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Abstract A simple three-dimensional (3D) failure crite-
rion for rocks is proposed in this study. This new failure
criterion inherits all the features of the Hoek—Brown (HB)
criterion in characterizing the rock strength in triaxial
compression, and also accounts for the influence of the
intermediate principal stress. The failure envelope surface
has non-circular convex sections in the deviatoric stress
plane, and is smooth, except in triaxial compression. In
particular, the failure function of the proposed criterion has
a similar simple expression as that of the HB criterion in
terms of the principal stresses. The material parameters can
be calibrated from tests in conventional triaxial compres-
sion, and predictions using this new criterion generally
compare well with polyaxial testing data for a variety of
rocks. Comparison of the new 3D failure criterion and two
existing criteria demonstrates that the new failure criterion
performs better in characterizing the rock strength. A
unified expression for the 3D failure criteria is further
provided, retaining the features of the classical criteria and
recovering several existing ones as specific cases.
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List of symbols
01, 02, 03 Principal stresses at failure
o, S Stress tensor and the deviatoric stress tensor

L, o, The first invariant of stress tensor and the
mean stress
Jo, J3 The second and third invariants of deviatoric

stress tensor
Toct The octahedral shear stress
0’1, 0/2, a; Effective principal stresses at failure
a;n, 01,1,2 The effective mean stress
0 The similarity angle

& p, 0 Haigh—Westergaard coordinates

my, S, a The empirical constants of the generalized
Hoek—Brown criterion

Ocis M; The uniaxial compression strength and
material constant of intact rock

GSL D The Geological strength index and the
disturbance of rock masses

R5(0) The lode dependence function

A(0) The coefficient of the failure criterion

RMSE The root-mean-square error

piest peale The j-th tested data and the i-th calculated one

Drest The mean value of the test sample

n The number of test series for a specific rock

& The predicted error for the i-th test

DC Coefficient of determination

1 Introduction

The Hoek—Brown (HB) failure criterion has been widely
used in engineering practice to predict the rock strength
(Hoek and Brown, 1980, 1988, 1997; Hoek 1983,
1990,1994; Hoek et al. 1995, 2002; Marinos and Hoek
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2001). A major criticism of this criterion is that it cannot
account for the influence of the intermediate principal
stress 0, and numerous experimental tests suggest that o,
has a profound effect on the rock strength (Mogi 1971;
Wang and Kemeny 1995; Chang and Haimson 2000;
Colmenares and Zoback 2002; Al-Ajmi and Zimmerman
2005). There have been a number of attempts at general-
izing the HB criterion in three dimensions (3D) to account
for the effect of ¢,, including Pan and Hudson (1988);
Priest (2005); Zhang (2007, 2008); Melkoumian et al.
(2009); Jiang et al. (2011). Among them, the studies by Pan
and Hudson (1988) and Priest (2005) employed circular
sections in the deviatoric stress plane for their 3D failure
criteria, which may tend to overestimate or underestimate
the failure strength of rocks in polyaxial compression
(Priest 2012). The 3D failure criteria presented by Zhang
(2007, 2008) and Jiang et al. (2011) used non-circular and
non-convex sections in the deviatoric stress plane, which
may cause difficulties in obtaining the failure strength o, in
some special stress paths and issues may be encountered
when plastic flow rule was considered. Priest (2012)
compared five 3D failure criteria and recommended that
further research and rock testing was required before any of
the 3D Hoek-Brown failure criteria can be applied with
confidence. With this background, there is indeed a prac-
tical need for a new 3D failure criterion to be developed
which can overcome the above-mentioned drawbacks and
offer improved yet convenient predictions on the rock
strength in engineering applications.

