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Multiscale insights into classical geomechanics problems
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SUMMARY

We pay a revisit to some classical geomechanics problems using a novel computational multiscale modelling
approach. The multiscale approach employs a hierarchical coupling of the finite element method (FEM)
and the discrete element method. It solves a boundary value problem at the continuum scale by FEM
and derives the material point response from the discrete element method simulation attached to each
Gauss point of the FEM mesh. The multiscale modelling framework not only helps successfully bypass
phenomenological constitutive assumptions as required in conventional modelling approaches but also
facilitates effective cross-scale interpretation and understanding of soil behaviour. We examine the classical
retaining wall and footing problems by this method and demonstrate that the simulating results can be well
validated and verified by their analytical solutions. Furthermore, the study sheds novel multiscale insights
into these classical problems and offers a new tool for geotechnical engineers to design and analyse geotech-
nical applications based directly upon particle-level information of soils. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The design in geotechnical engineering had largely been empirically based until a series of theo-

retical advances was made by pioneers in soil mechanics in the early 20th century. They are best

known today as lateral earth pressure theory, bearing capacity theory, consolidation theory, limit

theorem and so on [1–6]. The complexity of real geotechnical problems, however, can frequently

exceed the scope and capability of these over-simplified theories can handle. More advanced and

robust methods have been badly needed to solve the increasingly complicated practical problems

met in urban developments around the world. The 1960s marked an era of great changes for both

soil mechanics and geotechnical design, when modern soil mechanics represented by the plasticity-

based critical state constitutive models were developed and computer and numerical tools such as the

finite element method (FEM) were made accessible to geotechnical engineers. The past half-century

has indeed witnessed the flourishing of various computer-aided continuum constitutive modelling

approaches in application to every aspect of geotechnical engineering.

Core to continuum modelling of a geotechnical problem is the assumed constitutive model to

capture the essential material behaviour of soil under variable loading conditions. The fact that

there have been hundreds (if not more) of different soil models in the literature partially explains

how complex the soil behaviour can be and how difficult it is to characterise. It is common that

one model may successfully capture some features of the soil response but fails miserably for

many others. Take granular soils as an example. Numerous laboratory tests show that a granular
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soil may exhibit intriguing mechanical responses under shear, ranging from state and loading-path

dependence, non-coaxiality [7, 8], anisotropy [9–11], liquefaction, cyclic mobility to critical state

[12, 13]. Its behaviour becomes more complicated or even intractable when being considered in a

context of practical engineering problems. A constitutive model, however well calibrated and ver-

ified by laboratory test data, may provide inadequate, inaccurate or totally wrong predictions for

large-scale engineering-level boundary value problems (BVPs). Not only is this caused by the het-

erogeneous nature in soil properties and the complexity involved in the boundary conditions of an

engineering problem but it may also be attributable to the extremely diversified loading paths and

soil states that the material points at different locations of the physical domain may experience.

Moreover, complicated phenomena such as strain localisation and liquefaction [14–20] may occur

in a geotechnical problem. To capture all these perplexing features pose formidable challenges for

continuum constitutive modellers. To gain better predictive capability, one has to develop mod-

els with many model parameters, which are frequently phenomenological in nature and difficult to

calibrate. This apparently forfeits their ultimate goal to facilitate their easy use for practising

geotechnical engineers.

The key factor attributable to the limitations for continuum theories has indeed been pinpointed

by Terzaghi in 1920 [21], when he argued that his predecessor Coulomb had ‘purposely ignored

the fact that sand consists of individual grains, and ... deal with the sand as if it were a homoge-

neous mass with certain mechanical properties. Coulomb’s idea proved very useful as a working

hypothesis for the solution of one special problem of the earth-pressure theory, but it developed into

an obstacle against further progress as soon as its hypothetical character came to be forgotten by

Coulomb’s successors. The way out of the difficulty lies in dropping the old fundamental principles

and starting again from the elementary fact that sand consists of individual grains’. The discrete

nature in sand gives rise to an easily identifiable multiscale hierarchy when it is compared with a

relevant engineering problem, as shown in Figure 1. Terzaghi has indeed envisioned a picture of

cross-scale modelling for sand; however, the pathway to there was neither easy nor trivial. It was not

until 60 years later when Cundall and Strack [22] developed their seminal tool of the discrete ele-

ment method (DEM) before Terzaghi’s envisioned approach can be effectively executed. DEM has

been widely used in the past 30 years for sand behaviour characterisation with considerable success.

