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A novel hierarchical multiscale model has been applied to simulate the thick-walled hollow cylinder
tests in dry sand and to investigate the corresponding shear failures. The combined finite-element
method and discrete-element method (FEM/DEM) model employs the FEM as a vehicle to advance the
solution for a macroscopic non-linear boundary value problem incrementally. It is, meanwhile, free of
conventional macroscopic phenomenological constitutive law, which is replaced by discrete-element
simulations conducted with representative volume elements (RVEs) associated with the Gauss
quadrature points of the FEM mesh. Numerical simulations proposed by the authors indicate that this
multiscale approach is capable of replicating the evolution of cavity pressure during cavity expansion –
before and after the onset of strain localisation – in qualitative agreement with laboratory tests. In
particular, the curvilinear shear bands observed from experiments have been reproduced numerically.
The information provided by the mesoscale DEM and the macroscale FEM reveals a close linkage
between significant particle rotations taking place inside the dilative shear bands and the highly
anisotropic microstructural attributes of the associated RVEs.
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NOTATION
Dijkl tangent operator of an RVE packing
dc
i branch vector of two contacting particles

Ec,νc interparticle contact parameters for the DEM model
e void ratio of an RVE packing
f ci interparticle contact force
G macroscopic elastic shear modulus of the RVE

kn, kt normal and tangential contact stiffnesses
Nc contact number within an RVE packing

nci ; t
c
i normal and tangential unit vectors at a contact
V volume of an RVE packing

α, β, γ, δ material strength coefficients for calculating the
analytical cavity pressure limit

ε1, ε3 major and minor principal strains
θ̄ average particle rotation of an RVE packing

σ1, σ3 major and minor principal stresses
σij effective stress tensor
ϕ interparticle friction angle for the DEM model

ϕ
0

max;ψmax macroscopic peak friction angle and peak dilation
angle of the RVE

INTRODUCTION
Cavity expansion in thick-walled hollow cylinder (TWHC)
tests is of great importance for practicing geotechnical
engineers and researchers (Carter et al., 1986; Mántaras &
Schnaid, 2002). In engineering practice, the mechanical
response of soil during cavity expansion dictates the
resultant CPT number obtained from the cone penetration
test and the estimated shear strength of the soil (Salgado

et al., 1997). Cavity expansion may also occur during the
pile-driving process in foundation engineering. It is also an
important physical process that affects the stability of
boreholes (Yu, 2000).

Cavity expansion replicated in TWHC tests also plays an
important role for the theoretical study of soil behaviour. It
may provide a complementary perspective to the conven-
tional/true triaxial tests for a better understanding of soil
behaviours subjected to complex loading paths. In particu-
lar, the intriguing failure patterns in TWHC tests have
captured the attention of numerical modellers. In the litera-
ture, the bifurcation theory has been applied to predict the
shear failure of TWHC based on various phenomenological
constitutive models (Vardoulakis & Papanastasiou, 1988;
Papanastasiou & Vardoulakis, 1989; Anand & Gu, 2000;
Sun, 2013). Notwithstanding their success, these models
require a large number of internal variables to capture the
inherent anisotropy and evolution of fabric (Zervos et al.,
2001; Crook et al., 2003; Sun, 2013, 2015). To overcome
these pitfalls, a novel multiscale approach (Kaneko et al.,
2003; Miehe & Dettmar, 2004; Andrade et al., 2011; Guo,
2014; Guo & Zhao, 2014, 2015; Nguyen et al., 2014; Desrues
et al., 2015; Liu et al., 2015b; Zhao & Guo, 2015a, 2015b) is
adopted in this study. The adopted approach employs the
finite-element method (FEM) to simulate the macroscopic
boundary value problem. Meanwhile, it replaces the pheno-
menological constitutive law needed in conventional FEM
with discrete-element method (DEM) computations at the
Gauss quadrature points of the FEM mesh. Each Gauss
point is associated with a granular assembly in the size of the
representative volume element (RVE). At each loading step,
the macroscopic deformation of the granular assemblies is
prescribed and the macroscopic Cauchy stress updates are
inferred from the deformed RVEs for the global FEM
computation.

