
tion, a main inclination indicated by k1 can be observed.

The curvature for drying and wetting paths can be differ-
ent; however, for simplicity, they will be considered to be
equal. In fact, here, the hysteresis is not accounted for
explicitly, but may be considered by incorporating a shift



Fig. 2. General water retention characteristics.
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from the drying curve to the wetting curve. In addition, the
curvature of these curves close to Sr = 1 are considered dif-
ferent than the curvature close to the end part when Sr � 0.
Therefore, a b parameter is adopted for the initial portion
of the drying curve and b for the final portion.

2.3. Volumetric behaviour of structured materials

Natural clays or structured materials can exhibit a dif-
ferent stress–strain relationship than the behaviour of the
same material after loss of structure, for example, after
remoulding. The difference is characterized by a stiffer vol-
umetric response under isotropic compression, as can be
observed by the non-linear stress–strain curve in the e–lnp0

plot shown in Fig. 3. The ‘‘structured curve” can approach
the normal consolidation line (NCL) after destructration,
at higher values of mean effective pressure. For over-con-
solidated structured clays, an initial region of elastic behav-
iour may be observed as well, before the void ratio–mean
stress state values reach the NCL. Therefore, three refer-
ences may be conveniently identified: (a) an initial line with
inclination close to k0, corresponding to the elastic
compression; (b) a curve with main inclination equal to
Fig. 3. General volumetric behaviour of structured materials.
k3, corresponding to the structured behaviour; and (c) the
NCL with inclination equal to k1.

Likewise, the transitions on each section of the ‘‘struc-
tured curve” can be simulated by means of two constitutive
parameters b and b. The first one, b, will be considered for
the elastic-structured transition and the second one, b, for
the structured-normal consolidation transition at the sec-
tion with higher values of mean stress on the non-linear
compression curve.

3. Formulation

The equations for the simulation of the three examples
mentioned in the previous section can be cast into a unique
framework considering the common geometric (macro-
scopic) observations. The idea is to obtain an incremental
relationship for the main pre-defined state variables. This
relationship will be represented by a curve controlled by
some additional reference lines by means of the ‘‘distances”

from the current state to key points on the reference lines.
These key points are viewed as internal variables. The
incremental equations can then be directly incorporated
in a constitutive model. An analytical expression is deduced
for the simple case where only two references are identified.

The formulation is presented in a generic form using x

and y as state variables. For example, the isotropic com-
pression can be simulated by substituting x with lnp0 and
y with e, lne, or lnv, where p0 is the mean effective stress,
e the void ratio, and v = 1 + e the specific volume. For
the water retention curve, we can substitute x with ln s
and y with Sr or hw, where s = ua � uw is the matric suc-
tion, ua the air pore-pressure, uw the water pore-pressure,
Sr the degree of saturation, and hw the water content. Note
that any other combination of state variables is possible as
well.

The internal variables (key points) are tagged with ‘‘R”

in order to indicate their nature as points on ‘‘reference”

curves. For example, xR or yR indicate x reference value
and y reference value, respectively. Three groups of equa-
tions are deduced: (a) considering two references lines;
(b) considering three references – case 1, in which a hori-
zontal distance and a vertical distance are considered;
and (c) considering three references – case 2, where two
horizontal distances are considered. The first one (a) can
be applied to the isotropic compression of sands; the sec-
ond (b), to the water retention behaviour; and the last (c)
to the structured volumetric behaviour. We will start with
a simple case of two reference lines, for which an analytical
solution is provided.

3.1. Two references

The case when only two reference lines can be identified
is illustrated in Fig. 4. In this figure, the curve denoted by
y(x) represents some non-linear behaviour for which the
formulation is developed. Our goal is to make the tangent
of the curve at any point vary from the tangent of the initial



Fig. 4. Modelling using two references.
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reference line (k0) to the tangent of the final reference (k1),
as x increases. Thus, the current tangent is defined as

dy
dx
¼ �k ð1Þ

where k denotes a positive number and is defined in order
to satisfy the requirement of smooth transition by means of

k ¼ k0 þ ðk1 � k0Þe�bD ð2Þ
where D is the distance from the current state to the refer-
ence point xR1 located on the reference line with inclination
equal to k1 (Fig. 4). This distance is defined as follows

D ¼ xR1ðyÞ � x ð3Þ
where x and y indicate the current state and xR1 is the x va-
lue for the same y state, however, located on the reference
line. xR1 can be interpreted as an internal variable and can
be easily obtained from

xR1ðyÞ ¼ x0
R1 þ

y0 � y
k1

ð4Þ

The exponential expression defined in Eq. (2) and illus-
trated in Fig. 5 yields a smooth transition where the current
inclination k is approximate equal to k0 when D is large and
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Fig. 5. Variation of k with respect to the distance D.
approaches k1 when D becomes zero. In this last case, the
current state {x,y} will coincide with the reference point
{xR1,y}. Note that D is always non-negative as we assumed
that x approaches xR1 from the left side so that x 6 xR1.