However, it can at best be used as a virtual laboratory testing tool for now and can quickly become

inept to deal with practical engineering-scale problems because of constraints on allowable particle

number and computational efficiency.

To circumvent the difficulties of both continuum and purely discrete-based approaches mentioned

earlier, we employ in this study a computational multiscale approach to treat geotechnical BVPs.

This approach is based on a hierarchical coupling of FEM and DEM to capture the multiscale

hierarchy shown in Figure 1. It uses FEM to simulate the physical domain of a BVP and hence

is able to retain its computational efficiency while avoiding using phenomenological constitutive

models by extracting material response from separate DEM simulation at each Gauss point of the

FEM mesh where the discrete nature of sand at the microscale is fully respected. The scenario of

Figure 1. Schematic illustration of the scale separation in sand and its hierarchical multiscale modelling.
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cross-scale modelling as envisaged by Terzaghi can now be realised with ease. The multiscale

approach employed in this study was recently developed by the authors [23–26], which is also

inline with some recent studies [27–31]. In this study, we further introduce rolling resistance to

the DEM model to better account for the effect of particle shape on the strength and deformation

of sand/gravel. Two classical geotechnical problems were selected for simulation by the multiscale

modelling approach, namely, the retaining wall and the footing.

2. METHODOLOGY AND FORMULATION

The multiscale approach employs the FEM to discretise the macroscopic continuum domain and

solve it as a BVP. Iterative Newton–Raphson scheme is employed to tackle non-linear sand response.

The material response at each Gauss point is derived based on DEM simulation on a representative

volume element (RVE) packing of particles with suitable grain size distribution, contact and friction

properties and initial states. Because each RVE receives the deformation at the specific Gauss point

as local boundary condition and keeps its memory of immediate past state during each incremental

loading step of the FEM solution, it can naturally capture the highly non-linear history-dependent

behaviour of sand. The formulations of the multiscale framework are briefly presented in the follow-

ing. Although the current paper deals with two-dimensional (2D) simulations, most of the following

formulations are applicable to general three-dimensional cases unless explicitly stated otherwise.

2.1. FEM solver

For the quasi-static problem in the absence of gravity, the governing equilibrium equation writes

r ! ! D 0; (1)

where ! is the stress tensor. Its variational form can be obtained by applying the principle of

virtual work

Z

�

ı"T! d� D W ext; (2)

where � denotes the problem domain, W ext .D f
extıu/ is the virtual work performed by the exter-

nal force f
ext, ıu is a variation of the primary unknown displacement u, and ı" .D Bıu/ is the

variational strain where B is the displacement–strain matrix after FEM discretisation. Equation 2

can then be rewritten as follows by eliminating ıu

Z

�

B
T! d� D f

ext (3)

based on which the stiffness matrix K can be readily obtained using " D Bu and ! D D":

K D
Z

�

B
T
DB d�; (4)

where D is the material modulus for linear problems. The final discrete equation system can be

formulated as below

K u D f
ext: (5)

For a general non-linear problem, D is the tangent operator used to find trial solutions for FEM.

The Newton–Raphson iterative scheme is employed to find the converged solution to Equation 5.

In a displacement-driven FEM, the deformation (displacement gradient) ru at each Gauss point

of the FEM mesh can be interpolated from the nodal displacement and is then applied as the local

boundary condition for the corresponding RVE packing to resolve for a DEM solution. Based on the
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RVE solution, the stress tensor ! and the tangent operator D are then homogenised and updated. The

specific formulations for ! and D will be provided in Section 2.3. A converged solution is sought

by evaluating the residual force R in comparison with a prescribed tolerance

R D
Z

�

B
T! d� " f

ext: (6)

More detailed description of the solution procedure can be found in [23–26].

2.2. DEM solver

We use cylindrical particles (rods) in the RVE packing to approximately simulate the plane-strain

behaviour of sand.‡ To fairly reproduce the strength of sand, a simple DEM model with rolling resis-

tance is used to describe the interparticle contact. The contact normal force f c
n and the tangential

frictional force f c
t are assumed to be governed by a linear force–displacement law:

f c
n D "knı nc ; (7)

f c
t D

²

"ktu
c
t ; if jf c

t j # jf c
nj tan'

jf c
nj tan' tc ; otherwise

(8)

where ı is the overlap of the two contacting particles, nc is the unit outward normal of the contact,

uct is the accumulated relative tangential displacement at the contact, tc .D "uct =juct j/ is the unit

vector along the tangential direction of the contact and ' is the interparticle friction angle (Figure 2).