This multiscale approach provides several advantages.
First, the path-dependent behaviours obtained from the
simulations are directly related to the grain rearrangements
that lead to the formation and collapse/buckling of force
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chains and branch vectors (Tordesillas, 2007; O’Sullivan
et al., 2013; Sun et al., 2013a). Hence, there is no need to
introduce an excess amount of internal variables to curve-fit
the phenomenological responses for specific stress path
during cavity expansion (Liu et al., 2015a). Furthermore,
the coupling of continuum-scale FEM and grain-scale DEM
offers a natural pathway to bridge grain-scale mechanics
to field applications. Due to the multiscale coupling, the
evolution of microstructural attributes under macroscopic
external loading can be examined conveniently. These salient
features are exploited to replicate numerically the complex
failure patterns commonly observed in the TWHC tests
in this study.

APPROACH AND FORMULATION
In each macroscopic loading step, DEM simulations
are performed at the Gauss quadrature points to provide
macroscopic constitutive updates. The macroscopic FEM
model is solved implicitly by way of the Newton–Raphson
iterative scheme. In each iteration, the deformation at each
Gauss point is first interpolated by way of the macroscopic
shape function and this is subsequently applied as the local
boundary condition for each RVE. After the DEM compu-
tation, the updated stress tensor σij and the tangent operator
Dijkl can be homogenised using the following equations

σij ¼
1
V

X

Nc

dc
i f

c
j ð1Þ

D ijkl ¼
1
V

X

Nc

knnci d
c
j n

c
kd

c
l þ kttci d

c
j t

c
kd

c
l

! "
ð2Þ

where V is the volume of the RVE packing; Nc is the number
of interparticle contacts; dc

i is the branch vector; f ci is the
contact force; nci and tci are the normal and tangential
unit vectors at the contact, respectively; and kn and kt are
the normal and tangential contact stiffnesses, respectively.

The kinetic and kinematic quantities related to an inter-
particle contact are illustrated in Fig. 1. In this study, the
authors use a linear force–displacement model to calculate
the normal force and the Coulomb frictional model for the
tangential force with friction angle ϕ. The contact stiffnesses
are determined from two material parameters Ec and νc by
way of: kn = 2Ecr1r2/(r1 + r2) and kt = νckn, where r1 and r2
are the radii of the two contacting particles. Details of the
solution procedure can be found in Guo & Zhao (2014).

RESULTS AND DISCUSSION
Test set-up
The domain of the TWHC test is of the same size as that of
the experimental counterpart reported in Alsiny et al. (1992),
with the cavity radius rc = 15 mm and the outer radius
ro = 150 mm. The outer surface of the specimen is subjected
to a constant confining pressure σo = 100 kPa. A uniform
radial displacement uc is applied to the inner surface of
the specimen to inflate the cavity. Due to the axisymmetry,
the cavity problem is often simulated with a quarter of the
domain to save computational costs (e.g. Anand & Gu,
2000; Zervos et al., 2001; François et al., 2014; Desrues
et al., 2015). However, due to the grain-scale spatial hetero-
geneity of the RVEs, non-symmetric bifurcation mode may
trigger and break the radial symmetry of the problem.
Hence, the authors follow the approach in Papanastasiou
& Vardoulakis (1992) and conduct quarter-domain and
full-domain simulations, followed up with a further com-
parison of their results. The mesh and the boundary
conditions for the simulations are illustrated in Fig. 2. For
the quarter-domain mesh, 400 serendipity quadrilateral
elements are used. The left and the bottom surfaces are
subjected to roller boundary conditions. For the full-domain
mesh, 1600 serendipity quadrilateral elements are used. Due
to the axisymmetry, the hoop displacements of the four
symmetric exterior nodes are restrained, as shown in Fig. 2
(Papanastasiou & Vardoulakis, 1992). Note that a reduced
integration technique is used for all the simulations, which
requires four Gauss quadrature points for each element
(Zhao & Guo, 2015a).

In this study, the authors use 400 circular particles in the
RVE packing with a roughly linear particle radius distri-
bution from 3 to 7 mm. The choice of 400 particles is based
on a sensitivity analysis detailed in Guo & Zhao (2014),
and is a compromise between reliable RVE responses and
affordable computational cost. Periodic boundary condition
is enforced at both directions of the RVE. The particle
density is set to 2650 kg/m3. The two contact stiffness

kn kt

f c
i

t c
i

nc
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Fig. 1. Illustration of an interparticle contact in DEM

Gauss
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Fig. 2. Mesh and boundary conditions for quarter-domain and the full-domain simulations
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parameters are Ec = 600 MPa and νc = 0 · 8. The interparticle
friction angle is ϕ=0 · 5. These material parameters are
common in DEM modelling of sands and are consistent
with those used in Guo & Zhao (2014). To reproduce
qualitatively the typical responses of dense dry sand, the
RVE packing is first isotropically consolidated to a mean
effective stress p0 = σo = 100 kPa and to reach a void ratio
e0 = 0 · 177. During the sample preparation process, the
friction angle is reduced to achieve a relatively dense pack-
ing. After the preparation, the RVE packings – with the
same initial conditions – are embedded into the Gauss
quadrature points of the FEM mesh for the TWHC tests.

