Discontinuous deformation analysis based on strain-rotation decomposition

Huo Fana,⁎, Hong Zhengb, Jidong Zhaoa,⁎

a Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
b Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

\section*{ARTICLE INFO}

Keywords:
- Strain-rotation decomposition
- Dynamic formulation
- Discontinuous deformation analysis
- Large rotation

\section*{ABSTRACT}

The S-R (strain-rotation) decomposition theorem has an ability to capture strain components and rotation components at the same time. Using the principle of virtual power (VP), in this study, a new formulation independent of specific numerical methods is proposed for the analysis of dynamic large or small deformation. Then, the formulation is applied to the discontinuous deformation analysis (DDA), yielding a new DDA based on the S-R decomposition theorem, abbreviated as SRDDA\textsubscript{vp}. Compared with the conventional DDA, SRDDA\textsubscript{vp} adopts a slightly modified basic variables together with the generalized-\(\alpha\) method. The analysis of some typical examples indicates that SRDDA\textsubscript{vp} can naturally overcome the issue of volume expansion, effectively improve the calculation accuracy and, equip DDA with the potential to treat large deformation.

\section*{1. Introduction}

The discontinuous deformation analysis (DDA) is a discrete block-based method 1,2. In both 2D-DDA and 3D-DDA, the special shape functions and basic variables are employed to make the approximation of displacement field independent of the shape of block. The effectiveness of DDA in geotechnical problems has been recognized 3–5, and extensively applied in the analysis of seismic landslides 6–8, crack propagations 9–11, hydraulic fractures 12,13, masonry structures 14, the path tracking of rockfalls 15, fluid-solid coupling 16 and motion of particulate media 17,18.

During the past 20 years, the performance of DDA is enhanced largely. The higher-order DDA 19, a nodal-based DDA 20, the FEM-DDA 21, the NMM-DDA 22 and the DDA with bonding springs 23 improved the deformability of objects simulated by DDA. The post-adjustment method 24, the Taylor series method 25, the trigonometric method 26, the post-contact adjustment method 27, the displacement-strain modification method 28 overcame the volume expansion of block due to small deformation assumption, and a procedure 29 to mitigate the elastic distortions with large rotation. Some convergence criterions 30, the trick of contact state recovery 31, and the strategy of strengthening the movement trend 32 speeded up the open-close iteration. The augmented Lagrange multiplier method 33, the Lagrange multiplier method 34, the complementarity method 35–37, the variational inequality method 38 improved the accuracy of contact force. The one temporary spring method 39, and the angle-based method 40 handled the inde-terminacy of vertex-vertex contact. For 3D-DDA, the contact sub-matrices 40 modified the stiffness matrix. The models of point-to-face and edge-to-edge contact 41,42 dealt with the various contacts. An algorithm 43 coped with the frictionless vertex-to-face contacts. Another algorithm 44 searched and calculated geometrical contacts. A fast algorithm 45 identified the common plane. A multi-shell cover algorithm 46 detected contacts. A nodal-based 3D-DDA 47 was developed. Moreover, the new contact theory 48 developed by Shi is expected to significantly simplify the difficulties in treating three-dimensional singular contacts.

It is worth mentioning that the S-R decomposition theorem 49–54 is an important result in the field of geometric nonlinearity. By this theorem, the strain and local rotation can be simultaneously and accurately captured. However, a dynamic formulation based on this theorem remains absent. In this study, using the principle of virtual power (VP), a new formulation for dynamic analysis is firstly deduced. The S-R-D-based formulation is independent of specific numerical methods. In other words, it provides an opportunity to develop DDA under the background of the new theory, in which the small strain assumption is no longer needed. Compared with the conventional DDA, a slightly modified displacement function and the generalized-\(\alpha\) 55 method are utilized in the S-R-D-based DDA, abbreviated by SRDDA\textsubscript{vp} in which the subscript “vp” stands for the principle of virtual power. The results obtained show that SRDDA\textsubscript{vp} can naturally overcome the issue of volume expansion, effectively improve the calculation accuracy and, equip DDA with the potential to treat large deformation.
2. S-R decomposition theorem

The S-R decomposition theorem is always associated with the co-moving coordinate description method. The connection between the theorem and the co-moving coordinate has been demonstrated and illuminated in 49-54. Here, for completeness, we only touch upon the related concepts and theories.

For a deformable body in Euclidean space \(E^3 \), the following two reference frames are chosen to describe the motion of a body:

1. A global reference system \(\{X\} \) (i=1, 2, 3), which is fixed in space.
2. A co-moving coordinate system \(\{x'\} \) (i=1, 2, 3), which is embedded in the deformable body, with its coordinate line allowed to stretch and rotate.

In general, the initial reference frame or the initial co-moving coordinate system is chosen as a rectilinear or curvilinear orthogonal system. However, owing to the occurrence of deformation of the considered body, a new curvilinear system may be formed following the deformation. Fig. 1 shows the configuration change of a co-moving coordinate system in the two-dimensional case. The situation in the three-dimensional case is similar. Let \(\mathbf{r} \) and \(\mathbf{R} \) be the position vectors of a point before and after deformation, and \(\mathbf{u} \) the displacement vector. Then, the three vectors have the relationship

\[
\mathbf{R} = \mathbf{r} + \mathbf{u}. \tag{1}
\]

We define the basis vectors at a point in the initial co-moving coordinate system by

\[
\mathbf{g}_i = \frac{\partial \mathbf{r}}{\partial \mathbf{x}^i}, \quad i = 1, 2, 3. \tag{2}
\]

After deformation, the basis vectors at the same point change to

\[
\mathbf{g}_i = \frac{\partial \mathbf{R}}{\partial \mathbf{x}^i} = \frac{\partial \mathbf{r}}{\partial \mathbf{x}^i} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}^i}. \tag{3}
\]

Using Eq. (1), one can obtain

\[
\frac{\partial \mathbf{R}}{\partial \mathbf{x}^i} = \frac{\partial \mathbf{r}}{\partial \mathbf{x}^i} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}^i}. \tag{4}
\]

In the curvilinear system, any vector can be decomposed with respect to the basis vector \(\mathbf{g}_i \). For the displacement \(\mathbf{u} \), we have

\[
\mathbf{u} = u^0 \mathbf{g}_i. \tag{5}
\]

Further, we can obtain

\[
\frac{\partial \mathbf{u}}{\partial \mathbf{x}^i} = \frac{\partial \mathbf{u}^0}{\partial \mathbf{x}^i} \mathbf{g}_i. \tag{6}
\]

