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a b s t r a c t 
A three-dimensional (3D) high-order numerical manifold method (NMM) is developed based on the partition of 
unity method (PUM). We enrich the high-order NMM by introducing the derivative degrees of freedom associated 
with explicit physical significance. The global displacement in the formulation is approximated by a second-order 
approximation for the local displacement in conjunction with a first-order weight function. This not only helps 
the high-order NMM effectively avoid the problem of linear dependence that is frequently encountered in the 
PUM, but also renders the stress or strain at the star points continuous for the high-order NMM without the 
necessity of further smoothing operation. The effectiveness and robustness of the proposed new high-order NMM 
are demonstrated by several typical examples. Future potential developments and applications of the method are 
discussed. 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

The numerical manifold method (NMM) [1] has received increasing 
attention in a wide range of engineering research areas, including frac- 
ture mechanics [2–8] , fluid dynamics [9,10] , seepage flow [11,12] , the 
fourth order problems [13] , the functionally graded materials [14] , and 
isogeometric analysis [15] . Typically based on the first-order partition 
of unity (PU) [16] , the NMM has recently been extended to higher or- 
ders, including the second [17] and the third order [18] developments 
with the addition of mathematical patches (MP) to cover a manifold ele- 
ment (ME), and the higher-order extension in [19] based on raising the 
order of local approximation. The various formulations of high-order 
NMM commonly suffer a serious issue of linear dependence (LD) which 
may further cause the notorious rank deficiency (RD) issue of the global 
stiffness matrix. To address this, a new algorithm has been developed 
[20] and further extended [21] to predict the RD. A dual local approxi- 
mation scheme has also been introduced [22] , and some strategies have 
been suggested in [23] to suppress this phenomenon. More recently, a 
two-dimensional (2D) high-order NMM with derivative degrees of free- 
dom has been proposed by the authors [24] which may help to avoid 
the issue of linear dependence. Other latest developments of NMM en- 
compass extensions based on an explicit formulation [25] and involving 
of strain-rotation decomposition to resolve large deformation and large 
rotation issues [26–28] . 
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While 2D simplifications may be applicable to a number of cases, 
most real engineering problems are three-dimensional (3D). And as 
the enhanced version of FEM, 3D extended finite element method (3D- 
XFEM) was developed [29] . 3D generalized finite element method (3D- 
GFEM) was also proposed for investigating some 3D structural mechan- 
ics problems [30] . In addition, 3D mesh-free method [31] has also 
achieved some certain progress. It is hence desirable a full 3D NMM 
could be developed for practical application. There are two major chal- 
lenges related to the 3D extension from a 2D NMM. (1) Choice of mesh. It 
may seem to be straightforward to formulate the 3D NMM using 4-node 
tetrahedral meshes [32,33] . However, for a practical problem, regular 
tetrahedrons may not completely fill a 3D space. Hence, the tetrahedral 
meshes at domain boundaries have to be subdivided and replaced by 
refined tetrahedrons [34,35] . Other mesh type can also be used, for ex- 
ample, hexahedral meshes have recently been employed in developing 
a new augmented NMM with flat-top PU by He et al. [36] , which helps 
to avoid the issue of linear dependence in the NMM. A fault-cutting 
algorithm based on hexahedral meshes has also been developed [37] . 
(2) Physical significance of the undetermined coefficients. In most 2D 
NMM, the undetermined coefficients, or so-called as generalized degrees 
of freedom (DOFs) that are associated with the basis of the local ap- 
proximation, do not possess concrete physical meanings. A recent study 
[23] has borrowed the concept of DOFs used in discontinuous deforma- 
tion analysis (DDA) [38,39] for improvements. Similar ideas have been 
further used for a high-order NMM [24] . 
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Twenty four tetrahedrons expressed by node 
number:
1: 1-12-4-13   9: 7-8-10-11   17: 9-11-13-5
2: 1-13-5-9   10: 5-8-11-13   18: 9-14-11-6
3: 1-2-12-9   11: 4-10-8-13   19: 10-11-14-7
4: 2-3-12-14  12: 3-4-12-10   20: 10-13-11-8
5: 2-9-6-14   13: 9-13-12-1   21: 11-13-14-9
6: 5-6-9-11   14: 9-12-14-2   22: 12-14-13-9
7: 6-7-14-11  15: 10-14-12-3  23: 11-14-13-10

