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a b s t r a c t

The continuous surface cap (MAT 145) model in LS-DYNA is known by its elegant and robust theoretical
basis and can well capture many important mechanical behaviors of concrete. However, it appears to be
less popular than many other constitutive models in engineering application due to many material
parameters involved in the model formulation which are difficult to calibrate. This study presents an
effective calibration method to determine the material parameters for this model as functions of uniaxial
compression strength and the maximum aggregate size of concrete according to formulas from CEB-FIP
code and concrete test data from other published literatures. The obtained parameters can be
conveniently used for occasional users with little or no information on concrete in hand. We further
compare the predictions of stress–strain relationship in tension and compression under different
confining pressures as well as hydrostatic compression by the model, and validate the model based
on impact test of RC beams. Besides, the model is further compared against a similar model-MAT 159 in
terms of model performance. The results demonstrate that the model based on the calibrated
parameters is capable of offering reasonable and robust predictions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Arguably one of the most widely used man-made materials,
concrete underpins the performance and safety for key structures
relevant to civil engineering, onshore and offshore engineering,
nuclear facility protection and many others. The dynamic
responses of concrete when subjected to impact or blast loads
are of particular importance in many of these engineering fields,
and relevant research has hence attached much interest. Computer
modeling has now been widely adopted as a cheap and effective
way in assisting the design of (reinforced) concrete structures
under those extreme loads. Among many key ingredients that
affect reliable and accurate predictions by a numerical tool, an
appropriately developed and calibrated constitutive model to
describe the dynamic behavior of concrete subjected to dynamic
loads plays a core role.

There have been a good number of constitutive models devel-
oped in the literature for concrete, with forms ranging from
relatively simple to more sophisticated (see a recent review in
[1,2]). They have also been implemented in commercial software
such as LS-DYNA [3], AUTODYN [4] and ABAQUS/explicit [5]. These
models can be generally divided into three categories according to

how the plastic deformation is calculated. Category one normally
adopts an associated flow to calculate the plastic strain increment,
and may capture the plastic volume expansion (dilatancy) [6]
caused by shear loading at low confining pressure. It considers
coupled volumetric and shear behavior (i.e. shear enhanced
compaction and pressure dependence of shear strain) of concrete.
Typical examples of this category include the geologic cap (MAT
25), Schwer Murray Cap, also called continuous surface cap (MAT
145), CSCM Concrete (MAT 159), Mohr Coulomb (MAT 173), and
Druker Prager (MAT 193) [3]. Category two generally employs the
Prandtl–Reuss flow theory (where the Von Mises criterion is used
as the plastic potential) to calculate the plastic strain increment.
The plastic volume strain is obtained from the equations of state
(EOS), and the plastic volume strain increment is independent of
the incremental flow rule (the Prandtl–Reuss flow theory). Since
shear and volumetric behaviors are decoupled, the phenomenon
of shear dilation cannot be captured. Typical models belong to this
category are the soil and form (MAT 5/14) [3], pseudo tensor (MAT
16) [3], concrete damage (MAT 72) [3,7], Winfrith concrete (MAT
84/85) [3,8], Johnson Holmquist concrete (MAT 111) [3,9], RHT
(MAT 272) [3,10] and so on. Those models have been widely used
to model concrete under high impact loads. The third category
commonly assumes a non-associated flow in calculating the plastic
strain increment. With a different plastic potential surface than
the yield surface, the shear dilatancy can be well controlled.
A typical example of this category is the plastic-damage model
[5,11].
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When concrete is subject to low velocity impact, there are
typical features needing to be captured by a model, such as shear
enhanced compaction, dilatency before and after peak strength,
pre-peak hardening, post-peak softening, modulus reduction/stiff-
ness degradation under cyclic loading, irreversible deformation,
and localized damage accumulation [12,13]. With a sound theore-
tical basis, the MAT 145 available in LS-DYNA can well capture
those behaviors together [3]. However, it has not been as popular
as simple ones such as the MAT 72, MAT 84/85 and the MAT 111 in
engineering application, due primarily to the complexity of the
model with many material parameters involved. For example, a
total of 17 material parameters is required to be provided by the
user in this model to define the shear and cap surface, which
demands exceedingly complicated experiments ranging from uni-
axial compression, uniaxial tension, triaxial compression (TXC),

torsion (TOR), triaxial extension (TXE) and hydrostatic test to be
conducted for their calibration, which greatly limits the practical
applicability of the model. On the other hand, a “sister” model-
MAT 159 [3,14,15], with internal material parameters generation
based upon the unconfined compression strength f 0c of concrete,
aggregate size and the units has been included in LS-DYNA since
version 971. This model uses the same methodology as the MAT
145 to predict the behavior of concrete before peak strength, and is
different from the latter in terms of strain (post peak) softening
portion for example the evolution of the both brittle damage and
ductile damage norm. A comparison between the MAT 159 and
MAT 145 will be provided in this research.

Indeed, similar issue exists for the MAT 72 which has a total
of 49 user defined parameters. Karagozian & Case [16,17], Marko-
vich et al. [18] managed to offer an approach of automatically

Notation

MAT 145 continuous surface (Schwer Murray) cap
MAT 159 CSCM concrete
MAT 72 concrete damage
MAT 72R3 concrete damage REL3 (K&C concrete)
MAT 25 geologic cap
MAT 111 Johnson Holmquist concrete
MAT 16 Pseudo tensor
MAT 272 RHT
MAT 84 Winfrith concrete
EOS equations of state
TXC triaixal compression
TOR torsion
TXE triaxial extension
CDM continuum damage mechanics
DERR damage energy release rate used by Simo and Ju [31]
RC reinforced concrete
I1; J2; J3 three invariants of stress tensor
R I1; J3
! "

Rubin scaling function in Eq. (1), used by Rubin [27]
κ; κ0 cap hardening parameter in Eqs. (3) and (5)
Ff ðI1Þ; α; β; γ; θ strength in triaxial compression in Eqs.