Then, the following transformation of basis vectors can be obtained

\[
\mathbf{g}_i = F_{ik}^l \mathbf{g}_k. \tag{7}
\]

where \(F_i^j \) is a linear differential transformation function and can be described as

\[
F_i^j = \delta_i^j + u^l, \tag{8}
\]

where \(\delta_i^j \) is the Kronecker-delta. The covariant derivative \(u_i^j \) of displacement is expressed as

\[
u_i^j = \frac{\partial u^j}{\partial x^i} + \Gamma_0^j_0 \theta, \tag{9}\]

where \(\Gamma_0^j_0 \) is known as the Christoffel symbol of the second kind 56, and can be written as 51,54

\[
\Gamma_i^j k = \frac{1}{2} \left(\frac{\partial g_k^j}{\partial x^i} + \frac{\partial g_k^i}{\partial x^j} - \frac{\partial g_i^k}{\partial x^j} \right). \tag{10}\]

It should be pointed out that \(\mathbf{g}_i^0 \) and \(\mathbf{g}_i \) represent two very important local basis vectors; the stretch and rotation of a deformable body are reflected precisely through the transformation of these vectors.

On the other hand, the S-R Decomposition theorem 54-56 states that any invertible linear differential transformation function \(\mathbf{F} \) yields a unique additive decomposition:

\[
\mathbf{F} = \mathbf{S} + \mathbf{R}. \tag{11}\]

where \(\mathbf{S} \) is a symmetry sub-transformation representing the strain tensor and is positive definite and is called Chen strain, and \(\mathbf{R} \) is an orthogonal sub-transformation representing the local mean rotation tensor.

The strain tensor is

\[
S_i^j = \frac{1}{2} \left(u_i^j + u_j^i - \frac{\partial u^j}{\partial x^i} \right) - L_i^k L_j^k (1 - \cos \theta), \tag{12}\]

and the rotation tensor is

\[
R_i^j = \delta_i^j + L_i^k \sin \theta + L_j^k L_i^k (1 - \cos \theta), \tag{13}\]

where \(L_i^j \) is the unit vector of the rotation axis, and \(u_i^j \) is the displacement gradient. The superscript \(T \) denotes the transpose, and the notation \(\gamma_i^j \) represents the covariant derivative with respect to \(\mathbf{g}_i^0 \). And \(L_i^j \) can be written as

\[
L_i^j = \frac{1}{2 \sin \theta} \left(u_i^j - u_j^i \right). \tag{14}\]

The mean rotation angle \(\theta \) is determined by the following formula

\[
\sin \theta = \frac{1}{2} \sqrt{\left(u_i^j - u_j^i \right)^2 + \left(u_i^j - u_j^i \right)^2 + \left(u_i^j - u_j^i \right)^2}. \tag{15}\]

For two-dimensional problems, Eq. (15) reduces into

\[
\sin \theta = \frac{1}{2} \sqrt{u_i^j - u_j^i}. \tag{16}\]

In addition, the strain rate \(S_i^j \) can be written as 51,54

\[
S_i^j = \frac{1}{2} \left(\mathbf{V} \mathbf{V} i^k + \mathbf{V} \mathbf{V} j^k \right). \tag{17}\]

where \(\mathbf{V} \mathbf{V} i^k \) is the velocity gradient, and the notation \(\gamma_i^j \) represents the covariant derivative with respect to \(\mathbf{g}_i^0 \), in order to distinguish it from \(\gamma_i^j \). It should be noted that, in accordance with the theory of tensor analysis, the corresponding physical components should be adopted in the calculation.

3. DDA based on S-R decomposition

3.1. Incremental governing equation

Based on the S-R decomposition, the principle of virtual power can
be applied to establish the incremental governing equation, with respect to the current configuration. Assuming that the solutions for the static and kinematic variables have been obtained from time 0 up to time \(t \) inclusively, and that the subsequent solution for time \(t + \Delta t \) is now targeted. The procedure to obtain the solution for the next required equilibrium position is representative, and can be carried out repetitively until the final state is achieved. At time \(t + \Delta t \), the principle of virtual power for the deformable body can be expressed by the following equation with respect to the current configuration:

\[
\int_{t_\Omega}^\tau (\sigma \cdot \delta V) \, d\Omega + \int_{t}^\tau \rho f \cdot \delta V \, dt = 0,
\]

(18)

where the first term represents the virtual power corresponding to the inner force, and \(\sigma \cdot \delta V \) and \(\rho f \cdot \delta V \) are the virtual powers of inertia force, constraint force of specified displacement, and the surface and body force, respectively. \(\Omega \) is the domain of integration. In addition, \(\sigma \) is the stress, and \(\delta V \) is the virtual strain rate, with the definitions:

\[
\begin{align*}
\rho \cdot \delta V & = \left(\int_{t_\Omega}^\tau \rho \cdot A \cdot \delta \dot{V} \cdot d\Omega \right), \\
\sigma \cdot \delta V & = \left(\int_{t}^\tau k \cdot (\Delta u - \Delta \Upsilon) \cdot \delta \dot{V} \cdot d\Omega \right), \\
\rho f \cdot \delta V & = \left(\int_{t}^\tau \rho f \cdot \delta \dot{V} \cdot d\Omega \right),
\end{align*}
\]

(19-21)

and the unknown. Therefore, the following approximation can be employed, and using Eq. (28) gives

\[
\begin{align*}
\int_{t_\Omega}^\tau & (\sigma \cdot \delta V) \, d\Omega + \int_{t}^\tau \rho f \cdot \delta V \, dt = 0, \\
\int_{t_\Omega}^\tau & (\sigma \cdot \delta V) \, d\Omega + \int_{t}^\tau \rho f \cdot \delta V \, dt = 0.
\end{align*}
\]

(29, 30)

In the same fashion, we have

\[
\int_{t_\Omega}^\tau (\sigma \cdot \delta V) \, d\Omega + \int_{t}^\tau \rho f \cdot \delta V \, dt = 0.
\]

(31)

Substituting Eqs. (26) and (27) into Eq. (28) and considering Eqs. (29), (30) and (31), one can obtain

\[
\int_{t}^\tau \rho f \cdot \delta V \, dt = 0.
\]

(32)

where the double bar over a variable indicates that the variable refers to the reference frame of the co-moving coordinate system \(\dot{\mathbf{g}} \).

3.2. Updated co-moving coordinate formulation

In order to establish the updated co-moving coordinate formulation of the incremental governing equation, the initial co-moving system \(\dot{\mathbf{g}} \) of time \(t \) is chosen as the reference frame of the co-moving coordinate system \(\dot{\mathbf{g}} \) at time \(t \). There are three main purposes of this choice:

1. Transforming Eq. (32) into an equation with regard to the initial co-moving system \(\dot{\mathbf{g}} \) at time \(t \).