Fig. 1. A hexahedron composed by 24 tetrahedrons. 
This study aims at developing a high-order 3D NMM based on the 

tetrahedral meshes. A new local approximation is proposed to construct 
the global approximation based on the principle of PU. The DOFs with 
attributed physical meaning are incorporated into the high-order 3D- 
NMM, and its linear independence is verified by counting the number 
of zero eigenvalues of the global stiffness matrix [40,41] . The new local 
approximation for the 3D-NMM leads to a continuous stress field at the 
star point, hence avoiding the necessity of extra smoothing operation on 
the stress field. 
2. Brief introduction of the NMM 

In a 3D space, an arbitrary shape of problem domain can be filled by 
a mesh of hexahedrons. Each hexahedral element may be further subdi- 
vided into a number of tetrahedrons. Fig. 1 shows a hexahedron consist- 
ing of 24 tetrahedrons. A problem domain is referred to as the physical 
cover (PC) in the NMM. Fig. 2 shows a PC outlined by the black solid 
line with 120 tetrahedrons marked by the gray dotted line wherein we 
will focus on the specific tetrahedron manifold element (ME) 1234 high- 
lighted by the red solid line. In the tetrahedral mesh, all tetrahedrons 
share the same node form a mathematical patch (MP) and the communal 
node is called the star. All these MPs forms a collective named mathe- 
matical cover (MC). It should be pointed out that the MPs can be an 
arbitrary geometry polyhedron, sphere, and ellipsoid, and among oth- 
ers. In Fig. 2 , each MP is a polyhedron, see, e.g. , MP 1 , MP 2 , MP 3 , and 
MP 4 associated with the tetrahedron 1234. Cutting the PC with the MPs 
generates the physical patches (PPs). For instance, MP 1 , MP 2 , MP 3 , and 
MP 4 are cut by the resolution domain to form PP 1 , PP 2 , PP 3 , and PP 4 . 
The intersection of these four PPs then creates the ME 1234, as shown 
in Fig. 3 . It is postulated that the global approximation defined over 
every ME is related to its correspounding 4 PPs. One can refer to Refs. 
[1,6,23,42] for more detailed formulation and description of the NMM. 
3. Local and global approximation 

The constant, ordinary power or trigonometric series can serve as the 
basis of function of NMM’s local displacement approximation defined 
over each PP. If the power series is employed, for the k th PP it reads 
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where b k , j ( x,y,z ) is the basis function of a local displacement approxi- 
mation and m is the number of b k , j ( x,y,z ). Assume that the number of 

PPs is n , and there are 3 m unknowns in each PP, namely 
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where D k is a basic unknown coefficient vector and has no apparent 
physical meaning, being referred to as generalized degrees of freedom. 
Nevertheless, the degrees of freedom of 2D-DDA have been endowed 
with the physical meaning and have been used to construct the local 
displacement approximation of NMM [24] . Following the core idea of 
Ref. [24] , in this study, we will adopt the degrees of freedom of 3D- 
DDA [43] to establish the local approximation. Namely, Eq. (1) can be 
rewritten as 
! ! = T ! " ! (3) 
where 
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(5) 
where / ! " , / ! # , / ! $ , 0! #$ , and 0! "# are the strain components at star 
( x k ,y k ,z k ). Moreover, 1 ! " , 1 ! # , and 1 ! $ are the rotational angle of any in- 
finitesimal vector passing the same star around the x -, y - and z -axis, re- 
spectively. Apparently, the basic unknown vector, d k , has clear physical 
meanings. In conjunction with Eqs. (4) and (5) , after some mathematical 
manipulations, Eq. (3) can be rewritten as 
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(6) 
The shape functions defined on a tetrahedral mesh ijmn (see Fig. 4 ) 

is introduced 
2 ! = 4̃ ! + ̃* ! " + 5̃ ! # + +̃ ! $ 

6 6 = 4 ! + * ! " + 5 ! # + + ! $, ! = 7, ), (, - (7) 
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Fig. 4. A tetrahedral mesh ijmn . 
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Incidentally, V represents the volume of the tetrahedron. Further, we 

have 
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with the other constants defined by cyclic interchange of the subscripts 
in the order of i, j, m , and n . For more details, one can refer to [44] . 
With these constants, we can define the variables in Eq. (4) as follows: 
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Here, ( x i ,y i ,z i ), ( x j ,y j ,z j ), ( x m ,y m ,z m ), and ( x n ,y n ,z n ) are the four “star ”
of the tetrahedral mesh covering one manifold element. Moreover, 
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Taking the shape function as the PU leads to 
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(17) 
where f lk ( l,k = i,j,m,n ) are constants with respect to x k , y k , z k 
( l,k = i,j,m,n ). By following the partition of unity method, the global 
displacement approximation defined over each manifold element can 
be expressed as 
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and 
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In Eqs. (19) and (20) , k = i, j, m, n . Apparently, u ( x,y,z ) are three 
cubic polynomials defined on a 3D space. 