The speed of the transition is controlled by the b param-
eter. When b is small, the transition is smooth while when b
is large, the curve follows a bilinear shape in which a dis-
crete behaviour is predicted; however, the continuity is still
preserved. For higher values of b, the discrete model with
inclinations k0 and k1 is very much approached. Therefore,
the smooth model can be viewed as a general case for the
bilinear model. In addition, this bilinear model, for exam-
ple, the one defined by the Cam clay model using the incli-
nations of the NCL and URL, serves as reference for the
parameter determination of the smooth curve.

Substituting Eq. (4) into Eq. (3), the result into Eq. (2)
and then the last result into Eq. (1), an ordinary differential
equation is obtained. This equation can be analytically
integrated, as demonstrated in Appendix A, yielding the
following solution

yðxÞ ¼ �k0x� k1

b
lnðc3 þ c2 ec1xÞ ð5Þ

where c1, c2 and c3 are functions of the constitutive param-
eters and initial values. These constants can be calculated
using the reference inclinations and initial internal vari-
ables as follows

c1 ¼ bð1� k0=k1Þ; c2 ¼ e�bðx0
R1
þy0=k1Þ and

c3 ¼ e�bðy0þk0x0Þ=k1 � c2 ec1x0 ð6Þ

The value of b can be determined from experimental data
through an energy equivalence approach by equating the
area below the analytical y(x) curve to that computed from
experimental data. In this way, as deduced in Appendix A,
the area below the analytical curve can be obtained by the
following expression

SðxÞ ¼
Z

yðxÞdx ¼ �k0

2
x2 � k1

b
LðxÞ ð7Þ

where L(x) is a function of the constants c1, c2, and c3 and
is given by Eq. (50) of Appendix A

3.2. Three references – Case 1

Three reference lines are considered when the curve y(x)
has a sigmoid shape, as shown in Fig. 6. By using two of
these lines, with inclinations k1 and k2, a reference curve
can be defined. This reference curve can be obtained by a
procedure analogous to the one presented in the previous
section. A variable tangent ðkÞ to the curve y(x) is then
adopted as a function of the inclination of the first refer-
ence line (k0) and the current inclination ðkÞ of the refer-
ence curve. This function ðkÞ depends on the current state
{x,y} and a reference point {xR1,y} on the reference curve.
This recursive approach is simple yet powerful for the sim-
ulation of complicated behaviour of geo-materials.



Fig. 6. Modelling using three references – case 1.
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The reference curve, indicated by y1(x) in Fig. 6, is con-
trolled by k1 and k2 and can be obtained in an analogous
way as for the two references case presented in the previous
section. The current tangent inclination to this curve is
defined by

dy1

dx
¼ �k ð8Þ

where k is given by

k ¼ k1 þ ðk2 � k1Þe�bD ð9Þ
and the vertical distance is defined as follows (Fig. 6):

D ¼ y � yR2ðxÞ ð10Þ
where yR2 is the ordinate of the reference line with inclina-
tion equal to k2, and, for the current state {x,y}, it can be
calculated by

yR2ðxÞ ¼ y0
R2 � k2ðx� x0Þ ð11Þ

The deduction presented in Appendix A can then be ap-
plied to Eqs. (8)–(11) in order to obtain an analytical
expression for the reference curve. This yields:

y1ðxÞ ¼ �k1xþ 1

b
lnðc3 þ c2 ec1xÞ ð12Þ

where the constants c1, c2, and c3 are given by

c1 ¼ bðk1 � k2Þ; c2 ¼ ebðy0
R2
þk2x0Þ and

c3 ¼ ebðy0þk1x0
R1
Þ � c2 ec1x0

R1 ð13Þ

The area below this reference curve can be calculated with
the aid of the following equation:

S1ðxÞ ¼
Z

y1ðxÞdx� k1

2
x2 þ 1

b
LðxÞ ð14Þ

which is useful for the determination of the b parameter.
Now, the tangent inclination to the y(x) curve can be

defined by means of

dy
dx
¼ �k ð15Þ

where
k ¼ k0 þ ðk� k0Þe�bD ð16Þ
is a function of the inclination k and of the following hor-

izontal distance from the current state {x,y} to a point
{xR1,y} on the reference curve y1

D ¼ xR1 � x ð17Þ
When D is large, the inclination k is close to k0. Conversely,
when D! 0, k is close to k, i.e., the current tangent incli-
nation of y(x) curve will be equal to the current tangent
inclination of y1 curve. If b!1 and b!1, the sig-
moid-shaped curve y(x) will be similar to a tri-linear model
using k0, k1 and k2.

From Eq. (12) it is difficult to find xR1 as a function of
the current y state. However, xR1 can be understood as an
internal variable and, together with the current state, be
used for the representation of the non-linear behaviour pre-
dicted. In addition, its evolution, given by

dxR1

dy
¼ �1

k
ð18Þ

must be integrated at the same time as the evolution of the
current state (Eq. (15)).