By using the results of the fourth section in \(52 \), the first two terms (FTT) of Eq. (32) can be written as

\[
\begin{align*}
F \cdot T & = \int_{t_\Omega}^\tau \sigma \cdot \delta (\Delta \dot{S}_i) \, d\Omega + \int_{t}^\tau \int_{t_\Omega}^\tau \rho f \cdot \delta (\Delta \dot{S}_i) \, d\Omega, \\
T \cdot \delta V & = \int_{t_\Omega}^\tau \delta (\Delta \dot{S}_i) \, d\Omega + \int_{t}^\tau \int_{t_\Omega}^\tau \delta \rho f \cdot \delta (\Delta \dot{S}_i) \, d\Omega.
\end{align*}
\]

(33)

where \(\delta \dot{S}_i \) and \(\Delta \dot{S}_i \) are the material tensor and the unknown strain rate increment in the interval \(\Delta t \) with respect to \(\dot{\mathbf{g}} \), respectively. The bar \(\sim \) over a variable indicates that the variable refers to \(\dot{\mathbf{g}} \).

For time \(t \), the velocity vector referring to the co-moving coordinate systems \(\dot{\mathbf{g}} \) and \(\dot{\mathbf{g}} \) can be expressed as

\[
\dot{\mathbf{V}} = \dot{\mathbf{V}}_{\dot{\mathbf{g}}} + \dot{\mathbf{V}}_{\dot{\mathbf{g}}} - \dot{\mathbf{V}}_{\dot{\mathbf{g}}},
\]

(34)

Similarly, the velocity increment vector is given as

\[
\Delta \dot{\mathbf{V}} = \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}} + \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}} - \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}},
\]

(35)

For time \(t + \Delta t \), with respect to the co-moving coordinate systems \(\dot{\mathbf{g}} \) and \(\dot{\mathbf{g}} \), which is the initial co-moving system of \(\dot{\mathbf{g}} \), we can obtain

\[
\Delta \dot{\mathbf{V}} = \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}} + \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}} - \Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}},
\]

(36)

where the double bar \(\sim \) over a variable indicates that the variable refers to \(\dot{\mathbf{g}} \), in order to distinguish with the variable referring to \(\dot{\mathbf{g}} \). At time \(t + \Delta t \), on the other hand, the acceleration vector \(\Delta \dot{\mathbf{V}}_{\dot{\mathbf{g}}} \) can be defined by
\[A = \int_{t_0}^{t_0+\Delta t} \int_{t_0}^{t_0+\Delta t} g_i \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(37)

As for the first term of Eq. (37), owing to fact that the space derivative is not involved, we have

\[\int_{t_0}^{t_0+\Delta t} \left(\frac{\partial V}{\partial t} \right)_{t_0}^{t_0+\Delta t} g_i = \left(\frac{\partial V}{\partial t} \right)_{t_0}^{t_0+\Delta t} g_i. \]
(38)

Furthermore, for the second term of Eq. (37), using the following two equations

\[\int_{t_0}^{t_0+\Delta t} \left(\frac{\partial V}{\partial t} \right)_{t_0}^{t_0+\Delta t} g_i = \int_{t_0}^{t_0+\Delta t} \left(\frac{\partial V}{\partial t} \right)_{t_0}^{t_0+\Delta t} g_i. \]
(39)

\[\int_{t_0}^{t_0+\Delta t} \left(\frac{\partial V}{\partial t} \right)_{t_0}^{t_0+\Delta t} g_i = \int_{t_0}^{t_0+\Delta t} \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(40)

we have

\[A = \int_{t_0}^{t_0+\Delta t} \int_{t_0}^{t_0+\Delta t} g_i = \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(41)

By using Eqs. (36) and (41), the virtual powers of the inertia force

\[\int_{t_0}^{t_0+\Delta t} \int_{t_0}^{t_0+\Delta t} g_i \]
(42)

With respect to \(g_i \) and \(\int_{t_0}^{t_0+\Delta t} g_i \), the velocity increment vectors can be written as

\[\Delta V = \Delta \Gamma \cdot \int_{t_0}^{t_0+\Delta t} g_i. \]
(43)

Because \(\int_{t_0}^{t_0+\Delta t} g_i \) and \(\int_{t_0}^{t_0+\Delta t} g_i \) are isomorphic, namely,

\[\Delta \Gamma \cdot \int_{t_0}^{t_0+\Delta t} g_i. \]
(44)

Thus, Eq. (42) becomes

\[\int_{t_0}^{t_0+\Delta t} W_{in e} = \int_{t_0}^{t_0+\Delta t} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(45)

Moreover, using Eq. (35) yields

\[W_{pen} = \int_{I_0}^{I} k \int_{t_0}^{t_0+\Delta t} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(46)

and

\[W_{ext} = \int_{t_0}^{t_0+\Delta t} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(47)

where \(W_{pen} \) and \(W_{ext} \) are both expressed with respect to the co-moving coordinate system \(g_i \). Hence, the incremental governing equation Eq. (32) becomes

\[\int_{I_0}^{I} \int_{t_0}^{t_0+\Delta t} \left(\frac{\partial S_i}{\partial t} + \Delta t \right) dS + \int_{I_0}^{I} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(48)

Eqs. (45–48) exactly express the new formulation, which is based on the S-R decomposition theorem and is described in the updated co-moving coordinate form. The equations will be implemented further in the context of DDA. It should be pointed out that the rotation tensor \(R \) does not appear explicitly, and that the inertia item is primarily considered. The above two points are the main differences from the counterpart employed. Moreover, a dynamic analysis cannot be achieved despite the insertion of the inertia item into the static formulation. That is, there seems to be no shortcut to the dynamic formulation.

(2) Providing theoretical basis for updating the co-moving coordinate and state variables of material point.

In solving the incremental governing equation, the initial co-moving system of each incremental step is required to be reselected and constantly changing. That is, from time \(t \) to time \(t + \Delta t \), the initial co-moving system is given by \(g_i \) at time \(t \); whereas, from time \(t + \Delta t \) to time \(t + 2 \Delta t \), the initial co-moving system is defined by \(g_i \) at time \(t + \Delta t \), as shown in Fig. 2. For the case that these initial co-moving systems are all selected to be isomorphic to the rectilinear orthogonal coordinate system that is fixed in the space, a formula for updating the co-moving coordinate of material point has been given by

\[\int_{t_0}^{t_0+\Delta t} \int_{t_0}^{t_0+\Delta t} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(49)

where \(\Delta u \) is the displacement increment in the \(g_i \) system during \(\Delta t \). As for the stress, the following formula can be adopted:

\[\int_{t_0}^{t_0+\Delta t} \int_{t_0}^{t_0+\Delta t} \rho \left(\frac{\partial V}{\partial t} + V/V \right)_{t_0}^{t_0+\Delta t} g_i. \]
(50)

It is worth mentioning that \(\sigma_i \) is also an objective stress rate in the \(g_i \) system. For an isotropic material, \(\sigma_i = D \varphi \) was proved in.