The global displacement approximation possesses two observable 
properties: 

(i). Alternate Kronecker-delta property 
Due to the Kronecker-delta property of ; k ( x,y,z ), for .̄ ! , .̄ !" , .̄ !# , 
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where k,l traverse i, j, m, n , and Eq. (21) is referred to as an alternate 
Kronecker-delta property of .̄ ! , .̄ !" , .̄ !# , and .̄ !$ 

(ii) u ( x, y, z ) is C 1 at the star points. 
On the other hand, the global displacement approximation can be 

expressed as 
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Therefore, we can conclude that u ( x, y, z ) is C 1 continuous at the 

star, namely, the stress values of star are continuous and there is no 
need for smoothing operations. 
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Fig. 5. Configurations for eigenvalue analysis. (a) a TME a TMM; (b) a TME a TMM; (c) two TMEs two TMMs; (d) two TMEs two TMMs; (e) a IME a TMM; and (f) two PMEs two TMMs. 
4. Simultaneous equations 

For a problem domain Ω with the essential boundary Γu and the 
natural boundary Γt , using the variational principle [45] , we have the 
following weak form 
∫Ω % ∶ >& +Ω − ∫Ω ' ⋅>! +Ω − ∫Γ@ (̄ ∶ >! +Γ + ∫Γ% ) ( ! − ̄! ) ⋅>! +Γ = 0 (27) 

where ! and " are the Cauchy stress and strain vector, respectively. b 
is the unit body force vector, and (̄ and !̄ the prescribed traction on 
the natural boundary and the prescribed displacement on the essen- 
tial boundary, respectively. The reason for containing the last term in 
Eq. (27) is because the mathematical cover system is not necessarily con- 
sistent with the boundaries in NMM and because the above-mentioned 
alternate Kronecker-delta property in the last section only ensures the 
correct essential boundary conditions at stars or nodes. And the penalty 

233 



H. Fan et al. Engineering Analysis with Boundary Elements 83 (2017) 229–241 
Table 1 
Results for eigenvalue analysis, see Fig. 5 . 
Configuration Total Before applying constrains After applying constrains 

Dofs Number of zero eigenvalues Number of zero eigenvalues 
(a) 48 6 0 
(b) 48 6 0 
(c) 60 6 0 
(d) 60 6 0 
(e) 48 6 0 
(f) 60 6 0 

matrix k is given by 
) = ⎡ ⎢ ⎢ ⎣ 

! " 
! # 

! $ 
⎤ 
⎥ 
⎥ ⎦ (28) 

where k x , k y , and k z are the penalty numbers of the x-, y- , and z- axis 
directions, respectively. The substitution of Eq. (22) into Eq. (27) yields 
*" = + (29) 
where K is the global equivalent stiffness matrix, d is the global basic un- 
known vector, and F is the global equivalent loading vector. In general, 
K contains inertia matrix, fixed point matrix, contact matrix, and so on. 
While F includes initial stress vector, point loading vector, body load- 
ing vector, contact force vector, and friction vector. Their assembling 
process is similar to finite element method and one can refer to Refs. 
[1, 18] for more details. 

The Appendix I summarizes the computation of the stiffness matrix 
of element, and this procedure can be applied to the other sub-matrixes 
and can be extended to any 3D low- or high-order NMM based on the 
tetrahedral mesh. 
5. Numerical examples 

In this section, the used physical units are based on the international 
standard unit system, unless stated otherwise. And, the relative L 2 error 
in the energy norm [44] is adopted to estimate the accuracy and con- 
vergence, it is defined by 
A = 

√ ∫Ω ( & Ref − & Cal ) T , ( & Ref − & Cal ) 
√ ∫Ω ( & Ref ) T , & Ref (30) 

where the superscript “Ref ” indicates the reference solution, and the 
superscript “Cal ” represents the calculated value. Due to the lack of an- 
alytical solution for the examples 5.4 up to 5.7, the reference solution 
used here correspond to the discrete model with the maximum element 
numbers. And for calculating Eq. (30) the numerical integration has to 
be resorted. Here, the Keast integration rule [46,47] is employed. More- 
over, the linear fitting is employed to obtain the convergence rates. 
5.1. Eigenvalue analysis 

The eigenvalue analysis [40,41] has been commonly used to test the 
linear independence of a PU-based method. It consists of two steps: (1) 
Without prescribing any boundary conditions, the eigenvalues of the 
global stiffness matrix can be determined first. In this step, it is possi- 
ble that zero eigenvalues can be obtained. (2) By exerting a minimum 
number of constraints to limit rigid motions of the model, i.e. , apply- 
ing 6 restricted conditions for a 3D case, re-calculate the eigenvalues of 
the global stiffness matrix. If only nonzero eigenvalues are found at this 
second step, it can be concluded that the method under investigation is 
frees from linear dependence problem. 