3.2.1. Incremental relation

For convenience, vector notation is employed in the fol-
lowing expressions. The current state is represented by the
pair

x and E ¼
y

xR1

� �
ð19Þ

when x is the driver variable, and by the pair

y and S ¼
x

xR1

� �
ð20Þ

when y is the driver variable. The non-linear incremental
relation can thus be symbolised as

dE ¼ Cðx;EÞdx ¼ Cðx; y; xR1Þdx ð21Þ
or, alternatively,

dS ¼ Dðy; SÞdy ¼ Dðy; x; xR1Þdy ð22Þ
where the tangent modulus C (analogous to the ‘‘Compli-
ance”) and D (analogous to the ‘‘Stiffness”) were defined.
From Eqs. (15) and (18) these moduli can be written as
follows

C ¼ dE
dx
¼ �k

k=k

" #
) dE ¼

dy

dxR1

� �
¼ �k

k=k

" #
dx ð23Þ

and

D ¼ dS
dy
¼ �1=k

�1=k

" #
) dS ¼

dx

dxR1

� �
¼ �1=k

�1=k

" #
dy ð24Þ

for which any ODE solver, such as the ones based on the
Runge–Kutta method, can be applied during a numerical
integration in order to solve Eqs. (21) or (22).
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3.3. Three references – Case 2

This case, illustrated in Fig. 7, is equivalent to the previ-
ous one. The only difference is that only horizontal dis-
tances (D and DÞ are considered. xR1 is now located on
the reference line with an inclination equal to k1 and a
new internal variable xR3, located on the reference curve

y3, is employed. The reference curve y3 is controlled by
the two inclinations k3 and k1. Eqs. (15) and (16) for dy/
dx and k, respectively, are still valid; however, the distance
D is now given by

D ¼ xR3 � x ð25Þ
The reference curve now has inclination defined by

dy3

dx
¼ �k ð26Þ

where

k ¼ k3 þ ðk1 � k3Þe�bD ð27Þ
begins from k3 and goes to k1, as the horizontal distance D
decreases. This distance is given by

D ¼ xR3 � xR1ðyÞ ð28Þ
where xR3 is the abscissa on the y3 curve for the current y
state and xR1 can be calculated by

xR1ðyÞ ¼ x0
R1 þ

y0 � y
k1

ð29Þ

Again, considering the general form presented in Appendix
A, the four Eqs. (26)–(29) lead to the following analytical
solution for the reference curve

y3ðxÞ ¼ �k3xþ k1

b
lnðc3 þ c2 ec1xÞ ð30Þ

where the constants are given by

c1 ¼ bðk3=k1 � 1Þ; c2 ¼ ebðx0
R1
þy0=k1Þ and

c3 ¼ ebðy0þk3x0
R3
Þ=k1 � c2 ec1x ð31Þ

Likewise, the b parameter can be determined by correlating
the area below y3 curve with the area computed from
experimental data. This area can be calculated by the fol-
lowing expression
Fig. 7. Modelling using three references – case 2.
S3ðxÞ ¼
Z

y3ðxÞdx ¼ �k3

2
x2 þ k1

b
LðxÞ ð32Þ
3.3.1. Incremental relation

Using similar vectorial notations as before, the non-lin-
ear incremental relation can be expressed as

dE ¼ Cðx;EÞdx ¼ Cðx; y; xR3Þdx ð33Þ
or

dS ¼ Dðy; SÞdy ¼ Dðy; x; xR3Þdy ð34Þ
where

C ¼ dE
dx
¼ �k

k=k

" #
) dE ¼

dy

dxR3

� �
¼ �k

k=k

" #
dx ð35Þ

and

D ¼ dS
dy
¼ �1=k

�1=k

" #
) dS ¼

dx

dxR3

� �
¼ �1=k

�1=k

" #
dy ð36Þ

i.e., the only difference is the substitution of xR1 by xR3.

3.4. Summary

Table 1 presents conveniently all equations for the three
set of formulae based on the ‘‘reference curves”. Appendix
B presents the computer codes for the ‘‘R Project for Sta-
tistical Computing” software [13] based on these equations
and that were used for the numerical simulations.
4. Stress–strain and water retention relationships

The non-linear stress–strain relationship can be directly
deduced from

dy
dx
¼ �kðx; y; rÞ or

dy
dx
¼ �kðx; y; rÞ ð37Þ

where ‘‘r” stands for the internal variable (reference) con-
sidered. For example, if

y ¼ e and x ¼ ln p ð38Þ
where e is the void ratio and p the mean effective stress,
then

de ¼ dy ¼ dy
dx

dx
dp

dp ¼ �k
dp
p

ð39Þ

Therefore, the stress–strain relationship is given by

dev ¼
kðp; eÞ
1þ e

dp
p

ð40Þ

where

dev ¼
�dv

v
¼ �de

1þ e
ð41Þ

and v is the specific volume.
Alternatively, if, for example,



Table 1
Summary of all equations based on the ‘‘reference concept”