(3) Due to the above-mentioned property, when isomorphic coordinate systems are chosen, the Christoffel symbol of the second kind, \(\Gamma_i^j \), will vanish from Eq. (9). The covariant derivative \(\frac{\partial}{\partial x_i} \) becomes

\[\frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_i}. \]
(51)

Therefore, the related deduction and calculation can be simplified considerably. From here on, \(\Gamma_i^j \) will no longer be required, unless otherwise noted.
3.3. Governing equation and time advancement

Now we start to construct SRDDA\textsubscript{op}. In order to facilitate the description, the bar “−” and the double bar “−−” over some variables are omitted from this point on, unless otherwise noted. The first-order displacement approximation is adopted for any block. In this study, the following shape function is used

\[
T(x, y) = \begin{bmatrix}
1 & 0 & y_0 - y & x - x_0 & 0 & \frac{x - x_0}{2} \\
1 & x - x_0 & 0 & y - y_0 & 0 & \frac{y - y_0}{2}
\end{bmatrix}.
\]

(52)

Considering an arbitrary shape block B, for any point \((x, y)\) inside the block B, the displacement \(u\) can be expressed as

\[
u(x, y) = \begin{pmatrix} u(x, y) \\ v(x, y) \end{pmatrix} = T(x, y)d_u,
\]

(53)

where \(d_u = [u, v, \theta, \epsilon_x, \epsilon_y, \psi]^{\top}\) is the generalized displacement vector of the block, \(u\) and \(v\) represent translational components of the block. While \(\theta\) is corresponding to the mean rotation angle in S-R decomposition theorem, \(\epsilon_x\) and \(\epsilon_y\) are the three Cauchy strain components. Further, the increment displacement \(\Delta u\) can be described as

\[
\Delta u(x, y) = \begin{bmatrix} \Delta u(x, y) \\ \Delta v(x, y) \end{bmatrix} = T(x, y)d_{\Delta u},
\]

(54)

where \(d_{\Delta u} = [\Delta u, \Delta v, \Delta \theta, \Delta \epsilon_x, \Delta \epsilon_y, \Delta \psi]^{\top}\) is the generalized increment displacement vector of the block. The velocity \(V\) can be written as

\[
V(x, y) = \begin{pmatrix} v(x, y) \\ v(x, y) \end{pmatrix} = T(x, y)V_u,
\]

(55)

where \(V_u = [u, v, \theta, \epsilon_x, \epsilon_y, \psi]^{\top}\) is the generalized velocity vector of the block. Moreover, the acceleration \(A\) can be expressed as

\[
A(x, y) = \begin{bmatrix} A_u(x, y) \\ A_v(x, y) \end{bmatrix} = T(x, y)A_u.
\]

(56)

where \(A_u = [\dot{u}, \dot{v}, \dot{\theta}, \dot{\epsilon}_x, \dot{\epsilon}_y, \psi]^{\top}\) is the general acceleration vector of the block. On the other hand, to represent the stress and strain of any point inside of the block, the vectors \(s(x, y) = [\sigma_x, \sigma_y, \tau_{xy}]^{\top}\) and \(S(x, y) = [S_{xx}, S_{yy}, S_{xy}]^{\top}\) (refer to Eq. (12)) can be employed, respectively. The strain rate vector of any point can be expressed as (refer to Eq. (17))

\[
\Delta S(x, y) = \begin{bmatrix} \Delta S_x \\\n\Delta S_y \\\n\Delta \tau_{xy} \end{bmatrix} = B_u \Delta d_u.
\]

(57)

where

\[
B_u = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]

(58)

and the strain rate increment vector can be written as

\[
\Delta S(x, y) = \begin{bmatrix} \Delta S_x \\\n\Delta S_y \\\n\Delta \tau_{xy} \end{bmatrix} = B_u \Delta d_u.
\]

(59)

Noticing the arbitrariness of \(\delta (\Delta V_u)\), Eq. (48) can be recast in the following matrix format

\[
\int_{\Omega} B_u^{\top} \sigma d\Omega + \int_{\Gamma} B_u^{\top} \mathbf{B} \mathbf{B} d\Gamma + \int_{\Gamma} \mathbf{T}^{\top} \mathbf{T} \mathbf{A} \mathbf{d} \mathbf{d} + W_{\text{pen}} - W_{\text{ext}} = 0,
\]

(60)

where \(\mathbf{D}\) is the material matrix, and

\[
W_{\text{pen}} = \int_{\Gamma_e} T^\top k(T \mathbf{d} \mathbf{d} - \Delta \mathbf{U} \mathbf{d} \mathbf{S}),
\]

(61)

\[
W_{\text{ext}} = \int_{\Gamma_e} T^\top f(T \mathbf{d} \mathbf{d} + \rho \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} / 2).
\]

(62)

where \(\Delta \mathbf{U}, \mathbf{F}\) and \(\mathbf{f}\) are the specified increment displacement, specified traction, and force per unit volume, respectively. The penalty matrix \(k\) is

\[
k = \begin{bmatrix} k_s & 0 \\ 0 & k_v \end{bmatrix}.
\]

(63)

It should be noted that the definitions of the stress and the velocity must be employed, with respect to the co-moving coordinate system. Next, the disposition of the dynamic terms in Eq. (60) will be explained based on the generalized-\(a\) method 53, which is an implicit method for dynamic analysis. The velocities and accelerations of the Newmark format 57 at the end of time \(t + \Delta t\) are as follows:

\[
\begin{align*}
\Delta \mathbf{V} &= \frac{\gamma}{\beta \Delta t} \mathbf{d} \mathbf{d} - \frac{\gamma - \beta}{\beta \Delta t} \mathbf{V}_b - \frac{\gamma - 2\beta}{2\beta} \Delta t \mathbf{A} \mathbf{b}, \\
\Delta \mathbf{A} &= \frac{1}{\beta (\Delta t)^2} \mathbf{d} \mathbf{d} - \frac{1}{\beta \Delta t} \mathbf{V}_b - \frac{1 - 2\beta}{2\beta} \Delta t \mathbf{A} \mathbf{b}.
\end{align*}
\]

(64)

(65)

