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ABSTRACT: We present a hierarchical multi-scale framework to model geotechnical problems relevant to
granular media. The framework employs a rigorous hierarchical coupling between the finite element method
(FEM) and the discrete element method (DEM). The FEM is used to discretise the macroscopic geometric do-
main of a boundary value problem into a FEM mesh. A DEM assembly with memory of its loading history
is embedded at each Gauss integration point of the mesh to receive the global deformation from the FEM as
input boundary conditions and is solved for the incremental stress-strain relation at the specific material point to
advance the FEM computation. The hierarchical framework helps to avoid the phenomenological nature of con-
ventional continuum approaches of constitutive modelling and meanwhile retains the computational efficiency
of the FEM in solving large-scale boundary value problems (BVPs). By virtue of its hierarchical structure,
the predictive power of the proposed method can be further unleashed with proper implementation of parallel
computing techniques. By corroborating the rich information obtained from the particle level with the macro-
scopically observed responses, the framework helps to shed light on a cross-scale understanding of granular
media. We demonstrate the predictive capability of the proposed framework by simulations of shear localisa-
tions in monotonic biaxial compression and cavity inflation in a thick-walled cylinder, as well as liquefaction
and cyclic mobility in cyclic simple shear tests.

1 INTRODUCTION

Granular materials are multi-scale by nature. When
subject to shear, a granular material may exhibit
complicated macroscopic behaviours that are noto-
riously difficult to characterise, such as state depen-
dency, strength anisotropy, strain localisation, non-
coaxiality, solid-flow phase transition (e.g., liquefac-
tion) and critical state (Guo & Zhao 2013b, Zhao
& Guo 2013). These macroscopic responses reflects
highly complicated microstructural mechanisms es-
tablished and evolved at the granular particle level
during the loading process. While a granular medium
has long been treated by continuum mechanics, it
becomes increasingly clear now that a better under-
standing can only be achieved with the aid of ef-
fective bridging approaches linking the micro to the
macro scales of the material. Various homogenisa-
tion techniques have been developed in material sci-
ences to link different length scales of a material for
integrated characterisation of the material behaviour.
They are targeted at designing engineered or new ma-
terials with identifiable microstructure to achieve op-
timal engineering performance of various purposes.
However, several intrinsic properties associated with

granular media exclude the possibility of deriving ma-
terial properties and predicting the material responses
directly from the particle scale through analytical ho-
mogenisation methods as the material science branch
does. There are two outstanding ones: (1) The lacking
of periodic microstructure in a granular material pre-
vents a general homogenisation method working ef-
fectively, which is due mainly to the great randomness
and heterogeneity within a granular system; (2) The
behaviour of a granular material is generally state-
dependent and loading-path specific. It is thus difficult
to identify a once-for-all microstructure from which
the macroscopic properties of the material can be de-
rived via homogenisation. To resolve the bridging is-
sue, a computational multi-scale modelling approach
appears to be a viable (if not the only) option. In this
study, we propose a hierarchical multi-scale frame-
work on micro-macro bridging for granular media.
The framework employs a rigorous hierarchical cou-
pling between the finite element method (FEM) and
the discrete element method (DEM) to solve bound-
ary value problems relevant to granular media. The
study is in line with a number of previous attempts on
this topic (Meier et al. 2008, Meier et al. 2009, An-
drade et al. 2011, Nitka et al. 2011, Guo and Zhao
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Figure 1: A hierarchical multiscale modelling framework for
granular media based on coupled FEM/DEM

2013a).

2 METHODOLOGY AND FORMULATION

2.1 Hierarchical multiscale modelling approach

The multiscale framework employs a rigorous hier-
archical coupling between the finite element method
(FEM) and the discrete element method (DEM) which
is schematically shown in Fig. 1. To solve a boundary
value problem, the macroscopic geometric domain is
first discretized into a FEM mesh. A DEM assembly
is then embedded at each Gauss integration point of
the mesh serving as a local Representative Volume
Element (RVE). At each load step, the RVE takes its
memory of the past loading history as initial condi-
tions and receives the global deformation from the
FEM at the specific Gauss point as input boundary
conditions. It is solved to derive the local incremental
stress-strain relation (e.g., stress and tangential stiff-
ness matrix) required for advancing the global FEM
computation. To be more specific, the FEM is used
to solve the following equation system for the discre-
tised domain:

Ku = f (1)

where K, u and f are the stiffness matrix, the un-
known displacement vector at the FEM nodes, and the
nodal force vector lumped from the applied bound-
ary traction, respectively. Since K is generally de-
pendent on the state parameters and loading history
for a granular medium, linearisation of the solution
and Newton-Raphson iterative method are commonly
required. In doing so, the tangent operator Kt needs
to properly evaluated:

Kt =
∫
Ω

BTDB dV (2)

where B is the deformation matrix (i.e. gradient of
the shape function), and D is the matrix form of
the rank four tangent operator tensor. During each
Newton-Raphson iteration, both Kt and σ are up-
dated to minimise the following residual force R to
find a converged solution

R =
∫
Ω

BTσ dV − f (3)

Instead of making phenomenological assumptions
for the instantaneous tangent modulus Dep in Equa-
tion (2) to assemble Kt as conventional continuum-
based constitutive modelling approaches do (e.g., by
assuming an elasto-plastic stiffness matrix in clas-
sic plasticity theory), the coupled FEM/DEM multi
scale approach determines the two quantities from the
embedded discrete element assembly at each Gauss
point. In doing so each DEM packing receives the
boundary condition (deformation) by interpolation of
the FEM solution (displacement). Upon reaching a
solution, each DEM is then homogenised to derive the
stress and tangent operator at the material point which
are transferred back to the FEM solver to update the
solution. The Cauchy stress tensor is homogenised by
the following expression

σ =
1

V

∑
Nc

dc ⊗ f c (4)

where V is the total volume of the DEM assembly, Nc

is the number of contacts within the volume, f c and
dc are the contact force vector and the branch vector
connecting the centres of the two contacted particles,
respectively.

In deriving the tangent operator, we use the follow-
ing bulk elastic modulus homogenised from the DEM
assembly as a first coarse estimation of the the tangent
operator:

De =
1

V

∑
Nc

(knn
c⊗dc⊗nc⊗dc+kt t

c⊗dc⊗ tc⊗dc)(5)

where kn and kt are the equivalent normal and tan-
gential stiffnesses describing the contact law of the
particles, nc and tc are unit vectors in the outward
normal and tangential directions of a contact, respec-
tively. ‘⊗’ denotes the dyadic product of two vectors.
In conduction with an iterative scheme, it works more
efficient in deriving the tangent operator in compar-
ison with the alternative perturbation-based method
(Meier et al. 2009, Nitka et al. 2011, Guo and Zhao
2014).

2.2 Solution procedure

The solution procedure to the hierarchical multi-scale
modeling approach is summarized as follows:

I. Discretise the macro domain by a suitable FEM
mesh and embed a DEM assembly with appro-
priate initial state at each Gauss point of the mesh
as a RVE.

II. Apply one global load step imposed by the
boundary traction of the FEM domain.

(a) Determine the current tangent operator us-
ing Eq. (5) for each RVE .



Figure 2: The calibrated RVE comprised of 400 polydisperse
spheres with periodic boundary produces isotropic contact nor-
mal distribution under isotropic compression.

(b) Assemble the global tangent matrix using
Eq. (2) and compute a trial solution of dis-
placement u by solving Eq. (1) with FEM.

(c) Interpolate the deformation ∇u at each
Gauss point of the FEM mesh and run
the DEM simulation for the correspond-
ing RVE by accounting for its initial state
and using ∇u as the DEM boundary con-
ditions.

(d) Derive the updated total stress from Eq. (4)
for each RVE and use them to evaluate the
residual by Eq. (3) for the FEM domain.

(e) Repeat the above steps from (a) to (d) until
convergence is reached .

(f) Save the converged solution of each RVE as
its new initial state for next step and finish
the current load step

III. Advance to next load step and repeat Step II.

2.3 Benchmark and Calibration

The proposed hierarchical multi-scale approach has
been successfully implemented by two open source
codes for FEM and DEM (Guo & Zhao 2014). A sim-
ple linear force-displacement contact law in conjunc-
tion with Coulomb’s friction is employed in the DEM
code to describe the stick-slip inter particle contact.
Polydisperse particles with radii ranging from 3 mm
to 7 mm (rmean = 5 mm) are adopted to generate each
DEM assembly. Quasi-static solutions are solved at
each load step for each RVE. To calibrate the size of
the RVE (e.g., particle number), different RVEs with
different particle numbers subject to isotropic com-
pression have been compared and the resultant con-
tact normal distribution is examined. A typical RVE
containing 400 particles and with periodic boundary
is found to provide largely isotropic contact normal
distribution and meanwhile offer reasonable compu-
tational efficiency (see Fig 2), which will be adopted
for all the simulations in the sequel.

A single-element shear test based on first-order
four-node quadrilateral element has been used to
benchmark the multi-scale method. All RVEs at the
four Gauss points possess identical initial conditions,
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Figure 3: Comparison of the macroscopic responses of the
single-element test by the multiscale method and by a pure DEM
test of RVE size.

which leads to a uniform sample for the FEM solu-
tion. The global response of the single element test is
compared against that obtained from a pure DEM test
based on the RVE in Fig 3. The global vertical stress
σ11 is calculated from the resultant force exerted on
the top boundary and σ00 from the resultant lateral
force. The axial strain ǫ11 and the volumetric strain ǫv
are calculated from the overall deformation of the ele-
ment. Fig 3 shows that the multi-scale modelling pro-
duced nearly identical responses with the pure DEM
simulation for the single element test, which indicates
that the hierarchical multi-scale modelling approach
is able to faithfully reproduce the typical behaviour of
granular media.