First reference xR1ðyÞ ¼ x0
R1 þ 1

k1
ðy0 � yÞ yR2ðxÞ ¼ y0

R2 � k2ðx� x0Þ xR1ðyÞ ¼ x0
R1 þ 1

k1
ðy0 � yÞ

Second reference xR1 xR3

First distance D ¼ xR1 � x D ¼ y � yR2ðxÞ D ¼ xR3 � xR1ðyÞ
Second distance D ¼ xR1 � x D ¼ xR3 � x
First inclination k ¼ k0 þ ðk1 � k0Þe�bD k ¼ k1 þ ðk2 � k1Þe�bD k ¼ k3 þ ðk1 � k3Þe�bD

Second inclination k ¼ k0 þ ðk� k0Þe�bD k ¼ k0 þ ðk� k0Þe�bD

Incremental relation

dx

dxR1

� �
¼ �1=k

�1=k

" #
dy

dy

dxR1

� �
¼ �k

k=k

" #
dx

dx

dxR3

� �
¼ �1=k

�1=k

" #
dy

dy

dxR3

� �
¼ �k

k=k

" #
dx

Analytical solutions

c1 ¼ bð1� k0=k1Þ

c2 ¼ e�bðx0
R1
þy0=k1Þ

c3 ¼ e�bðy0þk0x0Þ=k1 � c2 ec1x0

y ¼ �k0x� k1

b
lnðc3 þ c2 ec1xÞ

S ¼ �k0

2
x2 � k1

b
LðxÞ

c1 ¼ bðk1 � k2Þ

c2 ¼ ebðy0
R2
þk2x0Þ

c3 ¼ ebðy0þk1x0
R1
Þ � c2 ec1x0

R1

y1 ¼ �k1xþ 1

b
lnðc3 þ c2 ec1xÞ

S1 ¼
�k1

2
x2 þ 1

b
LðxÞ

c1 ¼ bðk3=k1 � 1Þ

c2 ¼ ebðx0
R1
þy0=k1Þ

c3 ¼ ebðy0þk3x0
R3
Þ=k1 � c2 ec1x

y3 ¼ �k3xþ k1

b
lnðc3 þ c2 ec1xÞ

S3 ¼
�k3

2
x2 þ k1

b
LðxÞ

Auxiliary function LðxÞ ¼ x lnðc3 þ c2 ec1xÞ � x ln 1þ c2

c3
ec1x

� �
� 1

c1
li2

�c2

c3
ec1x

� �
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y ¼ ln v and x ¼ ln p ð42Þ
then

dv ¼ vdy ¼ v
dy
dx

dx
dp

dp ¼ �vk
dp
p

ð43Þ

and, therefore,

dev ¼ kðp; vÞ dp
p

ð44Þ

For the saturation–suction relation, if,

y ¼ Sr and x ¼ ln s ð45Þ
then,

dSr ¼ dSr
ds

ds ¼ dSr
dx

dx
ds

ds ¼ dy
dx

dx
ds

ds ¼ �kðs; Sr; rÞ
s

ds

ð46Þ
Likewise, when y = hw, an expression similar to Eq. (46) is
found, changing Sr by hw.

Therefore, the incorporation of the ‘‘reference concept”
in a constitutive model is straightforward, considering the
tangent modulus given by Eqs. (40) or (46), for example.
5. Applications

In this section, we illustrate the application of the equa-
tions proposed to different problems in soil mechanics.
These include two isotropic compression tests on sands,
saturation–suction tests on the Hostun sand and a silty
clay, a water content–suction test on a geotextile, and four
tests on three natural clays and a structured calcarenite.
The determination of parameters is explained in detail for
all these tests.
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5.1. Isotropic compression of sands

Two isotropic compression tests are studied in this sec-
tion. They were carried out for Sacramento River sand
and presented in Lee and Seed [6] and for Cambria sand
as presented by Lade and Bopp [4]. All parameters were
obtained directly from e–lnp0 or e– ln r03 plots and are sum-
marized in Tables 2 and 3. The determination of these
parameters is explained as follows.

As illustrated in Fig. 8 for the Sacramento River sand, a
reference line with inclination k0 was selected from the first
point on the curve with the highest initial void ratio. In
order to find k1 inclination, the following procedure was
adopted: (1) the four data curves for the four different ini-
tial void ratios were extended to a further point with higher
mean pressure where these curves are close enough one
from each other; and (2) a line passing by this final point
and almost touching the data points was selected. The incli-
nation k1 is the inclination of this last line.

This procedure is related to the idea of a limit compres-
sion line (LCL), in the view that the line with k1 inclination
should be parallel to the LCL. Certainly this procedure is a
little subjective; nonetheless, this technique is quite com-
mon in other engineering practices, for example, in the pro-
cedure to find the pre-consolidation stress for over
consolidated clays (see for example [1]). Moreover, the
equations proposed are flexible enough to allow slight dif-
ferences on these inclinations. This feature allows great
robustness for the simulation of the complicate mechanical
behaviour even for highly non-linear relations.