The generalized mid-point velocities and accelerations are given by

\[
\begin{align*}
\Delta \mathbf{V} &= \frac{1}{\beta \Delta t} \mathbf{d} \mathbf{d} - \frac{1}{\beta \Delta t} \mathbf{V}_b - \frac{1 - 2\beta}{2\beta} \Delta t \mathbf{A} \mathbf{b}, \\
\Delta \mathbf{A} &= \frac{1}{\beta (\Delta t)^2} \mathbf{d} \mathbf{d} - \frac{1}{\beta \Delta t} \mathbf{V}_b - \frac{1 - 2\beta}{2\beta} \Delta t \mathbf{A} \mathbf{b},
\end{align*}
\]

(66)

(67)

where \(\beta, \gamma, \alpha\) and \(\alpha_m\) are the algorithmic parameters and the relationship between them are as follows:

\[
\beta = \frac{1}{4}(1 - \alpha_m + \alpha)^2, \quad \gamma = \frac{1}{2} - \alpha_m + \alpha,
\]

(68)

where

\[
\alpha_m = \frac{2\rho_m - 1}{\rho_m + 1}, \quad \alpha = \frac{\rho_m}{\rho_m + 1},
\]

(69)

and \(\rho_m\) denotes the spectral radius.

After some mathematical manipulations, the incremental governing equation of one block can be written as

\[
(K_b + M_b) \mathbf{d} \mathbf{d} = \mathbf{F}_b,
\]

(70)

where \(K_b, M_b\) and \(\mathbf{F}_b\) are the stiffness matrix, the mass matrix and the equivalent force vector of the block, respectively. As for the other matrices, such as matrices of normal contact and shear contact and friction force, they are similar to those given by 1. Once these matrices are obtained, the global control equation can easily be assembled. Up to now, SRDDA\textsubscript{op} is established.

It should be pointed out that SRDDA\textsubscript{op} possesses the ability to capture the deformation and rotation simultaneously, which inherits from the S-R decomposition theorem. Exactly due to this ability, SRDDA can naturally eliminate the volume expansion of blocks.

4. Numerical examples

In this section, several classical tests are analyzed to validate the availability and potential of SRDDA\textsubscript{op}. In this study, DDA0 signifies the original DDA 1, DDA1 denotes the enhanced DDA by post-adjustment method 24 to eliminate the volume expansion. It should be pointed out that Eigen 58, which is a C++ template library for linear algebra, is used to solve the governing equation.

Fig. 3. Configuration of a simple pendulum.
4.1. Simple pendulum

In Fig. 3, Block1 is a long rod with a length of 9.90 m and a high of \(h=0.05 \text{ m} \); Block2 is a quadrate and its length of side is \(l=0.20 \text{ m} \). Point A serves as the center of rotation, point B is the centroid of Block2, and the distance between points A and B is given by \(L=10.00 \text{ m} \). Block1 and Block2 are connected at point B by contact springs with a stiffness of \(0.20\times10^{11} \text{ MN/m} \).

The simple pendulum falls from a horizontal position. In this example, the gravity of Block2 is the only external force and the mass of the Block1 is not considered. Let the time step size \(\Delta=0.001 \text{ s} \), the acceleration of gravity \(g=-10 \text{ m/s}^2 \), Young's modulus \(E=0.20\times10^{11} \text{ MPa} \), Poisson's ratio \(\nu=0.25 \), the penalty parameter \(P=0.20\times10^{11} \text{ MN/m} \), and the spectral radius of the generalized-\(\alpha \) method \(\beta=1 \). The total number of calculation steps is 6000, and the open-close iterations are not performed during the simulation. The trajectories of point B are shown in Fig. 4, and the some data are listed in Tables 1, 2.

From the zoomed view in Fig. 4(a), there is an offset between two trajectories, which are corresponding to the two different directions of motion. This is because the false volume expansion is not removed in DDA\(^0\). While in Fig. 4(b) and (c), the offsets of trajectories are not observed, implying that the false volume expansion is overcome effectively by DDA\(^1\) and SRDDA\(_{vp}\). The effectiveness of SRDDA\(_{vp}\) is proved further by the data in Table 1. It should be emphasized that compared with DDA\(^1\), the accuracy of the maximum angular velocity of the simple pendulum is improved obviously by SRDDA\(_{vp}\) (see Table 2), especially for the motion from right to left. The relative error is reduced to RE=0.1346\% from RE=0.2774\%, implying that the maximum angular velocity given by SRDDA\(_{vp}\) is closer to the theoretical solution.

4.2. Swing of a slender rod

The configuration of a slender rod is shown in Fig. 5. The length and high of the rod are \(L=10.00 \text{ m}, h=0.10 \text{ m} \), respectively. Point A is the center of rotation, and point B is the centroid of rod. The slender rod falls freely from a horizontal position. Let the time step size \(\Delta=0.001 \text{ s} \), the acceleration of gravity \(g=-10 \text{ m/s}^2 \), Young's modulus \(E=0.20\times10^{11} \text{ MPa} \), Poisson's ratio \(\nu=0.25 \), the penalty parameter \(P=0.20\times10^{11} \text{ MN/m} \), and the spectral radius of the generalized-\(\alpha \) method \(\beta=1 \). Under the action of gravity the slender rod starts fall from a horizontal position. The total number of calculation steps is 5000. The trajectories of points B and C are shown in Fig. 6, and the some data are listed in Tables 3 and 4.

From the zoomed view in Fig. 6(a), there is also an offset between two trajectories; this is also caused by the false volume expansion. From Table 3, as we can see, the false volume expansion basically does not exist in DDA\(^1\) and SRDDA\(_{vp}\). Moreover, from Table 4, the accuracy of maximum angular velocity of the slender rod is enhanced significantly by SRDDA\(_{vp}\), especially for the movement from right to left. The relative error is reduced to RE=0.1608\% from RE=0.2834\%. It would be more meaningful for long time simulation.