Cavity pressure
The authors first examine the evolution of the cavity
pressure σc against the cavity expansion displacement uc
normalised by the initial cavity radius rc, as plotted in Fig. 3.
It is seen that the results from the simplified quarter-
domain and the full-domain simulations are almost iden-
tical, despite some small deviations around the peak.
Both show an obvious softening post-peak behaviour.
From the drained biaxial compression test results on the
same RVE packing (Guo & Zhao, 2014, 2015) shown
in Fig. 4, the macroscopic material parameters, such as
the peak friction angle ϕ

0

max, the peak dilation angle ψmax
and the elastic shear modulus G, can be estimated
as: sin ϕ

0

max ¼ ððσ1=σ3Þmax % 1Þ=ððσ1=σ3Þmax þ 1Þ & 0'47,
sinψmax= ((dε1/dε3)max+ 1)/(1− (dε1/dε3)max)≈ 0 · 26 (Bolton,
1986) and G/p0 ≈ 113, where σ1 (ε1) and σ3 (ε3) are the
major and minor principal stresses (strains), respectively.
With these estimations, it is instructive to further compare

the multiscale predictions with some closed-form solutions
for the limit cavity pressure (Carter et al., 1986; Yu &
Houlsby, 1991). According to Yu & Houlsby (1991), the
limit cavity pressure would reach about 15p0 (see Appendix)
for the cohesionless sand based on an elasto-perfect-plastic
constitutive model using the above estimated macroscopic
material parameters. However, the current study gives a peak
cavity pressure of only 3 · 5p0, as seen from Fig. 3, which
is noticeably smaller than the analytical solution. The
difference is mainly owing to the softening response of
the material, as well as the highly non-uniform deformation
field developed in the specimen due to strain localisation
(other factors such as boundary condition and assumed
two-dimensional simulation may also contribute). These two
major factors violate the assumptions adopted in deriving
the analytical solution. Indeed, from the experiments
conducted by Alsiny et al. (1992) where strain localisation
was observed, the cavity pressure can only reach up to a peak
value slightly larger than 4p0 from different tests – with p0
varying from 50 to 200 kPa – followed by a significant
decreasing pressure, which are similar to the observations in
this study. The complexities of the material response and the
deformation field impede an accurate prediction of the limit
cavity pressure based on simple assumptions, let alone a reli-
able prediction of the failure pattern. Therefore, a compre-
hensive numerical study on the failure mechanism and
failure pattern is needed.

Strain localisation
Shear failure has been observed from both quarter-domain
and full-domain simulations of the TWHC tests, where the
failure pattern manifests as a series of curvilinear shear
bands, as shown in Figs 5(a) and 5(b), in terms of the void
ratio contours at two loading stages (uc = 7 · 5 and 15 mm)
(The entire development history of the shear bands can be
found in the supplementary material of the paper.). For the
quarter-domain simulation (Fig. 5(a)), a primary shear band
is found emanating from the middle of the inner surface,
propagating upwards along a spiral path, touching the
left boundary and getting reflected before finally reaching
the exterior surface (see the supplementary animation). The
reflective boundary is artificially introduced by the imposed
boundary condition that enforces axisymmetry in the
quarter-domain modelling. This artificial effect is eliminated
in the full-domain simulation (Fig. 5(b)) where four major
antisymmetric shear bands have been observed, which are all
initiated from the inner surface and develop uninterruptedly
towards the exterior surface by following similar spiral
patterns. A series of small curvilinear shear bands are also
formed and these are intercepted by the primary shear
bands. Figure 5(c) compares these two results with those
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Multiscale analysis of shear failure of TWHC in dry sand 3

Downloaded by [ HKUST Library] on [11/01/16]. Copyright © ICE Publishing, all rights reserved.