Meanwhile, in our hierarchical multi-scale frame-
work, the computation of DEM packing attached to
each Gauss point is independent with one another,
which makes it ideal for parallelisation of simula-
tions. An effective parallel computing technique has
been implemented in our multis-cale code and has
been used for all the subsequent simulations with a
cluster at HKUST. The scalability and efficiency of
the paralleled code has been found rather satisfactory
(Guo & Zhao 2014).

3 DEMONSTRATIVE EXAMPLES

3.1 Monotonic biaxial compression on sand

We first apply the hierarchical multiscale approach to
predicting the response of a sand sample subject to
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Figure 4: Multiscale modelling of monotonic biaxial compres-
sion on sand: (left) model setup; (right) global stress strain re-
lationship for the sand sample (calculated from the resultants at
the boundary).
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Figure 5: Contours of the accumulated deviatoric strain and void
ratio showing strain localisation in biaxial compression of sand.

monotonic biaxial compression. The model setup and
boundary conditions are shown in Fig. 4 (left) where
the FEM mesh consists of four-node linear quadrilat-
eral elements. Fig. 4 (right) presents the global stress-
strain response measured from the boundary reaction
forces and displacements. A comparison case is also
presented for the pure DEM simulation of the biax-
ial shear on a RVE size sample. Notably, the global
response by the multiscale modelling approach bears
great similarity to the RVE response, in particular for
the pre-peak stress stage where the material behaviour
is relatively elastic. While the post-peak response of
the DEM test shows moderate fluctuations, the multi-
scale model results are relatively smooth.

Our multi-scale simulation captures the phe-
nomenon of strain localisation that is commonly
found in laboratory biaxial shear tests (see Fig. 5).
This is interesting by the following reason. Our bi-
axial shear simulation has been set up with smooth
and symmetric boundary conditions and loading. The
initial states for all RVE packings in the FEM mesh
are identical and hence the entire sample is homoge-
neous too. Under such symmetric/homogeneous con-
ditions, conventional continuum-model-based FEM
approaches are generally unable to capture the strain
localisation unless certain artificial imperfection(s) or
random distributed local properties are added to the
sample to break the symmetry and trigger strain lo-
calisation. In our multi-scale modelling of the prob-
lem, though the RVEs are identical and homogeneous
in the FEM mesh, there is small but observable ini-
tial anisotropy present in the initial RVE packing (see
Fig. 2), which may serve as the symmetry breaker to
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Figure 6: (a) The structure and force chains of the local initial
and deformed RVEs and (b) the corresponding distributions of
the contact normals in N◦51 and N◦256. The smooth red curves
in (b) are the second-order Fourier approximations.

trigger the occurrence in our mutliscale modelling.
Similar opinion has been discussed by Gao & Zhao
(2013) based on continuum modelling. The localised
region observed from Fig. 5 concentrates in the most
dilative portion of the sample with large void ratio,
which is consistent with experimental observations.
The localised band of void ratio is found generally
wider than that of the deviatoric strain.

A major advantage of the multi-scale framework
lies in the rich micro-scale information it can pro-
vide when solving an engineering scale problem. This
may greatly facilitate a better correlation and under-
standing of the macroscopic observations. Shown in
Fig. 6 is a comparison of the contact force network
for the RVE packings at the three Gauss points indi-
cated in Fig. 4 at the initial and final loading states.
All RVEs have the same initial isotropic condition
without apparent preferably orientated strong force
chains. While the DEM packing at N◦51 does not
experience much deformation, several distinct strong
force chains are observed aligning parallel to the ver-
tical shear direction. In contrast, the RVE at N◦256
experiences severe shear deformation which results
in a highly heterogeneous internal structure and more
concentrated penetrating force chains aligning to the
vertical. The packing at N◦422 also deforms notice-
ably, but it becomes rather dilute due to remarkable
volumetric expansion. The deformation gradients at
N◦256 and N◦422 are consistent with the global shear
band inclination. An inspection of the contact nor-
mal distribution (shown in Fig. 6 ) further confirms
that the major principal directions for both N◦51 and
N◦256 are close to the vertical shear direction.