The contact normal and the tangential stiffnesses are determined by the Young’s modulus Ec and

the Poisson’s ratio "c of the particles:

²

kn D Ec r
!;

kt D "c kn;
(9)

where r! D 2r1r2=.r1 C r2/ is the common radius of the two contacting particles with radii r1 and

r2, respectively. To approximate quasi-static condition and dissipate kinetic energy, an extra local

non-viscous damping force f damp is added opposite to the particle velocity direction and is made

proportional to the magnitude of the unbalanced force f unbal of the particle with a damping ratio ˛

f damp D "˛ jf unbalj v=jvj: (10)

The resultant contact force (and only tangential force for circular particles) will exert a moment

on the particle, which serves as the only driver of particle rolling in the free-rotation case. It is well

recognised that DEM simulations based on free-rotation assumption and circular particles greatly

underestimate the strength of sand as compared with laboratory tests [32]. Because sand grains

are commonly angular with rough surfaces, surface (rather than point) contacts and interlocking

may prevail in the interparticle contacts. These factors may sum up to generate an anti-rotation

effect for the particles, which will be described by a rolling resistance model in this study. In

this rolling resistance model, the contact moment M r is written in a similar way to the tangential

force [33, 34]

M r D
²

"kr "cr ; if jM r j # jf c
nj rmin#

"jf c
njrmin# "cr=j"

c
r j; otherwise

(11)

where "cr is the accumulated relative rotation at the contact, # is the rolling resistance coefficient

in analogy to the role of frictional coefficient, which imposes a threshold for the contact moment

‡It should be noted 2D DEM test is only a qualitative approximation rather than an equivalence of plane-strain test on
real sand.
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Figure 2. Illustration of the contact model in discrete element method accounting for rolling resistance.

beyond which particle rotation may be mobilised, and rmin is the minimum radius between r1 and

r2. The rolling stiffness kr (Figure 2) is linked to the tangential stiffness kt and another parameter

ˇc through

kr D ˇc ktr1r2: (12)

Details on the implementation of the DEM model are documented in the YADE manual [35].

2.3. RVE homogenisation

The RVE packing chosen in the study contains 400 polydisperse circular (cylindrical) particles with

radii ranging from 3 to 7 mm and a particle density of 2650 kg/m3. A thickness of 0.1 m is assumed

for the packing to maintain the stress measurement in pressure unit (i.e. force over area). Periodic

boundary conditions are applied to both dimensions of the packing. The homogenised stress tensor

of the packing is obtained from the Love formula

! D
1

V

X

Nc

dc ˝ f c ; (13)

where V is the volume of the RVE packing, Nc is the number of contacts within the packing, dc

is the branch vector connecting the centres of the two contacting particles (Figure 2) and f c is the

contact force. Two common stress measurements – the mean effective stress p and the deviatoric

stress q – can be calculated accordingly (in 2D)

8

ˆ

ˆ

<

ˆ

ˆ

:

p D
1

2
tr! ;

q D
r

1

2
s W s;

(14)

where s is the deviatoric stress tensor. The strain field is interpreted from the FEM solution, that is,

the gradient of the displacement ru

" D "
ru C rT

u

2
; (15)
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where compression is taken as positive so a minus sign is present. The volumetric strain "v and the

deviatoric strain "q can then be calculated (in 2D)

´

"v D tr ";

"q D
p
2 e W e;

(16)

where e is the deviatoric strain tensor. Note that the displacement gradient ru will be applied as

local boundary conditions for the DEM simulations to deform the RVE packing. In addition to strain,

it indeed includes an overall rotation ! D .rT
u"ru/=2 as well to accommodate large deformation

in strain localisation problems. The tangent operator needed to assemble the FEM stiffness matrix

is given based on the uniform strain assumption [36–38]

D D
1

V

X

Nc

.kn nc ˝ dc ˝ nc ˝ dc C kt tc ˝ dc ˝ tc ˝ dc/: (17)

The rank-four tensor D can be written in the matrix form D (e.g. via Voigt notation) to be used in

Equation 4. Note also that the interparticle rolling stiffness has no effect in calculating the tangent

operator and the stiffness matrix, as only Cauchy stress is used (Equation 13). If the couple stress

is considered, for example because of the interparticle contact moments [39], the rolling stiffness

needs to be properly incorporated into Equation 17.