We hereby propose a simple 3D failure criterion with a
convex failure surface. Based on a similar expression for
the classical HB criterion, the mathematical derivation of
the new failure function is presented, and its smoothness
and convexity are discussed. To calibrate the proposed
failure criterion, we use triaxial compression tests data of
rocks to evaluate the best pair of values, m,(m; = m;) and
0., and then predict the results of the other loading con-
ditions using this best pair m; and o;. In addition, com-
parison of the new 3D failure criterion and two typical
existing ones is also made.

2 Relevant Definitions

2.1 Stress Invariants

A failure criterion is normally expressed in terms of either
the principal stresses f(c, 0,2, 03), or the stress invariants
Ay, Ja, 0), fiy, Ja, J3) or fily, b, I5), and the following

relationships between the principal stresses and the stress
invariants are given as
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where 0(0 < 0 < n/3) is the similarity angle given in
Eq. (5). The deviatoric stress tensor S is related to the
stress tensor g by S = g—traol/3. There is another set of
widely used invariants (£, p, 0) based on the cylindrical
coordinate system (also called the Haigh—Westergaard
coordinates), which has a direct physical interpretation
(Ottosen 1977). A geometrical interpretation of this
coordinate system is shown in Fig. 1, where ¢ is a unit
vector on the hydrostatic axis, p is the radial distance
from the failure point P to the hydrostatic axis N and 6 is
the measure of a rotation from axis all. They are defined
as follows:

0 = arcos

5=’m’=11/\/§=(01+02+03)/\/§ (6)

p=|NP| = v2r,
= \/L? \/(01 — 02)2—1—(0’1 - 0’3)2+(02 - 03)2 (7)

where the {—p plane is also called the Rendulic plane.
2.2 Smoothness and Convexity of the Failure Surface

A smooth failure surface requires that the gradients of the
failure surface exist everywhere. However, due to the
threefold symmetry of the failure surface for isotropic
materials, a single value of 0 corresponds to six different
points in the deviatoric plane (Lin and Bazant 1986). In this
case, the gradients on the symmetry axis should be zero
(Piccolroaz and Bigoni 2009).

p(0) = p/(n/3) = 0 (8)

A convex failure envelope surface requires that the
surfaces in both the meridian and deviatoric planes should
be convex. In the meridian plane, the convexity can be
proven according to the meridian functions. In the devia-
toric plane, the convexity is proven as follows.

Considering the failure function p = p(6) in the polar
coordinate system (p, 0), the convexity of p in the devia-
toric plane is satisfied when the curvature
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Fig. 1 Haigh-Westergaard 0o,
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which requires (Jiang and Pietruszczak 1988)
p*+2p% = pp’ >0 (10)

Substituting g = ¢/p(c is a constant) into inequality
(10), after some algebraic manipulation, gives an equiva-
lent expression of the above inequality

g+ g//
g3

c? > 0, which requires g + g” > 0. (11)

2.3 The Classic Hoek—Brown Failure Criterion

The HB failure criterion is empirical, based on the curve-
fitting of triaxial test data, in which the generalized form is
defined as follows (Hoek et al. 2002)

7 a
| :a;—i—oci(mbﬁ—ks) (12)
C1

where ¢,' and o3’ are the major and minor effective
principal stresses (denoted by primes as opposed to the
total stresses) with compression taken as positive. o; is
the uniaxial compression strength of the intact rock
with material constant m;. The empirical constants m,, s
and a can be estimated from the geological strength
index (GSI) for a rock mass with the following
expressions:

o (CSL=100\ /GSI—100\
b= MR\ o " 1ap )T T P\ T9Z3p )

L U (ZGSTy (=20
=376 %P\ 15 P\ 3

where D is the disturbance of a rock mass (0 < D < 1).
Rearranging Eq. (12), another expression of the HB
criterion is given as

Deviatoric plane

o / a
D (mf—%s) (13)

C1

Substituting Egs. (1) and (2) into Egs. (12) or (13), one
obtains the following invariant representation of the failure
envelope surface

1 . e 2cos(n/3 — 0)
—— (2sin(n/3 + 0 J/ +—=
I [2sin(x/3 + 0),/15] 7

ci 1/
x\/JéfS’begl:O (14)

Setting 0 = 0 in Eq. (14), the compressive meridian for
the triaxial compression condition (0, = 03 < g7) 1is
obtained as follows

(o) e o )

1/a—1
mb(rci

When 6 = 1/3, Eq. (14) leads to the tensile meridian for
the triaxial extension condition (6, = 61 > 03)

() "+ 5 a=0 9

Noting that the only difference between Eqgs. (15) and
(16) is the coefficient of

1
1/a—1
mpo

J5, in the second term.