Considering the mathematical mesh can be selected to match or not 
match with the problem domain in the NMM, and the simplex integra- 
tion method [48] can be applied to an arbitrary polyhedron. In this 

Fig. 6. Free falling of a dumbbell. 
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test, six cases as shown in Fig. 5 are designed. A tetrahedron manifold 
element (TME) that coincides with a tetrahedron mathematical mesh 
(TMM) is shown in Fig. 5 (a), while a TME and a slightly larger TMM are 
sketched in Fig. 5 (b). Two cases can be identified involving two TMEs 
and two TMMs as illustrated in Fig. 5 (c) and (d), respectively. Fig. 5 (e) 
shows an irregular manifold element (IME) and a TMM. Moreover, two 
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Fig. 9. Uniaxial tension of a cube. (a) Configuration; (b) one tetrahedron MC; (c) two tetrahedron MC and (d) eight tetrahedron MC. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
Table 2 
Results for the uniaxial tension of a cube, see Fig. 9 . 
CP Coordinate Displacement Reference value 

Calculated value 
A (1.0, 0.0, 1.0) 0.000001000000011 0.000001 
B (1.0, 1.0, 1.0) 0.000001000000011 0.000001 
C (1.0, 1.0, 0.0) 0.000001000000011 0.000001 
D (1.0, 0.0, 0.0) 0.000001000000011 0.000001 
E (1.0, 0.5, 0.5) 0.000001000000011 0.000001 
F (0.75, 0.5, 0.5) 0.000000750000013 0.00000075 
G (0.5, 0.5, 0.5) 0.000000500000012 0.0000005 
H (0.25, 0.5, 0.5) 0.000000250000013 0.00000025 
I (0.0, 0.5, 0.5) 0.000000000000010 0.0 

CP: Checking point. 
pentahedron manifold elements (PMEs) and two TMMs are also tested 
as shown in Fig. 5 (f). 

The material constants used for the analysis are the Young’s modulus 
of E = 1.0 and Poisson’s ratio of B = 0 . 25 , and the gravity is ignored. The 

counts of computed zero eigenvalues are listed in Table 1 . A total of six 
zero eigenvalues are found for all cases before applying any constrain 
(Step 1). When six constrains are applied for Step 2 analysis, no zero 
eigenvalues are observed. Thus, we conclude that the proposed method 
is free from the LD problem. 
5.2. Free falling of a dumbbell 

The first benchmark example for the proposed NMM is the free 
falling process of a dumbbell. A dumbbell is treated as an irregular 
element and covered by a tetrahedron 1 ∗ 2 ∗ 3 ∗ 4 ∗ , as shown in Fig. 6 . 
The dumbbell falls under gravity only. The gravitational acceleration is 
given by g = − 10 m/s 2 , and the time step used is 0.1 s. Figs. 7 and 8 de- 
pict the displacement and velocity time history of the centroid point O 
of the dumbbell. For the displacement ( d = 0.5g t 2 ), the absolute value 
of the relative error between the analytical values and the calculated 
values is less than 0.000004%, while for the velocity ( v = gt ), the cor- 
responding absolute value is less than 0.000002%. It evidences that the 
high-order NMM may achieve rather excellent accuracy. 
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Fig. 10. A slender cantilever beam under point loading. 
Table 3 
Results for the deflection of loading point. 
MEs In-plane force P 0 Proposed Out-of-plane P 1 Proposed 

1-order 1-order 
240 0.1144 0.9691 0.0537 0.9331 
480 0.1628 0.9710 0.0466 0.9611 
720 0.3062 0.9831 0.1002 0.9810 
960 0.4422 0.9947 0.1672 0.9936 
1200 0.5556 0.9951 0.2413 0.9941 

Normalized by Ref. [49] : 0.1081 for P 0 ; 0.4321 for P 1 . MEs: manifold elements. 

Fig. 11.. Relative error in energy norm for a slender cantilever beam. 