3. RETAINING WALL

The model set-up of the retaining wall problem follows similarly that presented in [15, 40]. A

domain of 0.4 m in length and 0.2 m in depth is modelled. A rigid retaining wall with the height

of h D 0:17m is positioned at the right side of the backfill soil. A uniformly distributed surcharge

qs D 20 kPa is applied on the top surface of the backfill soil. The surface of the retaining wall is

assumed rough (no relative vertical displacement between wall and soil) under three wall move-

ment modes (translation and rotation about the top and the bottom), and another special case with

smooth wall (no shear stress at the interface between wall and soil) is considered for the translation

mode (Figure 3(a)). The soil domain is discretised by a FEM mesh of 40$ 20 eight-node quadrilat-

eral elements with reduced integration (four Gauss points) as shown in Figure 3(a). The quadratic

element adopted here is found helpful to eliminate the pathological dependence on mesh density of

FEM solutions.§ The reduced integration can efficiently save the computational cost and meanwhile

provide accurate results compared with the full integration [26]. With all Gauss points counted, the

simulation involves 3200 RVE packings containing a total of 1.28 million particles for each iteration.

With parallelisation on an HP SL230 Gen8 (Hewlett-Packard, Palo Alto, California, USA) server

(2 $ 8-core 2.6 GHz CPU), each test in this section costs 10 to 15 h. Three different modes of wall

movement are considered under both passive and active failure conditions, which are illustrated in

Figure 3(b). All RVE packings are first anisotropically consolidated to a state with a vertical stress

(in x1 direction) of $v0 D 20 kPa and a horizontal stress (in x0 direction) of $h0 D 10 kPa, that is,

the at-rest lateral earth pressure coefficient assumed K0 D $h0=$v0 D 0:5 and initial void ratio of

e0 D 0:182. The RVEs are then assigned to their respective Gauss points of the FEM mesh. This

leads to an initially uniform domain. Gravity is neglected in the simulation.

3.1. DEM model and RVE effective friction angle

The microscopic parameters in the DEM model for the retaining wall problem are summarised in

Table I. Similar parameters have been used in previous studies [41]. For practical interpretation in

engineering applications, it is usually more convenient to use a macroscopic measurement such as

the effective friction angle '0 as frequently used in a Mohr–Coulomb criterion. Due to the non-linear

§The insensitivity of the result to the mesh density using quadratic elements is observed from additional biaxial
compression tests, which are not presented here to avoid distraction of focus.
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Figure 3. Model set-up on the simulation of retaining wall: (a) mesh and boundary conditions and (b) three
modes of wall movement to trigger either passive or active failure condition in the backfill soil.

Table I. Parameters for the DEM model used
in the retaining wall problem.

Ec (MPa) "c ˇc ' (ı) # ˛

300 0.3 1.0 33 0.3 0.1

DEM, discrete element method.

Figure 4. Estimation of the macroscopic effective friction angle of the representative volume element for the
retaining wall problem.

nature in the material response, '0 is not a constant under shearing but will undergo steady changes

related closely to the softening or hardening processes depending on the initial condition and the

loading path.

To estimate the effective friction angle '0, drained biaxial compression tests were performed on

the RVE packing under two different confining pressure levels, $3 D 10 and 20 kPa, respectively.

The peak stress state (failure) points were extracted from the two tests to plot their corresponding

Mohr’s circles as shown in Figure 4. The effective friction angle is then approximately estimated

from the envelope of the two circles as '0
% 47ı (assume zero cohesion). The value is relatively

large and may correspond to some gravel materials or very dense sands [42].

3.2. Lateral earth pressure coefficient

The evolution of the lateral earth pressure coefficient, defined as the lateral earth pressure $h exerted

on the wall surface normalised by the vertical stress ($v D qs D 20 kPa), against the average wall

displacement Nu (equivalent to the displacement at the centre of the wall; Figure 3(a)) normalised by

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:367–390
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the height of the wall is plotted in Figure 5. The analytical predictions by the Rankine’s theory [1]

are comparatively presented, where the passive and the active earth pressure coefficients, denoted

as Kp and Ka respectively, are given as follows:

8

ˆ

ˆ

<

ˆ

ˆ

:

Kp D tan2
"

%

4
C
'0

2

#

Ka D tan2
"

%

4
"
'0

2

# (18)

where '0 is the effective friction angle determined in Section 3.1.