2.4 Three-Dimensional Failure Criteria Based
on the Hoek—Brown Criterion

The International Society of Rock Mechanics (ISRM) (Priest
2012) summarizes typical 3D failure criteria based on the HB
criterion. A thorough comparison among these criteria is
absent, and the comparison is now provided in this section,
based on which a unified expression is also proposed.

Pan and Hudson (1988) developed a 3D criterion with
circular shapes in the deviatoric plane, where the failure
function is written as
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1 la 135 soq 1
——— (/3 === _1l_9 17
( 2) + \/§ 2 mp, 3 ( )

1/a—1
mbaci

Priest (2005) proposed a 3D criterion, whose failure
envelope surface is an outer bounded cone matching the
irregular hexagonal cone of the HB criterion at § = 0. The
failure function of his proposed criterion is shown in
Eq. (15).

Zhang and Zhu (2007, 2008) extended the HB criterion
to a 3D one from the ideal of the Mogi criterion, where the
failure function is expressed as

;@T )”1@(11 )_m,_ma, »
o’l/a71 \/2~ oct D) \/E oct ci bOm,2

ci

(18)
where ), , = ate
An alternative expression can be written as
1 /a1 3 —2cos(n/3+ 0
— (w /3J§> +7_ 2(n/ )
el : (19)
soq 1,
x\JJh——=—-1=0
2 mp 3

Jiang et al. (2011) proposed three 3D criteria by refer-
ring to the failure function of the Hsieh—-Ting—Chen crite-
rion for concrete. Criterion C with a smooth cross section
was considered the most reasonable criterion, with the
failure function given by

1 ( la 1 3 —cos30 soo 1,
S ,/3.1’) o 2SIy 3% T
mya] ! ’ V32 Pom 3

(20)

In view of Egs. (15)—(20), a unified expression that
includes all the criteria can be written as

s (V) o e o

1/a—1
mbaci

(21)

The term A(f) varies, depending on the criterion
adopted:

e A(0) = 1 corresponds to the compressive meridian of
the HB criterion or the Priest 3D failure criterion;

e A(0) = 2 corresponds to the tensile meridian of the HB
criterion;

e A(0) = 1.5 corresponds to the Pan—Hudson 3D failure
criterion;

o A(0) = % corresponds to the Zhang—Zhu 3D
failure criterion;

@ Springer

o A(0) =3=30 corresponds to the Jiang 3D failure
criterion;

3 A Simple Three-Dimensional Failure Criterion

3.1 Mathematical Expression of the New 3D HB
Criterion

To develop a 3D failure criterion that shares the same
compressive and tensile meridians with those of the HB
criterion, the failure function needs to be reduced to
Egs. (15) and (16) when 0 = 0 and 0 = 7/3. A feasible
method is to introduce the Lode dependence R3(6) into the
deviatoric plane, based on the ratio of the tensile and
compressive meridian radii p/p.. Typical Lode depen-
dences include those forms proposed by Willam and
Warnke dependence (1975); Argyris et al. (1974); Lade and
Duncan, Matsuoka and Nakai (LMN) (Bardet 1990) and
Rubin (1991). However, the failure criteria generated using
the Lode dependency are generally complicated. In this
section, a simple method is proposed based on the principal
representation of the HB criterion, as shown in Eq. (13). A
natural extension to the 3D case can be obtained by
replacing (61—a3)/6.; on the left side of Eq. (13) with

V(04— 04) (0} — 04) (o — 04)*/v/ 20, giving

!
L (o1 = ) (0} — o) 4 (0 — 1) = L2

V2o \/ - O
= (G—gmb + s)a (22)

Oci

When 0/2 = a; or 0/2 = 0/1, Eq. (22) is reduced to
Eq. (13). Unlike Eq. (13), the influence of 0'/2 is explicitly
considered here. The expression indicated in Eq. (22) is
mathematically rather straightforward, but has not been
found in previously published research.