Fig. 12. Contour plot of the displacement for P 0 (1200 MEs). 
5.3. Uniaxial tension of a cube 

The uniaxial tension of a 1.0 ×1.0 ×1.0 cube as shown in Fig. 9 (a) 
is chosen as the second benchmark example, where a unit distributed 
load is applied to the left end-face and the right end-face is fixed. Points 
A to I marked by violet color in Fig. 9 (a) serve as the nine checking 
points (CP). The chosen Young’s modulus is set to be E = 1.0 × 10 6 and 
the gravity is not considered. Moreover, the Poisson’s ratio is chosen as 
B = 0 , by doing so, an artificial uniaxial stressed state can be achieved. In 
this example, three types of MC are considered, i.e. one tetrahedron, two 
tetrahedrons, and eight tetrahedrons, as shown in Fig. 9 (a), (b), and (c), 
respectively. For the three types of MC, our calculation indicates that 
the numerical values obtained by the high-order NMM are all in good 
agreement with the reference ones (see Table 2 ). The calculated values 
corresponding to the third type of MC (8 tetrahedrons) are summarized 
in Table 2 in comparison with the reference values. From Table 2 , we 

Fig. 13. A curved cantilever beam under point loading. 
Table 4 
Normalized displacement of loading point along the direction of loading. 
MEs In-plane force P 0 Proposed Out-of-plane P 1 Proposed 

1-order 1-order 
480 0.2901 0.8749 0.1348 0.7676 
720 0.4680 0.9353 0.2600 0.7895 
960 0.5906 0.9539 0.3820 0.8561 
1200 0.6665 0.9688 0.4812 0.9435 
1440 0.7119 0.9871 0.5529 0.9794 

Normalized by the reference solution [49] : 0.08734 for P 0 ; 0.5022 for P 1 . MEs: 
manifold elements. 
MEs: manifold elements. 

Fig. 14. Relative error in energy norm for a curved cantilever beam. 
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Fig. 15. Contour plot of the displacement for P 1 (1440 MEs). 
Table 5 
Displacement of point A in the direction of y -axis. 
MEs 1-order Proposed 
216 0.3109 0.9676 
384 0.4458 0.9842 
600 0.5844 0.9898 
864 0.6984 0.9924 
1176 0.7812 0.9939 

Normalized by the reference solution [50] : 23.96. 
can see that the numerical solution given by the high-order NMM is 
almost identical to the reference one. 
5.4. A slender cantilever beam under point loading 

Shown in Fig. 10 is a third example of a slender cantilever beam 
with the length l = 6.0, width t = 0.1, and depth d = 0.2 to benchmark 

Fig. 17. Relative error in energy norm for Cook’s beam. 

Fig. 18. Contour plot of the displacement in direction of y -axis (1176 MEs). 

Fig. 16. Cook’s beam under distributed load. 
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Fig. 19. Quarter geometry of a finite plate under tensile loading. 

Fig. 20. Relative error in energy norm for Cook’s beam. 
the proposed NMM. The left end-face of the cantilever beam is fixed, 
and an in-plane force P 0 = 1 or an out-of-plane force P 1 = 1 is exerted on 
the center point of the free end. The Young’s Modulus set to be E = 1.0 ×
10 7 and the Poisson’s ratio is taken to be B = 0 . 30 . To examine the trend 
of convergence of the numerical solution, we investigate several discrete 
models that include 240, 480, 720, 960, and 1200 MEs, respectively. 

The numerical solutions are listed in Table 3 along with the 
corresponding reference solutions. For the proposed method, with the 
increase of element number used, the numerical results apparently 
converge to the reference solution. While for the conventional 1-order 
tetrahedron element, as MEs = 1200 the normalized values are only 
0.5556 and 0.2413 corresponding to the force P 0 and P 1 , respectively. 

The curve of lg( e ) vs. lg(MEs) is further sketched in Fig. 11 . From this 
figure, we can see that the convergence rates of the proposed method 
are − 0.83(for P 0 and P 1 ) comparing to the convergence rates − 0.05(for 
P 0 ) and − 0.16(for P 1 ) of the conventional 1-order tetrahedron element. 
In addition, Fig. 12 shows further the contour of the displacement cor- 
responding 1200 MEs. 
5.5. A curved cantilever beam under point loading 

A further illustrative example is a curved or quadrant cantilever 
beam shown in Fig. 13 , in which the inside radius R 1 , outside radius 
R 2 , and the thickness t are 4.12, 4.32, and 0.1, respectively. A unit in- 
plane P 0 or an out-of-plane force P 1 is applied on the center point of its 
free end face, respectively. The chosen Young’s Modulus is E = 1.0 ×10 7 