As seen from Figure 5(a), when the wall moves towards the soil tending to create a passive failure

condition, the lateral earth pressure is progressively mobilised towards a peak value (regarded as the

passive lateral earth pressure here) where the corresponding normalised displacement of the wall

Nu=h ranges from 0.03 to 0.06 for the three modes of wall movement. It is noted the deformation level

to reach the peak lateral earth pressure is larger than that presented in [40] (Figures 5(a) and 13(a)

therein) because of a smaller stiffness adopted for the material here. In their discrete model [40],

the contact modulus Ec was set to 30 GPa, while in the current study, the value adopts a much

smaller value of 300 MPa to accelerate the DEM computation with a larger time step. The post peak

response shows a pressure drop in all cases. Among them, the translation mode with rough wall

surface yields the largest passive lateral earth pressure coefficient, which is about 1.8 times larger

than the corresponding case with a smooth wall. The rotation-about-bottom mode with rough wall

gives a passive lateral earth pressure coefficient in between the above two modes, and its value

almost coincides with the analytical prediction based on the Rankine’s theory Kp D 6:44. The

rotation-about-top mode gives the smallest passive lateral earth pressure coefficient of all. A general

observation of the passive modes for the four cases indicates that a larger wall movement is needed

to mobilise the higher peak pressure.

The soil responses under the active failure mode differ substantially from the passive cases. As

shown in Figure 5(b), the lateral earth pressures for all cases decrease almost instantly when the

wall movement is applied and reach a minimum (considered as the active lateral earth pressure)

before increasing again. Among the four, the translation mode with a rough wall yields the smallest

active lateral earth pressure coefficient at about 0.15, and the value is only slightly higher in the

corresponding smooth case than in the rough case. This is in strong contrast with the vast difference

between the two cases in the passive condition. The analytical prediction based on the Rankine’s

theory Ka D 0:16 is between the two translation mode results but is rather close to that of the

rough translational wall case. Both rotation wall cases lead to bigger active lateral earth pressure

coefficients than the translation cases, and the result of the rotation-about-top mode gives the largest

Figure 5. Evolution of lateral earth pressure coefficient with the wall movement under (a) the passive and
(b) the active failure conditions.
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of all. These observations are indeed consistent with the FEM simulations reported in [15, 40] based

on a micropolar hypoplastic sand model, where the model parameters had been calibrated against the

experimental data on Karlsruhe sand. The different observations of lateral earth pressure evolution in

different failure modes with different wall movements signify different progressive failure patterns

and different underlying micromechanical mechanisms in the backfill soil, which are examined in

detail in the sequel.

3.3. Shear-zone pattern

3.3.1. Passive failure. The apparent post-peak drop of lateral pressure in Figure 5(a) in each case is

accompanied with the occurrence of well-developed shear band(s) in the backfill soil. Towards the

end of the loading, stabilised shear zones are observed. Figure 6 presents the shear-zone patterns,

in terms of the accumulated shear strain "q and the void ratio e, at the end of wall movement in the

passive condition. For the case of translation mode with a rough wall (Figure 6(a)), the shear zones

Figure 6. Contours of accumulated shear strain (left panel) and void ratio (right panel) for different failure
modes under the passive condition.
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depict two slip lines. The primary slip line consists of a spiral curve emanating from the bottom of

the wall and a straight line developing towards the top surface of the backfill soil. The secondary

slip line initiates from the top of the wall extending towards the primary one at the connecting point

of the spiral segment and the straight line segment where it is intersected and cannot extend further

down. Shear strains and volume dilation are less intense in the second shear zone than in the first.

Notably, the second slip line essentially splits the soil body above the first one into two largely rigid

triangle wedges with apparently different kinematic characteristics. The wedge bounded by the two

lines and the wall features a roughly horizontal displacement, while the one above the two slip lines

moves mainly upwards.

Interestingly, the use of a smooth wall for the same translation mode leads to a single localised

shear zone only, which is a roughly straight line (Figure 6(b)). The soil wedge above the shear zone

moves up-leftwards during the loading. Apparently, the constraint of wall on the vertical move-

ment of adjacent soil results in the different observations in the rough and the smooth wall cases.