The invariant representation of Eq. (22) is

1/a—1
th'Ci

(23)

with A(0) = 2 cos (n/3—0). Hence, the proposed 3D failure
criterion can be also represented by the unified expression
shown in Eq. (21).

Figure 2 plots A(0) for five 3D failure criteria: the for-
mer three curves increase from 1 (corresponding to triaxial
compression) to 2 (corresponding to triaxial extension),
and A(0) of the new 3D failure criterion is clearly different
from that of the existing ones.
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Fig. 2 A versus 0 (0 < 0 < 7/3) for five 3D failure criteria

For intact rocks with a = 0.5, Eq. (23) can be simplified
to

37 2 J s d
l 3 _ 2 24
myot T \/gcos(ﬂ/ O o = o (24)

Using the expression for o3 given in Eq. (2), an alter-
native expression for this new 3D criterion is

~ %22 _ 73 25

my Ggi myp Oci ( )
/377 /

Or 6‘2: mba—%—i—s (26)

Likewise, a simple expression for the new 3D failure
criterion in terms of the principal stress is

VG ) (e - ) (0 - )’
/
my 23 4 s (27)
Oci
Figure 3 presents a comparison of the new 3D failure
criterion with the classical HB criterion in the deviatoric
plane for a rock with a;n = 80, mp = 23.6, s =1 and
a = 0.5 (these values are used for illustration purpose).
The radius (\/E) of the new 3D failure case decreases
from 6.001 to 4.6176 as 0 increases from O to ©/3, whereas
the classical HB criterion changes its radius from 6.001 to a
minimum value 4.428 and then gradually increases to
4.6176 again. The prediction of strength by the new 3D
failure criterion is greater than that of the classical one over
the whole range of 6 due to the consideration of the
influence of ¢, on rock failure. Figure 4 further shows the
failure envelope surfaces of the new 3D criterion. Notably,
the surface of the new 3D criterion circumscribes that of

6.0
5.6
J’ 52

2

4.8

44

0.0 0.2 0.4 0.6 0.8

Flg 3 \/J—' versus 0 (0 < 0 < n/3) for two failure criteria with
a =8 m,=23.6,s=1,and a = 0.5

the classical HB criterion, and is nearly triangular for
0,, = 0 (the loci of two criteria almost coincide with each
other) but becomes more circular for increasing a,,.

3.2 Examination of the smoothness and convexity

Based on Eq. (24), an explicit expression of /J; can be
obtained as

\/_é \/_cos (n/3 — 0)my
\/—cos2 (/3 — 0)m3 + = <s + J’;@’) (28)

V3 m
p= V265my [— 73005 <§ - 0) (29)

1 1/ s ¢
¢ 5o (5-0) +5 (o *ﬁacimb)l

Equation (29) is used to determine the two material
parameters m,, and o; via the best fitting method described
in the next section.