4.3. Propagation of a sine wave

Now, the propagation of a sine wave is used to verify SRDDA\(_{vp}\). A bar-spring structure (Fig. 7) serves as the medium. The bar-spring structure consists of 40 bars and 39 springs. For each bar, the length is given by \(l=0.25 \text{ m} \) and the height is \(h=0.10 \text{ m} \), respectively. The distance is \(L=10.00 \text{ m} \) between points A and B. Let the time step length \(\Delta=0.005 \text{ s} \), Young's modulus \(E=0.20\times10^{11} \text{ MPa} \), Poisson's ratio \(\nu=0.25 \), the number of calculation steps is 5500. From the zoomed view in Fig. 7(a), there is also an offset between two trajectories; this is also caused by the false volume expansion. From Table 5, as we can see, the false volume expansion basically does not exist in DDA\(^1\) and SRDDA\(_{vp}\). Moreover, from Table 6, the accuracy of maximum angular velocity is enhanced significantly by SRDDA\(_{vp}\), especially for the motion from right to left. The relative error is reduced to RE=0.1346\% from RE=0.2774\%. It would be more meaningful for long time simulation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Area of Block1 and Block2 (Fig. 3).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>DDA(^0)</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>500</td>
<td>Block1</td>
</tr>
<tr>
<td></td>
<td>Block2</td>
</tr>
<tr>
<td>1000</td>
<td>Block1</td>
</tr>
<tr>
<td></td>
<td>Block2</td>
</tr>
<tr>
<td>2000</td>
<td>Block1</td>
</tr>
<tr>
<td></td>
<td>Block2</td>
</tr>
<tr>
<td>5000</td>
<td>Block1</td>
</tr>
<tr>
<td></td>
<td>Block2</td>
</tr>
<tr>
<td>6000</td>
<td>Block1</td>
</tr>
<tr>
<td></td>
<td>Block2</td>
</tr>
</tbody>
</table>

Analytical solution: \(\text{Area1} = 0.495 \text{ m}^2, \text{Area2} = 0.04 \text{ m}^2 \). (CS: calculation step, CV: calculation value, RE: relative error)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Maximum angular velocity of a simple pendulum (Fig. 3).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of motion</td>
<td>Method</td>
</tr>
<tr>
<td>Left-to-right</td>
<td>DDA(^0)</td>
</tr>
<tr>
<td></td>
<td>DDA(^1)</td>
</tr>
<tr>
<td></td>
<td>SRDDA(_{vp})</td>
</tr>
<tr>
<td>Right-to-left</td>
<td>DDA(^0)</td>
</tr>
<tr>
<td></td>
<td>DDA(^1)</td>
</tr>
<tr>
<td></td>
<td>SRDDA(_{vp})</td>
</tr>
</tbody>
</table>

Analytical solution: \(\omega = \pm 1.414214 \text{ s}^{-1} \). (CV: calculation value, RE: relative error)
\[\nu = 0.25, \text{ the stiffness of springs } k = 200 \text{ MN/m, the penalty parameter } P = 200 \text{ MN/m, and the spectral radius of the generalized- } \alpha \text{ method } \rho_{\alpha} = 1. \] The total number of calculation steps is 900. Moreover, the weights of bars are ignored and point B is always fixed in the horizontal direction during simulation. The following displacement is assigned to point A.

\[\nu = 0.25 \sin \left(\frac{2\pi t}{300} \right). \tag{71} \]

At CS = 300, see Fig. 8, DDA\(^0\), DDA\(^1\), and SRDDA\(_{vp}\) all can obtain the accurate period \(T = 300\) CS; while at CS = 600, see Fig. 9, only SRDDA\(_{vp}\) can give the accurate period, namely, \(T_1 = 299\) CS for the first period and \(T_2 = 302\) CS for the second period. For DDA\(^0\) and DDA\(^1\), the total number of calculation steps corresponding to two periods is shortened to about 573 CS. At CS = 900, see Fig. 10, the distinction becomes clearer between the periods given by DDA\(^0\), DDA\(^1\), and SRDDA\(_{vp}\). Especially for the first period, the periods obtained by DDA\(^0\), DDA\(^1\), and SRDDA\(_{vp}\) are \(T_1 = 270\) CS, \(275\) CS, and \(301\) CS, respectively. In general, only for the third period, DDA\(^0\) and DDA\(^1\) can obtain the acceptable period \(T_3 = 301\) CS and \(304\) CS, respectively.
While, for the all three periods, SRDDA
 can always give the satisfactory period, namely T1=301 CS, T2=302 CS and T3=301 CS. The shorter period means the faster velocity, thus, the velocity of propagation of the sine wave is increased by DDA
 and SRDDA.

4.4. Wiggle of a nunchaku

A nunchaku is consisted of two sticks AB1 and B2C, and for each stick the length is L =1.00 m and the high is h =0.10 m, respectively, as shown in Fig. 11. Point A is always fixed in double directions and the stiffness of fixed springs is given by k=0.20×10^15 N/m. Points B1, B2 and C are chosen as the three checking points. Moreover, Young’s modulus E =0.20×10^11 Pa, Poisson’s ratio υ =0.45, the density of material ρ =2500 kg/m^3, and the acceleration of gravity g =−10 m/s^2, and the spectral radius of the generalized-α method \(\rho_{\alpha} = 1 \). Let the time step length be \(\Delta t = 0.002 s \), and the total calculation step is 1800. Under the action of gravity the nunchaku falls from a horizontal position.

In this example, during the course of the simulation, we want to achieve a scenario that points B1 and B2 are always coincide with each other at any instant. Namely, there is the following constrain between points B1 and B2 at each calculation step.

\[
\left(\frac{\Delta u_{B1}}{\Delta t} \right) - \left(\frac{\Delta u_{B2}}{\Delta t} \right) = T_{AB}(y_{B1}, y_{B2}) \Delta d_{AB} - T_{B2C}(x_{B2}, y_{B2}) \Delta d_{B2C} = 0
\]

(72)

where \(\left(\frac{\Delta u_{B1}}{\Delta t} \right) \) and \(\left(\frac{\Delta u_{B2}}{\Delta t} \right) \) are the increments of displacement vectors of points B1 and B2, respectively. \(\Delta d_{AB} \) and \(\Delta d_{B2C} \) are the generalized displacement vectors of the sticks AB1 and B2C, respectively. Additionally, \(T_{AB}(x_{B1}, y_{B1}) \) and \(T_{B2C}(x_{B2}, y_{B2}) \) are the shape functions corresponding to the sticks AB1 and B2C, respectively (refer to Eq. (52)).

Introduce the Lagrange multipliers \(\lambda_1 \) and \(\lambda_2 \) yields

\[
\begin{pmatrix} A & \tilde{T} & \tilde{T} \\ \tilde{T} & 0 & 0 \\ \tilde{T} & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta d_{B1} \\ \Delta d_{AB} \\ \Delta d_{B2C} \end{pmatrix} = \begin{pmatrix} \bar{F} \end{pmatrix} \begin{pmatrix} \Delta \tilde{d}_{AB} \\ \Delta \tilde{d}_{B2C} \end{pmatrix} = 0
\]

(73)

where

\[
\tilde{T} = [T_{AB} - T_{B2C}]
\]

(74)

and

\[
\Delta \tilde{d} = \begin{pmatrix} \Delta d_{AB} \\ \Delta d_{B2C} \end{pmatrix}
\]

(75)

As for the matrices \(A_{12×12} \) and \(\bar{F}_{12×1} \) one can refer to Eq. (70). Some results are shown in Fig. 12.