The same procedures were applied for the determination
of the k0 and k1 parameters of Cambria sand (Fig. 9). How-
ever, due to the availability of more data points on the
compression curves, a better (easier) estimate of k1 could
be obtained. In this case, the last points on all curves were
used to fix the k1 line. Afterwards, as for the Sacramento
River sand, all initial internal variables r0

3 or p00 could be
determined. These variables, represented by x0

R1, can be
directly calculated considering the common point at the
Table 2
Parameters and initial conditions for Sacramento River sand

Variables and units e0 r0
3 exp x0

R1 k0 k1 b

y = e, x = lnr3 (kgf/cm2) 0.87 0.5 34.3 0.005 0.19 1.55
0.78 0.5 54.7
0.71 0.5 79.2
0.61 0.5 135.6

Table 3
Parameters and initial conditions for Cambria sand

Variables and units e0 p0 exp x0
R1 k0 k1 b

y = e, x = lnp (MPa) 0.70 0.02 3.1 0.003 0.14 2.28
0.62 0.02 5.5
0.53 0.2 10.8
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Fig. 9. Isotropic compression behaviour of Cambria sand (data after [4]).
end (higher pressures) of all extrapolated curves and the
LCL line with inclination equal to k1.

The b parameters related to the curvature of each curve
were determined by comparing the area below the data
curves with the analytical solution provided by Eq. (7).
Compared to the b values for Sacramento River sand,
the values of b for Cambria sand computed for each curve
with different initial void ratios differ more significantly
from each other. For example, the curve with e0 = 0.7 for
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Cambria sand has a higher curvature than the curve with
e0 = 0.53. However, an average value of b was selected con-
sidering all curves with different initial void ratios. These
values are presented in Tables 2 and 3. The computer codes
used to find them and which are quite convenient are
explained in Appendix B.

Fig. 10 presents the simulations using the equations pro-
posed for the Sacramento River sand with different initial
values. The continuous lines were computed considering
only one sequence of data points; therefore, they are the
best fit for each curve with different initial void ratio. The
dashed lines were calculated using the parameters obtained
(averaged) and considering each different initial void ratios.
It can be observed that the simulated curves (dashed) are
slightly different from the predicted curves (continuous).
The difference is due to the averaged b parameter selected.
A better fit could be obtained if a correlation between b
and the initial void ratio was introduced. However, this
would require the substitution of b with another parameter
relating initial values with curvatures. This extension is left
for a future study.

The simulations for Cambria sand with different initial
states are illustrated by the dashed lines in Fig. 11. As dis-
cussed before, due to the differences on each b parameter
determined for each data curve, the simulations with an
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Fig. 10. Predictions of the isotropic be
averaged b value are slightly different from the predictions
(continuous lines) for each data series.

From Figs. 10 and 11 it is possible to conclude that
the ‘‘reference curves” concept allows the definition of
equations that are at the same time versatile, robust
and reasonably accurate for the simulation of the isotro-
pic compression of the Sacramento River and Cambria
sands.

5.2. Water retention characteristics

The phenomenon observed from the water retention can
be represented by the same equations deduced from the
‘‘reference curves” concept since the curves drawn for the
degree of saturation or water content versus suction state
variables have the same shape as the non-linear void
ratio–mean stress curves. The formulations given by Eqs.
(21) and (22) for the three-references – case 1 are used in
this case. Three sets of experiments on three different mate-
rials are considered: (1) tests on a sample of Hostun sand as
presented by Lins et al. [7]; (2) tests on a silty clay as pre-
sented by Cunningham et al. [2]; and (3) tests on a geotex-
tile as presented by Nahlawi et al. [9]. All parameters were
obtained directly from the experimental results. These are
summarized in Table 4.
2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

(σ3)

λ0 = 0.005 , λ1 = 0.19

haviour of Sacramento River sand.
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Fig. 11. Predictions of isotropic behaviour of Cambria sand.

Table 4
Parameters and initial values for the three water retention curves

Material x0 y0 x0
R1 y0

R2 k0 k1 k2 b b

Hostun sand (x0 = ln s0, y0 = Sr0) �2.30 1.0 0.365 0.109 0.01 1.7 0.011 9.755 3.335
Silty clay (x0 = ln s0, y0 = Sr0) 2.57 1.0 6.1 0.139 0.0 0.45 0.01 4.532 3.974
Geotextile (x0 = ln s0, y0 ¼ h0

w) �2.30 0.882 0.191 0.169 0.0 1.33 0.02 5.023 9.452
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Fig. 12 shows the experimental results and predictions
for the Hostun sand. The three parameters k0, k1, and k2

were found simply by considering some points on each sec-
tion of the curve with different main inclination. The two or
three initial data points were fitted by a line with inclina-
tion equal to k0. Likewise, some points on the drying sec-
tion with higher gradient were used to find k1. Finally,
the last points with higher suction values were used to find
k2. The same procedure was used in order to find the three
inclinations for the Sr–ln s curve of the silty clay (Fig. 13)
and the hw–ln s curve of the geotextile (Fig. 14).