The derivative of p (6) with respect to 6 is

p' = V2mya. —?sin(E — 0)

3
(30)
N 5L4 sin2 (% — 0)
\/217 cos?(§ — 0) +3 (é * @ﬁm)

For 0 = 0,
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HB Criterion

New 3D HB Criterion

(c) (@) C:
Om / Od=8
{6a/ 6a=6 Cn/ =0
On/ Od= Enlarging 100 times
. B
m/ =2 G,

Two Criteria

Fig. 4 Failure criteria on the deviatoric plane with my, = 23.6, s = 1, and a = 0.5

Ph_o = V20 —%—&-% !
V14 36(s/m + &/v/3myoc)
(31)
For 0 = /3,
Po—rs3 =0 (32)

Note that pj_, =0 in Eq. (31) only occurs when
& = —\/3s0.;/my, which happens to be the apex of the
failure surface as seen from Eq. (24). Otherwise Eq. (31)
has a negative value. Evidently, the failure surface is not
smooth in the triaxial compression case but is smooth in all
the other loading conditions. The singularity induced by the
nonsmooth intersection of the failure surface in triaxial
compression can be dealt using the methods summarized
by Karaoulanis (2013).

The convexity of the new 3D criterion can be verified by
examining the derivative of g, where g is defined as
follows:

@ Springer

g=c/p= {cos(n’/3 — O)ymy, + \/COSZ(TC/3 — 0)m2 + b}
(33)

where ¢ = v6bmy0.;/9, and b =9(s/m} + &/\/3ocmy)
>0. Its derivative with respect to 0 is

g =sin (E - 0) + sin2(5 — 0) (34)
3 2 Cosz(§—9)+b

The second derivative of g is
g = —cos (g - 9)
3 [cosZ(% - 0) + 1]2+4bcos 2(% — 0)

(35)
4[cos?(%— 0) + b] b
Summarizing Eqgs. (34) and (35) gives
b(l1+b

[cos?(%— 0) + b] 5
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5 . . . n
where “=” in Eq. (36) is valid only at the apex of the 3 ( peale — ptest)
L 1
failure surface. According to the convexity requirements  pc — | _ i=! (39)

introduced in Sect. 2.2, the new 3D criterion satisfies the
convexity requirements at all stresses.

4 Calibration and Validation
4.1 Calibration of the Failure Criterion

In practice, only experimental data under axi-symmetrical
conditions are commonly available. We hence only used
triaxial compression test data of rocks to evaluate the best
pair of values m,(m; = m;) and o;, and then predicted the
results of the other loading conditions using the best pair m;
and oy;.

We selected eight different rock types for which both
tr1ax1a1 compressmn (0'2 = 63 < Jl)and polyaxial (o1

#* 0'2 # (73) (also called ‘‘true triaxial’’) compression

strength data exist. Testing data on Manazuru andesite,
Mizuho trachyte, Dunham dolomite, and Solnhofen lime-
stone were taken from Mogi (1971, 2007), data on Shira-
hama sandstone, KTB amphibolite and Yuubari shale were
taken from Colmenares and Zoback (2002), while the data
of westerly granite were acquired from Al-Ajmi and
Zimmerman (2005). Because all the tests were conducted
on intact rock under drained conditions, we set the
parameter GSI to 100, which lead to s = 1, and a = 0.5
according to the definitions in Sect. 2.3.

The residual of the prediction using the failure criterion
is defined as follows:

=pflc —plet i =1,2...,n (37)

where 7 is the number of test series for a specific rock, pi™

is the i-th tested data, and p§** is the i-th calculated value
according to Eq. (29).

To measure the misfits between the predicted strength
and the test data, the object function is defined by

1 n
RMSE =, /- 2 38
i %)

and is also called the root-mean-square error.

The best fitting pair of unknown parameters is obtained
by minimizing RMSE, using non-linear least squares
methods. It is worth noting that p is considered as a
dependent variable, while £ is an independent variable and
0 = 0in Eq. (29) for triaxial compression. In addition, the
Coefficient of Determination DC, a scalar indicator, is used
to assess the reliability of prediction by the proposed fail-
ure criterion

™=|1L

es = 2
(p: t— ptest)

Where p,. is the mean value of the test sample which is
defined by

Prest = Z pi™ n (40)
i=1

While it is desirable to have a higher DC, the ideal case
is where the test data agrees with the predicted data with
zero misfit (e.g., DC = 1).