from Crook et al. (2003) and François et al. (2014), which
are obtained by way of macroscopic plasticity models.
The authors’ quarter-domain and full-domain simulations
qualitatively agree well with the results obtained by using
plasticity models.
Previous laboratory tests using digital image correlation

and X-ray μCT (Rechenmacher, 2006; Hall et al., 2010)
revealed that significant particle rotations take place inside
the dilative shear band(s). This significant particle rotation
is also observed in DEM simulations (Bardet & Proubet,
1991; Sun et al., 2013a). In the multiscale model, the time
history of the motion of each particle in the RVE packings is
recorded. This unique aspect of the multiscale model enables
us to measure the average particle rotation θ̄ of an RVE
packing (averaged over all particles within the packing,
positive for anti-clockwise rotation). Figure 6 shows the
contours from the two tests at uc = 15 mm. Clearly, particle
rotations are concentrated at the localised dilative zones.

Microstructural analyses
The multiscale framework offers a convenient way for
cross-scale analyses. Under the hood of macroscopic con-
tinuum modelling, the microstructure of the material points

can be characterised from the embedded RVE packings.
Two such packings from different Gauss points of the
full-domain simulation are chosen for demonstration. The
two points – GPA and GPB – are located inside one of
the primary (with positive θ̄) and one of the secondary (with
negative θ̄) shear bands (Fig. 6(b)), respectively. Their
microstructures after the cavity expansion at uc = 15 mm
(The entire evolution history of the force chains at these two
points can be found from the animated video in the
supplementary material of the paper.) are characterised by
the force chains and the contact-normal distributions (or the
so-called fabric tensor, Satake, 1982; Guo & Zhao, 2013;
Zhao & Guo, 2013; Kuhn et al., 2015), as shown in Fig. 7.
First, it is seen that the RVE packings at both locations are
severely stretched and rotated. The overall packing rotation
of GPA is found to be anticlockwise, whereas that of GPB is
clockwise, which are consistent with θ̄ at these two points.
Second, distinct strong force chains (whose linewidth is
proportional to the normal contact force) are observed

uc = 7·5 mm uc = 15 mm
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Fig. 5. Contours of void ratio at uc = 7 · 5 and 15 mm showing
strain localisation of (a) the quarter-domain and (b) the full-
domain simulations; (c) comparison with other studies (figures
adapted from François et al. (2014) and Crook et al. (2003),
respectively)
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penetrating both packings, indicating that these two pack-
ings possess highly anisotropic structures. The major
principal direction of the contacts can be seen from the
rose diagram of the contact-normal distributions. At both
locations, the major principal contact direction of the
deformed RVE appears to be consistent with that of the
strong force chains.

CONCLUSIONS
The authors have presented multiscale simulations of the
TWHC tests in dry sand. Without the need of any macro-
scopic phenomenological model, the multiscale approach is
capable of reproducing complex shear failure patterns
manifested by a series of curvilinear shear bands observed
in the TWHC experiments. The cavity pressure limit pre-
dicted by the multiscale model is noticeably smaller than its
analytical counterpart, which is derived from a simple
elasto-perfect-plastic model in the absence of shear banding.
The multiscale approach is particularly suitable for macro-
scale and microscale bridging. The microstructures of local
material points and their evolutions under shearing can be
conveniently examined. The simulation results indicate that
significant particle rotation may develop inside shear bands
and lead to highly anisotropic microstructures. One limit-
ation of the study arises from the use of circular particles
in the DEM model. For quantitative modelling of sand
behaviours, realistic particle shape needs to be considered
and this will be a future pursuit of the study.

APPENDIX
The simplified form of the cylindrical cavity pressure limit of
a cohesionless elasto-perfect-plastic soil can be derived by
assuming zero elastic strain within the plastic zone (Yu &
Houlsby, 1991)

ðαþ 1Þσc
2αp0

¼ 1

1% ð1% δÞðβþ1Þ=β

" #1=γ

ð3Þ

where the four material strength coefficients are defined
as: α ¼ ð1þ sin ϕ

0

maxÞ=ð1% sin ϕ
0

maxÞ, β= (1+ sinψmax)/
(1− sinψmax), γ= α(β+1)/[(α− 1)β] and δ= (α− 1)p0/
[2(α+1)G]. By substituting the estimated macroscopic
strength parameters, these four coefficients are obtained as
α ≈ 2 · 77, β ≈ 1 · 7, γ ≈ 2 · 48 and δ ≈ 0 · 002. Then the cavity
pressure limit can be calculated from equation (3) as
σc ≈ 15p0. This value is consistent with the range given in
Figs 7–9 in Yu & Houlsby (1991).
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