Table 6 
Normalized CVM of points A and B by reference values. 
MEs For point A Proposed For point B Proposed 

1-order 1-order 
242 0.6096 0.8735 0.5942 0.7585 
595 0.6990 0.9491 0.7366 0.9383 
997 0.8251 0.9789 0.8093 0.9642 
1469 0.8733 0.9843 0.8345 0.9886 
2294 0.8936 0.9910 0.8778 0.9927 

Normalized by the reference solution [51] : 442 for point A; 179 for point B. 
MEs: manifold elements. 
and Poisson’s ratio B = 0 . 25 . Several discrete models, i.e. 480, 720, 960, 
1200, and 1440 MEs, are examined. 

The numerical and reference solutions are summarized in Table 4 . 
When MEs = 1440, the normalized displacement are equal to 0.7119(for 
P 0 ) and 0.5529 (for P 1 ) corresponding to the conventional 1-order tetra- 
hedron element. While for the proposed method, the normalized values 
are equal to 0.9871(for P 0 ) and 0.9794 (for P 1 ). 

The curve of lg( e ) vs. lg(MEs) of this example is shown in Fig. 14 . As 
we can see, the convergence rates of the proposed method are − 1.26(for 
P 0 ) and − 1.31(for P 1 ), which are much more than − 0.38(for P 0 ) and 
− 0.27(for P 1 ) corresponding to the conventional 1-order tetrahedron 
element. Moreover, for the case of 1440 MEs, the contours of the corre- 
sponding displacement are further exhibited in Fig. 15 . As we can see, 
a good agreement with the analytical solutions can be obtained along 
with the increase of element number. 
5.6. Cook’s beam 

Cook’s skew beam problem [50] shown in Fig. 16 is further chosen 
for benchmarking the proposed NMM. The chosen heights H and h of 
the beam are 44.0 and 16.0, respectively; while length l and thickness t 
are 48.0 and 1.0, respectively. The left end face is fixed, and a uniformly 
distributed load with the total value of P = 1.0 acts on the right end face. 
The center point A (48.0, 44.0, 0.0) of the right end face are chosen as 
the checking point. The material constants Young’s modulus of E = 1.0 
and Poisson’s ratio of B = 1∕3 , and the gravity is not considered. In this 
example, we will examine the displacement of the center point of the 
loading face. Similarly, a series of 216, 384, 600, 864, and 1176 MEs 
are examined. The numerical results are summarized in Table 5 . 

Table 5 indicates that the calculated displacement at Point A ob- 
tained by the present high-order NMM approaches to the reference value 
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Fig. 21. Contour plot of CVM (2294 MEs). 
(23.96) gradually. When MEs = 1176, the normalized values are equal 
to 0.7812 and 0.9939 corresponding to the conventional 1-order tetra- 
hedron element and the presented method, respectively. 

Fig. 17 show the curve of lg( e ) vs. lg(MEs). The convergence rates of 
the conventional 1-order tetrahedron element and the proposed method 
are − 0.43 and − 1.28, respectively. For the case with 1176 MEs, the con- 
tour of the displacement in direction of y -axis illustrated in Fig. 18 also 
appears to be rather reasonable. 
5.7. Finite plate with a central hole under tensile loading 

A further example chosen for investigation is the quarter geometry 
of a finite plate with a central hole shown in Fig. 19 , in which the length 
l , height h , and thickness t are 18.0, 5.0, and 5.0, respectively. The ra- 
dius of the central hole is R = 5.0. The von Mises stress CVM at points 
A(0.0, 5.0, 0.0) and B(5.0, 0.0, 0.0) will be examined. The chosen mate- 
rial constants are Young’s modulus of E = 72.0 ×10 9 and Poisson’s ratio 
of B = 0 . A uniformly distributed load p = 100 is applied to the right end 
face, while the gravity is ignored. Due to the symmetry of the structure, 
the left and bottom end face are fixed in direction of x - and y -axis, re- 
spectively. In this example, a series of 242, 595, 997, 1469, and 2389 
MEs are considered and the computed results are listed in Table 6 . 

With the increase of element number, Table 6 shows the calculated 
stress values by the proposed NMM converge gradually to the reference 
solution and is faster than the conventional 1-order tetrahedron element. 