Figure 5 shows the calibration result of the failure cri-
terion in triaxial compression tests on eight rock types,
where the solid red lines represent the best fitting curve
according to Eq. (29). The best pair of values m; and o;
together with the DC is also shown in the figures. The best
fitting m; strictly falls into the suggested range of m; (Hoek
and Brown 1997; Marinos and Hoek 2001) for six rocks. It
is slightly larger than the upper range for Yuubari shale,
and a little less than the lower range for Solnhofen lime-
stone. DC is in the range 0.931-0.999 for the eight rock
types, indicating that the failure criterion describes rock
failure in triaxial compression very well. These fitting
results are also summarized in Table 1.

4.2 Validation of the Failure Criterion

To validate the proposed failure criterion for non-symmet-
rical loading conditions, the predictions for rock failure

Table 1 Calibration results using the triaxial compression tests for
eight rock types

Rock type m; m; O RMSE DC DC?
(range) (MPa)

1 Manazuru 20-30 28.7 174.1 5.9 0.995 0.939
andesite

2 Mizuho 9-17 9.0 115.2 4.2 0.968 0.853
trachyte

3 Shirahama 13-21 13,5 61.6 4.0 0.931 0.991
sandstone

4 Solnhofen 5-8 2.6 3554 4.0 0.954 0.722
limestone

5  Dunham 6-12 7.4 303.9 4.1 0.996 0.796
dolomite

6 KTB 20-32 294 1959 20.7 0.997 0.975
amphibolite
Yuubari shale  4-8 10.8 58.5 3.1 0.975 0.945
Westerly 29-35 322 2315 52 0.999 0.991
granite

* DC in polyaxial compression
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Fig. 5 Calibration of the
proposed 3D failure criterion in
triaxial compression for eight
rock types
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under polyaxial compression (01 # 05 # 0/3) using the best
fitting parameters obtained in triaxial compression is com-
pared with the test data. DC, defined by Eq. (39), is also used
to assess the prediction reliability for polyaxial compression
by the proposed failure criterion. p§*® is obtained by
substituting the best pair of values m; and o; into Eq. (29),
and two independent variables ¢ and 6 are calculated
according to the polyaxial compression data. To compare the
predicted strength with the experimental data for each set of
tests, the predicted error ¢; for the i-th test is defined by

g = (p}:alc _ pgest)/piest x 100% (41)

Table 1 presents DC for the polyaxial compression (non-
symmetrical) of eight rock types: the match is very good for
five of the rocks with DC > 0.939, and is not as good for the
other three rock types (i.e., Mizuho trachyte, Solnhofen
limestone and Dunham dolomite) with 0.722 < DC < 0.853.
However, for Mizuho trachyte and Solnhofen limestone, most
of the results for p'*'are close to ps™, with a misfit le] less than
8 % as seen in the distribution of ¢; in Fig. 6b, d. The distri-
bution of ¢; for other rocks in polyaxial compression is also
shown in Fig. 6, and most of the fitting errors l¢;| in the poly-
axial compression tests are less than 6 % for the five rocks
with high values of DC.

Figure 7 shows a comparison of the test data and the
calibrated models in the a/l —0/2 plane, for various of a;. Inthe
figure, the symbols represent the actual polyaxial test data,
where the black solid lines represent the predicted strength
according to Eq. (27) using the best fitting parameters listed
in Table 1, and the two red solid lines show the values from
the conventional triaxial test. Compared to the HB criterion
marked with blue dash lines, the predictions by the proposed
3D failure criterion clearly show that 0> has a significant
influence on rock failure. The predictions fit the test data
reasonably well for Shirahama sandstone and Yuubari shale,
and agree very well for Manazu andesite, Mizuho trachyte,
Solnhofen limestone at high o5. It is worth noting that the
predictions for polyaxial compression using the best pair of
values m; and o; obtained from triaxial compression tend to
be less accurate than the optimization procedure used for all
test data reported by Zhang (2007, 2008); Jiang et al. (2011);
Priest (2012). Therefore, failure under polyaxial stresses can
be predicted from triaxial test data using the proposed 3D
failure criterion.