The initial internal variables xR1 can be found consider-
ing an inflection point around the mid portion on each
experimental curve of Figs. 12–14. These variables, sum-
marized in Table 4, were calculated for the reference line
with inclination equal to k1. Afterwards, the curvature of
the end portion of these curves, represented by the b
parameter, could be obtained by comparing the analytical
and experimental areas below the curve from the inflection
point to the end (higher suction values) of each curve (see
Fig. 20 in Appendix B). The analytical area is calculated
using Eq. (14) for the three-references – case 1.

The curvature b of the initial portion of each curve
shown in Figs. 12–14 can be directly obtained considering
the curve from the points with lower suction values to
the inflection point as a ‘‘two references” model. In this
case, only k0 and k1 are considered and Eq. (7) is used to
find the analytical area. Therefore, both b and b parame-
ters can be automatically computed using the function
‘‘find.betas” of Appendix B. The inputs for this function
are the inclinations k0, k1, and k2, the inflection point,
and the data values stored into two arrays Xd and Yd
(see Appendix B for more details).

The continuous curves drawn in Figs. 12–14 express the
results using Eq. (23). Alternatively, these results could be
obtained using Eq. (36). The solution is obtained by a
numerical integration scheme such as the Runge–Kutta
method. The initial state, including initial internal variables
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Table 5
Parameters and initial values for the four tests on structured materials

Material x0 y0 x0
R1 x0

R

Leda clay (x0 ¼ ln r0
v , y0 = v0) 3.0 2.96 2.14 4.

Calcarenite (x0 = lnp0, y0 = v0) 4.99 2.15 6.83 7.
Osaka clay (x0 = lnp0, y0 = v0) 1.81 2.52 2.64 4.
Joetsu clay (x0 = lnp0, y0 = v0) 3.90 2.44 3.63 5.
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as illustrated in Figs. 12–14, has been considered during the
numerical simulations. From the figures, it can be con-
cluded that the numerical prediction coincides with the
experimental results very well.

5.3. Volumetric behaviour of structured materials

In this section, four experimental tests on structured
materials are considered for the verification of the formula-
tions proposed: (1) tests on Leda clay as discussed in Liu
and Carter [8]; (2) tests on a structured calcarenite pre-
sented by Lagioia and Nova [5]; (3) tests on Osaka clay pre-
sented by Nakano et al. [10]; and (4) tests on Joetsu clay
also presented by Nakano et al. [10]. Again, all parameters
were obtained directly from the experimental curves and
are summarized in Table 5.

The results with Leda clay (Fig. 15) and the structured
calcarenite (Fig. 16) both exhibit a sigmoid curve in the
v– ln r0v or v–lnp0 planes. The final portion (higher pres-
sures) of these curves reaches the normal consolidation line
(NCL), which has an inclination equal to k1. Therefore, we
can follow the same procedure as for the water retention
curves of the previous section in order to find the parame-
ters for these tests. In this case, the initial internal variables
3 k0 k1 k3 b b

9 0.03 0.223 0.69 12.44 2.712
8 0.0165 0.208 3.0 20.0 4.0
62 0.01 0.197 0.30 1.546 10.0
31 0.049 0.224 0.338 4.168 10.0
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x0
R1 and x0

R3 must be set according to the current initial state
represented by x0 and y0. These can be easily calculated
considering the equations of the lines with inclinations k1

and k3.
For Leda clay, an inflection point, selected along the

destructration portion, was used to split the curve into
two parts. The area of the first portion was used to find
the value of b and the second part for b. The analytical
value of the area below the first portion is calculated using
Eq. (7), in view that the first portion may be represented by
a two references model with inclinations k0 and k3. The
area for the final portion can be calculated with Eq. (32),
for the three references – case 2.

For the calcarenite, however, the value of b was not
automatically computed and was fixed equal to 4.0 because
the numerical integration failed sometimes due to the high
value selected for the gradient k3 = 3.0. In addition, for the
calcarenite, b was adopted equal to 20.0 in the view that a
higher value of this parameter would make the predicted
curve approach the bilinear model with inclinations k0

and k3. Therefore, although the calibration in this case
was made by directly adjusting the predicted curve to the
data points, a straightforward procedure was available
due to the main feature of the ‘‘reference curves” concept
where the reference lines always serve as a guide for the
range of b parameters, as larger values will make the
smooth curve approach the bilinear model.

From Figs. 15 and 16, we can observe that the calcula-
tions with the equations based on the ‘‘reference curves”

concept are in good agreement with the experimental
results.

Figs. 17 and 18 present the experimental results of com-
pression tests on Osaka and Joetsu structured clays [10].
For each soil, two curves are presented: one for the same
soil in a remoulded state; and the other for the structured
material. For these tests, the last points for higher mean
pressures do not reach the normal compression line
because these testes were stopped before all structure was
lost. Nonetheless, it is possible to observe that the struc-
tured line would approach the normal consolidation line
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if higher pressures were applied. The three reference incli-
nations k0 (initial), k1 (NCL) and k3 (structured) can be
directly obtained from these data. The initial inclination
(k0) was selected for some initial points on the data curve.
The normal consolidation line inclination (k1) can be easily
determined from experimental results on remoulded mate-
rials. For the inclination (k3) of the structured main
response, the last points on the end portion of the struc-
tured curve were chosen in order to calculate k3. We note
that this inclination can vary slightly if the tests were con-
ducted to higher pressures. However, for the range under
study, the values selected for k3 seemed to be appropriate.