From the zoomed view in Fig. 12(a), it is apparent that the trajectories of points B1 (the blue solid line) and B2 (the red solid line) are coincident; while there is an offset between two trajectories corresponding to the to-and-fro movement of the nunchaku. Now, let us see Fig. 12(b), for point B1 there is not an offset; however, the trajectories of points B1 (the blue solid line) and B2 (the red solid line) do not overlap, this phenomenon is against the control equation Eq. (73). On the other hand, in Fig. 12(c) it cannot be observed that the separation and offset associated with points B1 and B2.

The some distances between points B1 and B2 obtained by DDA
, DDA
 and SRDDA
 are list in Table 5.

From Table 5, as we can see, for DDA
 and SRDDA
 the distance between points B1 and B2 are always equal to zero, this fully complies with the governing equation Eq. (73). However, for DDA
 the distance is lengthening gradually even though that the angular velocity of the nunchaku is fluctuant and completely regardless of the constraint of Lagrange multipliers on them.

Fig. 13 shows further the trajectories of point C obtained by DDA
, DDA
 and SRDDA
. The difference between them is easily observed.

4.5. Simulation of rockfall

A model test example, which is to be conducted, is designed to demonstrate the capability of SRDDA
 to treat large rotation. The model configuration is shown in Fig. 14. On a portion of a rocky slope, a stone, with an initial velocity \(V_{fi} = (2.50 m/s, 0) \) and angular velocity \(\omega_{fi} = -1.00 s^{-1} \), is falling under the action of gravity. The first length \(L_1 = 1.00 m \), the second length \(L_2 = 2.00 m \), the third length \(L_3 = 3.00 m \) and the forth length \(L_4 = 5.00 m \). The three slope angles are \(\alpha = 60^\circ \), \(\beta = 45^\circ \) and \(\gamma = 15^\circ \), respectively.

Points P0, P1, and P2 are fixed in double directions. Points P1 and P2 are the centroid and a vertex of the stone, respectively. Let the maximum allowable step displacement ratio to be 0.001, the time step size \(\Delta t = 0.0005 s \), Young’s modulus E = 0.10×10^10 Pa, Poisson’s ratio \(\nu = 0.35 \), the acceleration of gravity \(g = −10 m/s^2 \), the spectral radius of the generalized-\(\alpha \) method \(\rho_{\alpha} = 1 \) and the penalty parameter \(\beta = 50E \). The total calculation step is 4000. Considering that the fact the volume expansion is mainly caused by the large rotation, thus, we will pay more attention to the angular velocity. Some data are listed Tables 6 and 7, while the trajectories of points P1 and P2 are shown in Fig. 15.

From Table 6, we conclude that before CS =1382 (see Fig. 15), at which the first contact occurs between the slope and the stone, the angular velocities given by DDA
 and DDA
 are nearly equal. By comparison, the angular velocities by SRDDA
 are more accurate. For example, at CS =1000, the relative errors are 0.000203% (DDA
), 0.000203% (DDA
) and 0.000040% (SRDDA
), respectively.

At CS =1382, the stone touches the slope for the first time (see Fig. 15). Then, at the following calculation step (CS =1383), the angular velocities by DDA
, DDA
 and SRDDA
 are different, with −10.25734346 s\(^{-1}\), −8.85281450 s\(^{-1}\) and −8.85595077 s\(^{-1}\), respectively. Moreover, due to the issue of volume expansion, the second contact by DDA
 can be observed at CS =1973 (see Fig. 15); while for DDA
 and SRDDA
, the second contact occurs at CS =2005. Whereafter, the third contact appears at CS =2912, 2593 and 2821 corresponding to DDA
, DDA
 and SRDDA
, respectively.

From Table 7, for DDA
 and SRDDA
, the moments of the second contact (CS =2005) is the same. However, at the next calculation step (CS =2006), the angular velocities by DDA
 and SRDDA
 are different, namely −18.34628241 s\(^{-1}\) and −18.55805717 s\(^{-1}\), respectively. While, following the third contact, namely at CS =2913, 2594 and 2822, respectively. The angular velocities by DDA
, DDA
 and SRDDA
 are 2.77335470 s\(^{-1}\), −23.45725286 s\(^{-1}\) and 14.49043619 s\(^{-1}\), respectively.

In Fig. 15, the blue line denotes the trajectory of point P1, the red line denotes the trajectory of point P2. Due to the volume expansion, as shown in Fig. 15(a), we observe that the trajectory by DDA
 is distorted. By comparing Fig. 15(b) and (c), we can see, the times of contact between the stone and the slope (\(\beta = 45^\circ \)) are once and twice for DDA
 and SRDDA
, respectively. Moreover, for the sliding distance of the stone, the results by DDA
 are longer than that by SRDDA
. In addition, from the zoomed views (zoom1, zoom2 and zoom3) in Fig. 15, several turning points of the trajectories can be observed. The corresponding angular velocities can found in Table 7. The potential of SRDDA
 is accordingly demonstrated by the simple example.

5. Conclusions

The S-R decomposition theorem is an important result in the theory
of geometric nonlinearity. It has an ability to capture strain components and rotation components at the same time. By utilizing this feature, a dynamics formulation was first deduced through the principle of virtual power. Moreover, the update process for the co-moving coordinate, which is closely related to the S-R decomposition theorem, was proposed. The new formulation is independent of the specific numerical methods. Then, in the setting of DDA, an S-R-D-based DDA, abbreviated as SRDDA, was established. Compared with the conventional DDA, the slightly modified basic unknown variables were adopted in SRDDA. Some examples have illustrated that SRDDA can naturally overcome the issue of volume expansion, effectively improve the calculation accuracy and also equip DDA with the potential to treat large deformation and large rotation.

Table 5

<table>
<thead>
<tr>
<th>CS</th>
<th>DDA⁰</th>
<th>DDA¹</th>
<th>SRDDA<sub>v</sub>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.000000</td>
<td>0.000001</td>
<td>0.000000</td>
</tr>
<tr>
<td>100</td>
<td>0.000000</td>
<td>0.000219</td>
<td>0.000000</td>
</tr>
<tr>
<td>500</td>
<td>0.000000</td>
<td>0.009848</td>
<td>0.000000</td>
</tr>
<tr>
<td>1000</td>
<td>0.000000</td>
<td>0.021701</td>
<td>0.000000</td>
</tr>
<tr>
<td>1500</td>
<td>0.000000</td>
<td>0.025308</td>
<td>0.000000</td>
</tr>
<tr>
<td>1800</td>
<td>0.000000</td>
<td>0.035775</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Analytical solution: 0 m. (CS: calculation step)

Fig. 12
Angular velocity of a nunchaku given by DDA¹. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13
Trajectories of point C given by DDA⁰, DDA¹ and SRDDA_vp.