5 Comparison of the Proposed Model with Two
Existing 3D Criteria

To compare the proposed 3D failure criterion with existing
ones in the case of non-circular cross sections, we further

derive the following invariant representation for a unified
expression of the 3D failure criterion (see Egs. (43)—(46) in
Appendix)

B V26amy, | A(0) A%(0) & s
P= 6 [_ \/§ +\/ 3 +12<\/§mb0ci+m_%>:|

(42)

When A(0) = %, Eq. (42) represents the
Zhang—Zhu failure criterion;

And when A(0) = }CZM, Eq. (42) represents the Jiang
failure criterion. Parameters m; and o; in Eq. (42) are the
same as those obtained from triaxial compression using the
proposed failure criterion. When A(6) = 2cos(n/3—6)in
Egs. (42), (29) can be obtained (see Egs. (47), (48) in
Appendix).

A comparison of DC obtained using three 3D criteria for
polyaxial compression testing of eight rocks is presented in
Fig. 8. It shows that the proposed criterion has the highest
value of DC for five of the rocks, while the Zhang—Zhu
criterion best fits the other three rocks. However, the shape
of the two existing 3D criteria in the deviatoric plane is not
convex, which violates Drucker’s stability postulation and
cannot be used to obtain ¢ in certain special stress paths.
Moreover, the failure functions of two criteria mentioned
above are not as general as the principal stress expression
shown in Eq. (22).

6 Summary and Conclusions

A simple 3D failure criterion has been proposed in this
paper wherein the influence of o> on rock failure is
explicitly considered, with all the features of the classic
HB criterion being retained. The failure envelope surface
of the proposed criterion has non-circular convex loci in
the deviatoric stress plane for all stress conditions and is
smooth everywhere, except in the triaxial compression
condition.

The parameters involved in the proposed failure crite-
rion can be estimated from conventional triaxial test data.
The performance of the proposed failure criterion has
been further validated by polyaxial test data using the
estimated parameters. This polyaxial failure criterion can
be applied, even in the absence of polyaxial (true triaxial)
data. This offers a great advantage, as the most widely
available testing means in practice is by the traditional
triaxial compression tests. A comparison of the proposed
criterion with existing ones shows that the new 3D cri-
terion generally performs better in predicting the strength
of rocks.
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Fig. 6 Distribution of the
prediction errors ¢; in polyaxial
compression for eight rock
types
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Fig. 7 Comparisons of the proposed 3D failure criterion with polyaxial test data on the 0',1—6/2 plane
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Appendix: Unified Expression of the 3D Failure
Criterion for Intact Rocks

For intact rocks, a = 0.5, the unified expression given by
Eq. (21) can be written as

! !
3 g V2
O-c1 \/§ Oci

Then \/J—é /0 can be explicitly derived from Eq. (43)

mbI;

4
30, (43)
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Or in terms of Haigh—Westergaard coordinates

p_ —b+ \/b2 —4ac
\/zaci

1 b
=- —2A%(0) + 12( + s)
6 \/ \/_001

(45)

—l _ 0
( )

Finally, we obtain the following invariant representation
for the unified expression

_ V20umy, | A(0)  [A%(0) ¢ s
B [ \/3 * \/ 3 - 12(\/~mbact - mb)

6
(40)

The invariant representation for the new failure criterion
(see Eq. (29)) is given by

p= V265my, [— \/Tgcos (g - 0)

el )

Rearranging Eq. (47) gives

(47)
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=P om0

V3

4 T s 14 )
+/2cos? (2 —0) + 12 = + ——
3 (3 ) (mi V36amy

which can be also derived from Eq. (46) by setting
A(0) = 2cos(n/3—10).

(48)
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