The values of b parameter for Osaka and Joetsu clays
were not calculated from the area comparison, because,
clearly, there are not enough points (at higher pressures)
to determine the curvature when the structured response
convert into the normal (NCL) response. Therefore, these
values were fixed equal to 10.0, which would lead to higher
curvatures for the structured-NCL transition and, then, the
b parameter would not have influence on the shape of the
predicted curve. In this way, b could be calculated directly
using a two-references model with the aid of Eq. (7). The
predicted curves (contiguous lines) are illustrated in Figs.
17 and 18, and, again, the simulations agreed very well with
the experimental data.

6. Conclusions

Three set of equations were deduced considering a con-
cept here referred to as ‘‘reference curves”. These equa-
tions provide smooth transition from initial and final
behaviours that are commonly represented by bilinear or
trilinear models. A phenomenological approach is taken
in account in which a studied behaviour is observed mac-
roscopically by means of experimental curves. These
curves are defined for some state variables and are used
in order to identify some key reference lines or curves.
The reference curves may have any orientation on plots
where the coordinates are the main state variables. In
addition, these references may cross each other during
the evolution of the state variables. Reference curves can
be defined in a recursive manner, letting the inclination
of a specific reference line vary with respect to other refer-
ence lines. Therefore, even complicate behaviours may be
represented with this concept.

An incremental relationship with internal variables is
deduced from this method and, thus, incremental constitu-
tive models can easily incorporate the resulting equations.
At most five constitutive parameters are required to set
the model. Three parameters are directly determined from
lines identified as references in plots with experimental
results. The method that considers inclinations on charac-
teristic plots is common in engineering practice, for exam-
ple, as in the Cam clay model. The unloading–reloading
line (URL), the normal consolidation line (NCL), the limit
compression line (LCL), the initial or residual lines and the
structured line, can be used to define k0, k1, k2 or k3,
according to the studied behaviour. Likewise, the three
main sections of the water retention curve can be used to
find these parameters.

The interpolation for the current tangent of the pre-
dicted curve requires the definition of at most two param-
eters in order to adjust how fast the initial behaviour
approaches the reference behaviour. These parameters, b
and b, are related to the curvatures of the smooth transi-
tions. When b or b are large, a bilinear model can be
obtained. If these two parameters are set with large values
at the same time, the equations convert into a trilinear
model. Therefore, the calibration of the b parameters can
be guided by the reference lines. Nonetheless, an automatic
procedure for their determination is presented as well. This
automatic procedure is based on some analytical equations
that are solutions for the incremental model. With two ref-
erences only, the model can be completely described by an
analytical expression.

Several experimental results from mechanical and
hydraulic tests were used in order to verify the equations
proposed. These tests are related to three different geotech-
nical problems: isotropic compression of sands, water
retention characteristics of geomaterials and volumetric
behaviour of structured materials. In all cases, it has been
demonstrated that the simulated results exhibit good agree-
ments with the experimental data, proving the versatility
and accuracy of the ‘‘reference curves” concept.

To sum up, the method proposed has the following
advantages:

� Few parameters: two or three inclinations for some ref-
erence lines in addition to one or two smoothing (curva-
ture) coefficients.
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� Clear initial conditions, for example: initial void ratio or
specific volume, initial degree of saturation or water
content, initial effective mean stress or suction and initial
reference points on some reference lines.
� Easy to find (automatically) parameters with the aid of

analytical expressions, such as for the area below the
predicted curves.
� Easy to be incorporated in a full non-linear (incremen-

tal) constitutive model. The dy=dx ¼ �k or
dy=dx ¼ �k tangent modulus are quite convenient when
devising a stress–strain relationship, for example.
� Versatility: may be applied to smooth other bilinear or

trilinear models, by means of the definition of reference
lines or curves on the y–x plane defined with a pair of
state variables.