For this example, the curve of lg( e ) vs. lg(MEs) is illustrated in 
Fig. 20 . The convergence rates of the conventional 1-order tetrahedron 
element and the proposed method are − 0.18 and − 1.04, respectively. 
Additionally, the contour of von Mises stress corresponding to the case 
of 2294 MEs is shown in Fig. 21 , which demonstrates an apparent con- 
tinuity for the stress field. Hereby no smoothing operation is required. 
6. Conclusions 

A new 3D high-order NMM has been developed based on the prin- 
ciple of partition of unity. Key ingredients in the new NMM are the 
inclusion of generalized degrees of freedom pertaining to clear physi- 
cal significance and new formulations on the local and global approx- 
imations function which renders the rid of linear dependence issue of 
the NMM. Due to the delta property of partition of unity functions, the 
proposed method leads to C 1 continuity for the global displacement ap- 
proximation, and hence makes the strain or stress continuous at the star 
shared by several adjacent elements. This makes the smoothing opera- 
tions for the stress field totally unnecessary. In addition, the used pro- 
cedure for computing sub-matrix, which is indispensable for generat- 
ing the governing equations of system, can be extended to any 3D low- 
or high-order NMM based on the tetrahedral mesh. In the future, the 

proposed high-order NMM will be applied to finite deformation and 
crack analysis. 
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Appendix I 

A procedure for calculating some sub-matrixes involving volume in- 
tegral 

For 4-node tetrahedral mesh, we have the following formula 
< = 2 4 7 2 * ) 2 5 ( 2 + - (A.1) 

In this study, Eq. (A.1) is referred as “L ijmn -monomial ” . Assume that 
the highest order of f is 6, then there is the following constrains on 
Eq. (A.1) 
{ 
4, *, 5, + = 1 , 2 , … , 6 
0 ≤ 4 + * + 5 + + ≤ 6 (A.2) 
Easily, one can obtain 210 L ijmn -monomials, as follows 

⎧ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎪ ⎩ 

< 1 = 1 
< 2 = 2 7 
< 3 = 2 ) 
< 4 = 2 ( 
< 5 = 2 - 

⋮ 
< 210 = 2 6 - 

(A.3) 

Similarly, we have 
D = " 4 # * $ 5 , { 

4, *, 5, + = 1 , 2 , … , 6 
0 ≤ 4 + * + 5 + + ≤ 6 (A.4) 

and 
⎧ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎪ ⎩ 

D 1 = 1 
D 2 = " 
D 3 = # 
D 4 = $ 
D 5 = " 2 

⋮ 
D 84 = $ 6 

(A.5) 

In this study, Eq. (A.4) is referred as “xyz -monomial ” . For a 3D- 
simplex, we can save the simplex integration value of xyz -monomial 
into the following 3D array S ( Fig. A1 ). Based on the 3D array S , we can 
directly extract the integration value of any xyz -monomial. Taking as ∫x 3 y 4 z 5 dv for an example, through the power-exponent we can access 
the corresponding value, namely, 
E[3][4][5] = ∫ " 3 # 4 $ 5 +& (A.6) 

Substituting Eq. (7) into Eq. (A.3) leads to 
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Fig. A1. Value of simplex integration of xyz -monomial in a 3D array . 
⎧ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎪ ⎩ 

8 1 = 1 
8 2 = 4 7 + * 7 " + 5 7 # + + 7 $ 
8 3 = 4 ) + * ) " + 5 ) # + + ) $ 
8 4 = 4 ( + * ( " + 5 ( # + + ( $ 
8 5 = 4 - + * - " + 5 - # + + - $ 

⋮ 
8 210 = ( 4 - + * - " + 5 - # + + - $ ) 6 

(A.7) 

Expanding Eq. (A.7) and with the help of the 3D array S , we can 
calculate the following integration 
⎧ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ ⎩ 

∫A 8 1 +& ∫A 8 2 +& 
⋮ ∫A 8 210 +& 

(A.8) 
On the other hand, the stiffness matrix of element can be expressed 

as 
) A = ∫A - T A , - A +& (A.9) 
where B e is 6 ×48 displacement––strain matrix, in which every element 
is a quadratic function with respect to xyz -monomial or L ijmn -monomial. 
And D is 6 ×6 material constant matrix, reads 

, = 
⎡ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 

+ 1 + 2 + 2 0 0 0 
+ 2 + 1 + 2 0 0 0 
+ 2 + 2 + 1 0 0 0 
0 0 0 + 3 0 0 
0 0 0 0 + 3 0 
0 0 0 0 0 + 3 

⎤ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ ⎦ 

(A.10) 

where + 1 = F(1 − B)∕ +, + 2 = FB∕ +, + 3 = F(0 . 5 − B)∕ +, and + = (1 + 
B)(1 − 2 B) . E and B are Young’s modulus and Poisson’s ratio, respectively. 
For the sake of a simple presentation, B e can be written as 
- A = 