Rankine’s passive lateral earth pressure theory gives a theoretical angle of the passive failure slip

line with respect to the horizontal plane of %=4 " '0=2 % 21:5ı. By comparing with two straight

lines in the rough and the smooth wall cases, it is found the smooth wall case yields a very close

value, which is measured as 23:5ı, while the rough wall case gives a much higher inclination angle

of the slip line, which is about 35ı. The boundary condition (the rough wall assumption) and the

limited domain width could possibly attribute to this.

The rotation-about-bottom mode leads to two relatively short shear zones radiating from the top

of the wall, with the higher one resembling the secondary shear line in the translation mode with a

rough wall (Figure 6(c)). For the case of rotation about top (Figure 6(d)), the slip line is shown to

be a spiral curve developing from the bottom of the wall towards the top surface of the backfill soil.

It is interesting to compare the current multiscale model predictions of the shear-zone patterns

under the passive failure with those experimental observations on an initially dense backfill soil

using X-ray and digital image correlation techniques reported in [40] (Figures 1 and 3 therein). In

their experiments, the translational mode with a rough wall shows a similar double-shear-zone pat-

tern – one distinct curvilinear shear zone starting from the heel of the wall to the free surface of the

backfill soil accompanied by a weak secondary shear zone propagating from the wall top. Similarly,

they observed a single curved shear zone developed from the heel of the wall to the soil surface for

the rotation-about-top mode. The major difference between the current study and the experimen-

tal result in [40] lies in the rotation-about-bottom mode. Instead of two radially penetrating shear

zones starting from the top of the wall as observed here, multiple parallel curved shear zones were

observed near the top of the wall in [40]. The difference may be caused by the different material

properties as the modelled soil here has a softer response than that used in the experiment (Figure 5).

It could also be attributable to the boundary condition because the soil–wall interaction is much

simplified in the present study.

In addition to the contours of shear strain and void ratio, the distribution of average particle

rotation also serves as a good indicator of the shear zone in strain localisation problems [26]. Both

experimental [43] and DEM studies [44] show that pronounced particle rotations take place inside

localised shear strain regions. By virtue of the hierarchical multiscale method, the average particle

rotation can be quantified for any material point in the continuum field from its underlying RVE

simulation. Here, the average particle rotation N& over an RVE packing is defined as

N& D
1

Np

X

Np

&p; (19)

where &p is the accumulated rotation of an individual particle where anti-clockwise rotation is

treated as positive. The contours of N& for the passive failure cases are shown in Figure 7. It is not

surprising that the concentrated bands showing large particle rotations coincide well with those

exhibiting large shear strains and dilation. For the translation failure mode with a rough wall

(Figure 7(a)), the material points inside the primary shear zone experience anti-clockwise rota-

tions at large, while those inside the secondary shear zone undergo clockwise rotations. For the

translation failure mode using a smooth wall (Figure 7(b)) and the rotation-about-top failure mode

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:367–390
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Figure 7. Contours of accumulated average particle rotation for different failure modes under the
passive condition.

Figure 8. Contours of the stress norm
p

! W ! for different failure modes under the passive condition.

(Figure 7(d)), large anti-clockwise particle rotations are observed within their respective shear

zones. For the rotation-about-bottom failure mode (Figure 7(c)), clockwise particle rotation is dom-

inant in the radiating shear zone. It is generally observed that when a shear slip line is initiated from

the lower-right to the upper-left corner of the soil, anti-clockwise particle rotation dominates, and

clockwise rotations prevail when a shear zone develops from the upper right to the lower left.

The stress distribution are also examined in Figure 8, where the stress measure employs the

stress norm defined by
p

! W ! . Generally, the stress intensities within the shear-localised zones

are not necessarily the maximum because of stress softening, which implies that the stress con-

tour is not a good indicator for strain localisation [26]. Under the translation mode with a rough

wall (Figure 8(a)), the stress is mainly concentrated inside the triangle wedge behind the wall,

while the wedge above the two slip lines has a minimum stress concentration. For the smooth wall

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:367–390
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(Figure 8(b)), the stress field is relatively homogeneous in the region above the toe of the wall. Only

the shear zone shows a slightly smaller stress norm because of shear softening. Because of the same

reason, in the two rotation modes, a translation of the stress concentration zone during the load-

ing procedure is observed. In the rotation-about-bottom mode (Figure 8(c)), the stress concentration

moves downwards with a successive development of the shear-localised regions, leading the final

stress concentration zone beneath the strain-localised zone. In contrast, the stress-concentrated zone

moves upwards in the rotation-about-top mode (Figure 8(d)) and stays above the shear-localised

zone at the final state.