3.2 Cyclic simple shear test

The multiscale modelling approach has also been ap-
plied to simulating the hysteresis behaviour of sand
subject to cyclic load. Shown in Fig. 7 is a FEM mesh
and boundary conditions for a sand sample subject to
maximum shear stress controlled cyclic simple shear.
The initial packing is chosen to be relatively loose
for all RVEs (different than the other examples where
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Figure 7: Discretization (15× 10 elements) and boundary con-
dition of the specimen for cyclic simple shear. The N◦390 Gauss
point will be used for local analyses.
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Figure 8: Global responses of the cyclic simple shear test under
maximum shear stress control |σ01| = 30kPa.
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Figure 9: (a) Contour of void ratio at the final state after the max-
imum shear stress controlled cyclic loading and (b) the structure
and the force chains in RVE at N◦390.
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Figure 10: Multiscale simulation of cavity inflation of a thick-
walled hollow cylinder in sand: (a) mesh; (b) pressure-inflation
curve.

dense packing is used). The global stress-strain re-
sponse and loading path are shown in Fig. 8, indicat-
ing a typical hysteresis behaviour of sand observed
in laboratory tests. The contour of the void ratio in
Fig. 9 indicates that the deformation in the sample
is relatively uniform. The RVE at N◦390 shows sev-
eral obvious strong force chains aligning along the di-
agonal direction of the packing. As the accumulated
shear strain becomes larger, it is evident that cyclic
mobility occurs for this sample. Not presenting here
due to length limitation, we have also investigated a
comparison case where the same sample is subject
to constant-volume maximum shear strain controlled
cyclic shear wherein we found liquefaction occurs. At
the liquified material points, the contact network of
the RVE become too week to form effective percolat-
ing force chains to sustain the external shear.

3.3 Cavity inflation in thick-walled hollow cylinder

The multi-scale approach has also been applied to
modelling the cavity inflation in thick-walled cylin-
der as treated experimentally by Alsiny et al. (1992).
Thick-walled hollow cylinder inflation experiments
are commonly performed towards a better understand
the soil behaviour under passive loading conditions
with simultaneous extension in a plane perpendicular
to the loading direction. A quarter of a whole thick-
walled hollow cylinder is simulated, with an identical
geometry of that in Alsiny et al. (1992) for the cav-
ity and outer surface of the cylinder: rc = 15 mm and
ro = 150 mm. Due to symmetry, the displacement of



the left boundary is fixed and the vertical displace-
ment of the bottom boundary is fixed (see Fig. 10a).
Eight-node elements were used in the study. The outer
boundary is prescribed by a constant pressure p0 =
100 kPa. Different than the inflation pressure bound-
ary in Alsiny et al. (1992), a Neumann boundary
with gradually increased displacement uc is applied
to the inner surface until uc = 10 mm. Fig. 10b de-
picts the inflation-pressure response (the differential
cavity pressure is defined by the pressure difference
on the inner and outer cylinder walls), which shows
a clear softening portion of the curve. Our simulation
shows that the occurrence of shear localisation in the
cylinder was initiated shortly beyond the peak infla-
tion pressure, which is consistent with the experimen-
tal finding by Alsiny et al. (1992). Since our simula-
tion uses Neumann boundary at the cavity surface, no
diffuse deformation mode has been detected.

Fig. 11 presents the localised distributions of shear
strain, void ratio and average rotation (obtained from
the RVE) within the cylinder at the end of the infla-
tion. The three contours show apparently good cor-
relations. Within the shear bands the soil is severely
sheared, highly dilated (initial void ratio is 0.177)
and experiences considerable rotation of soil parti-
cles. The shear bands originated from the cavity sur-
face form cross-shaped patterns which have been ob-
served in laboratory tests. The soil particles within
the bands of different orientation have been rotated
in totally different direction. Other than those close to
the cavity, there are two less developed, notable shear
bands touching the outer surface of the cylinder. They
are however not originated directly from the cavity
surface, but from the two fixed boundaries. They ap-
pear to be reflections of the two major shear bands
initiated from the cavity surface. Further investigation
based on a full cylinder rather than its quarter will be
carried out to see if this is the case. The shear band
orientation will also be analysed based on more re-
fined model of the problem in the future.

4 CONCLUSIONS

A hierarchical multi-scale framework has been de-
veloped to bridge the micro and macro behaviours
of granular media for practical modelling of engi-
neering scale problems. Based on a rigorous cou-
pling between FEM and DEM, it circumvents the
phenomenological assumptions commonly required
in continuum constitutive modelling and meanwhile
retains a good predictive capability on solving prac-
tical problems which purely micromechanics-based
approaches are inherently restrained to solve. The
framework has been benchmarked, calibrated and en-
hanced with parallel computing techniques. Its pre-
dictive capability has been demonstrated with three
illustrative examples, including monotonic biaxial
compression test, cyclic simple shear tests and cavity
inflation in thick-walled hollow cylinder.
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Figure 11: Localised distributions for (a) shear strain, (b) void
ratio and (c) average rotation in the cylinder
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