⎡ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 
* 1 , 1 * 1 , 2 ⋯ * 1 , 48 
* 2 , 1 * 2 , 2 ⋯ * 2 , 48 
⋮ ⋮ ⋱ ⋮ 
* 6 , 1 * 6 , 2 ⋯ * 6 , 48 

⎤ 
⎥ 
⎥ 
⎥ 
⎥ ⎦ 

(A.11) 
By combining similar terms of polynomials, in Eq. (A.11) b i , j ( i = 1, 

2, …, 6; j = 1, 2, …, 48) is a quadratic polynomial, but is not complete. 
For example, b 1,1 can be denoted as 
* 1 , 1 = G 1 _ 1 _ 2 2 7 + G 1 _ 1 _ 6 2 2 7 + G 1 _ 1 _ 7 2 7 2 ) + G 1 _ 1 _ 9 2 7 2 ( 

+ G 1 _ 1 _ 10 2 ) 2 ( + G 1 _ 1 _ 12 2 7 2 - + G 1 _ 1 _ 13 2 ) 2 - + G 1 _ 1 _ 14 2 ( 2 - (A.12) 

where the B -coefficients G 1 _ 1 _ 2 , G 1 _ 1 _ 6 , …, and G 1 _ 1 _ 14 can be obtained 
through combining similar terms of polynomials. Moreover, the first and 
second subscripts represent the row- and column-index of b 1,1 in B e , 
while the third subscript stands for the serial number of the pairing 
L ijmn -monomial in Eq. (A.3) . For G 1 _ 1 _ 9 and G 1 _ 1 _ 10 , we give the following 
illustration: 
⎧ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎪ ⎩ 

< 1 = 1 
< 2 = 2 7 

⋮ 
< 9 = 2 7 2 ( ↔ G 1 _ 1 _ 9 ⇒ G 1 _ 1 _ 9 2 7 2 ( 

< 10 = 2 ) 2 ( ↔ G 1 _ 1 _ 10 ⇒ G 1 _ 1 _ 10 2 ) 2 ( 
⋮ 

< 210 = 2 6 - 
(A.13) 

Therefore, b 1,1 can be abbreviated to 
* 1 , 1 = G 1 _ 1 _ 2 < 2 + G 1 _ 1 _ 6 < 6 + G 1 _ 1 _ 7 < 7 + G 1 _ 1 _ 9 < 9 + G 1 _ 1 _ 10 < 10 

+ G 1 _ 1 _ 12 < 12 + G 1 _ 1 _ 13 < 13 + G 1 _ 1 _ 14 < 14 (A.14) 
In like manner, for the integrand of Eq. (A.9) , namely, 

)̃ A = - T A , - A (A.15) 
We can denote ̃) A by 

)̃ A = 
⎡ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 
! 1 , 1 ! 1 , 2 ⋯ ! 1 , 48 
! 2 , 1 ! 2 , 2 ⋯ ! 2 , 48 
⋮ ⋮ ⋱ ⋮ 

! 6 , 1 ! 6 , 2 ⋯ ! 6 , 48 
⎤ 
⎥ 
⎥ 
⎥ 
⎥ ⎦ 

(A.16) 
and k 1,1 reads 
! 1 , 1 = H 1 _ 1 _ 5 < 5 + H 1 _ 1 _ 15 < 15 + Omit 25 terms 

+ H 1 _ 1 _ 63 < 63 + H 1 _ 1 _ 64 < 64 + H 1 _ 1 _ 65 < 65 (A.17) 
where the K -coefficients H 1 _ 1 _ 5 , H 1 _ 1 _ 15 , … , and H 1 _ 1 _ 65 can be obtained 
via combining similar terms of polynomials. 

Up to now, the generation of the element stiffness matrix has been 
converted into the calculation of the K -coefficients and Eq. (A.8) . At the 
same time, there are several things to note: One, only need to calculate 
the non-zero elements of ̃) A ; Two, the value of Eq. (A.8) can be repeat- 
edly used for generating the other sub-matrixes involving the integral 
operation; Three, Eq. (A.8) is applicable to arbitrary shape polyhedron 
manifold element, while for tetrahedron element one can use the fol- 
lowing formula [52] 
∫A 2 4 7 2 * ) 2 5 ( 2 + - +& = 6 6 4 ! * ! 5! +! 

( 4 + * + 5 + + + 3)! (A.18) 
to calculation the integration of Lijmn-monomials. 
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