3.3.2. Active failure. Figure 9 presents the shear-zone patterns for "q and e at the wall movement

of Nu=h D 0:05 under the active failure condition. For the two translation modes with either a rough

Figure 9. Contours of accumulated shear strain (left panel) and void ratio (right panel) for different failure
modes under the active condition.
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or a smooth wall (Figure 9(a) and (b)), a similar straight line of shear zone develops in the soil

in both cases, and the wall–soil interface in the rough case appears to develop certain shear strain

concentration too. The angle of the slip line with respect to the horizontal is 61ı for the rough wall

case and 65ı for the smooth wall case. Both are close to the theoretical value calculated by the

Rankine’s active lateral earth pressure theory: %=4C '0=2 % 68:5ı. For the rotation-about-bottom

mode, multiple small failure zones form a relatively large triangular wedge behind the wall, which

can be better identified from the contour of void ratio (Figure 9(c)). When the rotation is about the

top of the wall, the shear zone depicts a thick spiral curve developing from the bottom of the wall

towards the top surface of the backfill soil (Figure 9(d)). The curvature of the spiral curve is also

much larger than in the corresponding passive condition case.

Again, the distributions of the average particle rotation N& shown in Figure 10 are in good agree-

ment with the contours of the shear strain and void ratio. Sand particles within the shear zones

generally undergo large clockwise rotations (negative N& ), but regions close to the rough wall sur-

faces (Figures 9(a),(c)&(d)) show relatively large anti-clockwise particle rotations because of the

strong boundary constraint.

3.4. Local analyses

Featuring a major advantage, the current hierarchical multiscale approach enables us to offer cross-

scale analyses for a complex BVP. The key macroscopic behaviours at important regions or positions

of the macrodomain can be better understood and interpreted by their micromechanical origins

extracted from the local RVE simulations. As a demonstration, here we choose several Gauss points

for the cases of a rough wall under both passive and active translation modes to examine their local

responses and microstructural changes. The selected Gauss points are marked in Figures 7(a) and

10(a) for the passive and active modes, respectively. They are initially located at the same height of

the treated domain.

The evolutions of the stress ratio and the fabric anisotropy at the three Gauss points for the

passive failure condition are plotted in Figure 11(a) against the wall displacement, where the fab-

ric anisotropy is defined based on the contact normal distribution inside a local RVE packing

[45, 46] (in 2D)
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where # is the fabric tensor and F c is the deviatoric fabric tensor. A multiplier of 4 is present

in calculating F c to ensure the integration of the distribution function E.'/ equal to 1, that is,
R

"
E.'/ d' D 1, where E.'/ D Œ1C F c W .nc ˝ nc/�=.2%/. The scalar Fc is used to measure the

anisotropic intensity of the microstructure of the RVE packing. Figure 11(a) indicates the responses

of the three Gauss points, in terms of both stress ratio q=p and fabric anisotropy Fc , are rather

close, as summarised in the following stages. For the stress ratio q=p, (a) it first experiences a quick

decrease at the beginning of the wall movement because of the flip of the major principal stress

direction from the vertical axis at rest to the horizontal one under the passive failure; (b) q=p regains

its strength and is then further mobilised to increase steadily until reaching a peak; and (c) after

peak, an obvious softening in q=p is observed. The peak value of q=p for both GP A and GP C

(inside the two shear zones) is about 0.7, which is consistent with that obtained from the element test

in Figure 4. The wall displacement to reach the peak value for the two points ( Nu=h % 0:06) is also

consistent with that corresponding to the peak lateral earth pressure (rough wall, translation mode)

in Figure 5(a). For GP B (outside the major shear zones), the peak q=p .% 0:63/ is slightly smaller

as it undergoes a relatively small deformation; hence, its strength is not fully mobilised. The fabric

anisotropy Fc increases monotonically to a peak value, at a slower pace than that of q=p, and then

depicts a softening response coinciding with the softening stage of q=p. Figure 11(b) presents the
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