Fig. 14
Configuration of simulation of rockfall.
Acknowledgements

This study is partially supported by the University Grants Council of Hong Kong through a Collaborative Research Fund (CRF) Project C6012-15G. This study is also supported by the National Basic Research Program of China (973 Program), under the Grant no. 2014CB047100; and the National Natural Science Foundation of China, under the Grant nos. 11172313 and 51538001.

Appendix

SRDDA_{vp} for three-dimensional case.

For arbitrary shape three-dimensional block, the shape function becomes

\[
\begin{bmatrix}
0 & 0 & 0 & z - z_e & -y & x - x_e & 0 & 0 & 0 & (z - z_e)/2 & (y - \chi)/2 \\
1 & 0 & 0 & z_e - z & 0 & x_e - x & 0 & 0 & 0 & (z_e - z)/2 & 0 & (x_e - x)/2 \\
0 & 1 & 0 & y - \chi & x_e - x & 0 & 0 & 0 & z_e - z & (y - \chi)/2 & 0 & (x_e - x)/2
\end{bmatrix}
\]

the increment displacement \(\Delta u \) at any point \((x_e, y_e, z_e)\) can be given by

\[
\Delta u(x, y, z) = \begin{bmatrix}
\Delta u_t(x, y, z) \\
\Delta u_l(x, y, z) \\
\Delta u_r(x, y, z)
\end{bmatrix} = \mathbf{T}(x, y, z) \Delta d
\]

(A1)

where \(\Delta d = [\Delta u, \Delta v, \Delta w, \Delta r_x, \Delta r_y, \Delta r_z, \Delta r_{\chi}, \Delta r_{\psi}, \Delta r_{\phi}, \Delta r_{\zeta}] \) is the generalized increment displacement vector. \(\Delta r_x, \Delta r_y \) and \(\Delta r_z \) represent the rigid-body rotation angle increments corresponding to \(x-, y-\) and \(z\)-axis respectively. Moreover, \(\Delta r_{\chi}, \Delta r_{\psi}, \Delta r_{\phi}, \Delta r_{\zeta} \) is the six increments strain components. The strain rate increment vector can be chosen as

\[
\Delta S(x, y, z) = \{\Delta S_{11, x}, \Delta S_{22, x}, \Delta S_{33, x}, 2\Delta S_{12, x}, 2\Delta S_{13, x}, 2\Delta S_{23, x}\} = \mathbf{B}_d \Delta \mathbf{V}_d.
\]

(A3)

where

\[
\mathbf{B}_d = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\]

(A4)

Similarly, the velocity \(\mathbf{V} \) reads

Table 6

<table>
<thead>
<tr>
<th>CS</th>
<th>DDA<sup>0</sup></th>
<th>DDA<sup>1</sup></th>
<th>SRDDA<sub>vp</sub></th>
<th>RE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-1.00000146</td>
<td>-1.00000146</td>
<td>-1.00000033</td>
<td>0.000146</td>
</tr>
<tr>
<td>200</td>
<td>-1.000000271</td>
<td>-1.000000271</td>
<td>-1.000000064</td>
<td>0.000272</td>
</tr>
<tr>
<td>500</td>
<td>-1.000000229</td>
<td>-1.000000055</td>
<td>-1.000000229</td>
<td>0.000229</td>
</tr>
<tr>
<td>800</td>
<td>-1.000000217</td>
<td>-1.000000043</td>
<td>-1.000000217</td>
<td>0.000217</td>
</tr>
<tr>
<td>1000</td>
<td>-1.000000203</td>
<td>-1.000000040</td>
<td>-1.000000203</td>
<td>0.000203</td>
</tr>
</tbody>
</table>

NOTE: CS: calculation step; CV: calculation value; RE: relative error.

Table 7

<table>
<thead>
<tr>
<th>CS</th>
<th>DDA<sup>0</sup></th>
<th>DDA<sup>1</sup></th>
<th>SRDDA<sub>vp</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1383</td>
<td>-10.25734346</td>
<td>-8.85281450</td>
<td>-8.85595077</td>
</tr>
<tr>
<td>1974</td>
<td>-21.31168993</td>
<td>-5.61558431</td>
<td>-5.78775106</td>
</tr>
<tr>
<td>2594</td>
<td>-10.85717983</td>
<td>-23.45725286</td>
<td>-14.94923222</td>
</tr>
<tr>
<td>2822</td>
<td>-10.85717529</td>
<td>-15.69652896</td>
<td>14.49043619</td>
</tr>
<tr>
<td>2913</td>
<td>2.77335470</td>
<td>-15.69653176</td>
<td>1.48686482</td>
</tr>
</tbody>
</table>

NOTE: CS: calculation step; CV: calculation value; \(\checkmark \) touched; \(\times \) not touched.
the acceleration A is

$$A(x, y, z) = \begin{bmatrix} A^x(x, y, z) \\ A^y(x, y, z) \\ A^z(x, y, z) \end{bmatrix} = T(x, y, z) \mathbf{A}_{\mu},$$

(A6)

where $\mathbf{V}_\mu = [u, v, w, \dot{u}, \dot{v}, \dot{w}, \ddot{u}, \ddot{v}, \ddot{w}]^T$ and $\mathbf{V}_p = [u, v, \dddot{w}, \dddot{u}, \dddot{v}, \dddot{w}, \dddot{u}, \dddot{v}, \dddot{w}]^T$ are the generalized velocity vector and acceleration vector, respectively. And the penalty matrix k should be

$$k = \begin{bmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & k_z \end{bmatrix}.$$

(A7)

Then, the governing equation for three-dimensional case can be easily constructed. And the increment strain is obtained by Eqs. (12), (14) and (15) only need to replace S'_i, u, φ, and θ by $\Delta S'_i$, Δu, $\Delta \varphi$, and $\Delta \theta$, respectively, reads...
\[\Delta S_i^k = \frac{1}{2} \left(\Delta u_i^k + \Delta u_j^k \right) - \Delta L_i^k \Delta L_j^k (1 - \cos(\Delta \theta)), \quad i, j = 1, 2, 3, \]

where

\[\Delta L_i^k = \frac{1}{2 \sin(\Delta \theta)} \left(\Delta u_i^k - \Delta u_j^k \right) \]

and

\[\sin(\Delta \theta) = \frac{1}{2} \left(\Delta u_i^k - \Delta u_j^k \right)^2 + \left(\Delta u_i^k - \Delta u_j^k \right)^2 + \left(\Delta u_i^k - \Delta u_j^k \right)^2. \]

References