Appendix A. Analytical solutions

The general form of a curve controlled by two reference
lines is presented in Eq. (47). An analytical solution for this
problem is given in Eq. (48), where the coefficients are func-
tion of an initial condition and the parameters. These coef-
ficients are given by Eq. (51), where (xini,yini) represent a
point on the y(x) curve. The area below y(x) curve can
be calculated with the aid of Eq. (49), for a given x-range.
The demonstration is as follows:

Given:

D ¼ axþ by þ c; k ¼ Aþ ðB� AÞe�bD and
dy
dx
¼ �k

ð47Þ
Solution:

y ¼ �Axþ 1

bb
lnðc3 þ c2 ec1xÞ ð48Þ

SðxÞ ¼
Z

yðxÞdx ¼ �Ax2

2
þ 1

bb
LðxÞ ð49Þ

LðxÞ ¼ x lnðc3 þ c2 ec1xÞ � x ln 1þ c2

c3

ec1x

� �

� 1

c1

li2

�c2

c3

ec1x

� �
ð50Þ

where li2 is the dilog function and

c1 ¼ bðbA� aÞ; c2 ¼
A� B

A� a=b
e�cb and

c3 ¼ ebbðyiniþAxiniÞ � c2 ec1xini ð51Þ

with the following restrictions:

b–0 and A–a=b ð52Þ
Proof:

From Eq. (47),

dy
dx
¼ �A� ðB� AÞe�bðaxþbyþcÞ

¼ �A� ðB� AÞe�abx e�bby e�cb ð53Þ
resulting in the following ordinary differential equation:

dy
dx
¼ �A�M e�abx e�bby ð54Þ

in which

M ¼ ðB� AÞe�cb ð55Þ
This differential equation can be solved, after the definition
of

u ¼ ebby ð56Þ
therefore,

du
dx
¼ bbu

dy
dx
¼ �bbAu� bbM e�abx ð57Þ

which is a linear differential equation of the form

du
dx
¼ Nuþ f ðxÞ ð58Þ

where

N ¼ �bbA and f ðxÞ ¼ �bbM e�abx ð59Þ
The solution of this linear equation is given by (e.g. [12])

u ¼ eNx c3 þ
Z

e�Nxf ðxÞdx
� 	

ð60Þ

in which c3 is an arbitrary constant, determined considering
an initial point on the y(x) curve. Substituting Eq. (59) into
above solution,

u ¼ e�bbAx c3 � bbM
Z

ebðbA�aÞxdx
� 	

ð61Þ

thus, substituting Eq. (55) for M into above equation and
simplifying,

u ¼ e�bbAx c3 þ
ðA� BÞe�cb

A� a=b
ebðbA�aÞx

� 	
ð62Þ

or, in a compact form,

u ¼ e�bbAxðc3 þ c2 ec1xÞ ð63Þ

where c1 and c2 are given in Eq. (51).
From Eq. (56),

y ¼ ln u
bb

ð64Þ

After substitution of Eq. (63) into above equation, the
solution given in Eq. (48) is obtained.

The constant c3 can be found considering an initial point
(xini,yini) on the yðxÞ curve. In this way, from Eq. (63),

c3 ¼ uini e
bbAxini � c2 ec1xini ð65Þ

in which, from Eq. (56),

uini ¼ ebbyini ð66Þ
Thus, after substitution of the above expression into Eq.
(65), the Eq. (51) for c3 is obtained.
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Appendix B. Computer codes

The following codes can be used with the free software/
open source ‘‘R Project for Statistical Computing” [13]. Five
functions are presented: (a) find.betas, which compute the
area below data points and finds b and b parameters; (b)
L, correspondent to the auxiliary function L(x) given in
Eq. (50); (c) two.refs.model, which contains all code for
the two references model; (d) three.refs.model1, for the three
references – case 1 model; and (e) for the three references –
case 2 model. The source code containing all these functions
is also freely available at http://mechsys.nongnu.org.

The ‘‘find.betas” function, presented in Fig. 19, com-
putes the area of two regions below a dataset, using
smoothing via splines (Fig. 20). The first area (A1) is used
to find b, with the aid of Eq. (7) based on the two references
model. The second area (A2) is used to find b, using Eqs.
(14) or (32), depending on case 1 or 2, respectively. In this
function, Xd and Yd are arrays of data points, for exam-
ple, v (specific volume) and lnp (logarithm of effective mean
stress). ‘‘ii” is the index of a inflection point in the Xd and
Yd arrays. sp1 and sp2 are smoothing parameters for the
spline function, in the range: 0 6 sp 6 1; when sp = 0, the
spline pass by all points; if sp � 1, the spline results in a
smooth curve around all points.

Figs. 21–24 present the codes for the functions L(x),
two.refs.model, three.refs.model1, and three.refs.model2,
respectively. Incremental and analytical equations are
Fig. 19. Code for ‘‘fin
provided. For three.refs.model 1 or 2, the analytical equa-
tions are given for the reference curves y1(x) or y3(x),
respectively. L0, L1, L2 and L3 stand for k0, k1, k2 and
k3. Bb and Bbb indicate b and b. x0, y0, xR10, yR20 and
xR30 stand for x0, y0, x0

R1, y0
R2 and x0

R3. These last five vari-
ables correspond to the initial values necessary to set up a
reference model. The functions return the y(x) functions,
the auxiliary functions S(x) to compute the area, and the
tangent modulus, as summarized in Table 1.
d.betas” function.

http://mechsys.nongnu.org


Fig. 21. Code for L(x) auxiliary function.

Fig. 22. Code for the model with two references.

Fig. 23. Code for the model with three references – case 1.

Fig. 24. Code for the mode with three references – case 2.
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