(1) and (2a)
Qi; αi; βi; γi; θi i¼ 1;2ð Þ strength in torsion and triaxial exten-

sion in Eqs. (2b) and (2c)
Fc I1; κð Þ the cap surface in Eqs. (1) and (3)
XðκÞ; LðκÞ; Xðκ0Þ the cap surface parameters in Fig. 1.
S ratio of the major to minor axes of the cap surface in

Eqs. (4), (18a), (18b) and (19e)
εpv ; W plastic volumetric strain and the maximum value in

Eq. (6)

D1; D2 parameters determining the shape of pressure–
volume in Eq. (6)

σ; σ stress tensor and effective stress tensor in Eq. (7)
d; d7 ; G τ7

! "
scalar damage variable in Eqs. (7) and (8)

r70 ; τ7 damage threshold and undamaged energy norm in
Eq. (8)

f 0c; f
0
bc uniaxial and biaxial compression strength of concrete

f 0t ; f
0
bt uniaxial and biaxial tension strength of concrete

τ0; σ0 shear strength and normal strength in Eq. (10), used
by Mills and Zimmerman [20]

g σij
! "

; g I1; J2
! "

Gibbs free energy density (per unit volume) in
Eqs. (22) and (24)

g1 J2
! "

; g2 I1
! "

deviatoric and volumetric part of Gibbs free
energy density in Eq. (22)

E; γ Yong’s modulus and Poisson’s ratio
K; G bulk modulus and shear modulus
D$1
ijkl fourth-order linear-elastic compliance matrix tensor

of the intact material in Eq. (21)
Iijkl; I

d
ijkl fourth-order identity tensor and deviatoric tensor in

Eq. (21)
GF ; GF0 the mode I fracture energy and base value of fracture

energy per unit area in Eqs. (36)–(31)
σ(w), ω the stress and displacement in Eqs. (26)–(32)
Gc the compression fracture energy in Eqs. (32)–(36)
dmax the maximum aggregate size in Table 2
ln a characteristic length of the finite element in Eqs.

(29), (31), (35), (36)
A7 ; B7 damage parameters determining the strain softening

curve in Eqs. (8) and (31), (36)
σij; ~σ ij the viscid and inviscid stress tensor in Eqs. (37)–(39)
η a fluidity coefficient parameter in Eqs. (37)–(39)
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Fig. 1. Compressive meridional profile of the yield surface in the MAT 145: (a) smooth cap failure function, (b) non-dimensional function used for cap portion.
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generating these parameters based on the unconfined compres-
sive strength of concrete, which considerably facilitates the easy
use of the MAT 72 model.

The present study aims to develop a calibration procedure to
facilitate the MAT 145 to be effective used for occasional users of
LS-DYNA, in attempting to achieve the same goals as mentioned
above of various studies for the MAT 72. A systematic approach
will be proposed to determine the material parameters of the MAT
145 based on f 0c of a concrete, and the maximum aggregate size
according to the formulas provided in the CEB–FIP code [19] as
well as other empirical formulas in the literature [20,21] which
will be entailed in the sequel.

2. Theoretical background of the continuous surface cap
model

To facilitate the calibration of the MAT 145, a brief overview of the
model is presented in this section. The MAT 145, proposed originally
by Schwer and Murry [22–26], is also called the Schwer Murry Cap or
continuous surface cap model in LS-DYNA material library. It is indeed
a three-invariant extension of the MAT 25 [3]. This model includes a
smooth failure surface and employs damage mechanics to model the
strain softening and modulus degradation in both tensile and com-
pression regimes as well as viscoplasticity for strain rate effects. It
treats plastic flow and damage accumulations as separate processes
based on effective stress concept and the hypothesis of strain
equivalence in continuum damage mechanics (CDM). It is assumed
that plastic flow, controlled by the shear stresses, may result in
permanent deformation without causing degradation of elastic mod-
uli. Meanwhile, damage is assumed to result in progressive degrada-
tion of the moduli and strength observed on the macroscale due to the
propagation and coalescence of microcracks, microvoids and similar
defects in the microstructural level of the material. An elliptical cap
surface is added to model the plastic volume change related to pore
collapse in concrete material. Besides concrete, it is capable of
modeling geomaterials including soils and rock [3] and hence is
indeed robust and versatile. The paper highlights its use for
concrete only.

The model is featured by a combined yield surface of a shear
failure surface Ff I1ð Þ and a cap surface Fc I1; κð Þ, with a continuous
and smooth connection between the two as shown in Fig. 1a. The
influence of the third deviatoric stress invariant on the shear
failure of a material, as suggested by Rubin [27], has also been
taken into account.

The yield surface shown in Fig. 1a can be mathematically
described by a combination of two functions as follows:

f I1; J2; J3; κ
! "

¼ J2$R2 I1; J3
! "

F2f I1ð ÞFc I1; κð Þ ð1Þ

where I1 denotes the first invariant of stress tensor defined as
I1 ¼ σii, J2 is the second invariant of deviator stress tensor defined
as J2 ¼ SijSij=2 and the deviator stress tensor Sij can be linked to the
stress tensor σij by Sij ¼ σij$σiiδij=3, and J3 ¼ SijSjkSki=3 is the third
invariant of deviator stress tensor; κ is cap hardening parameter,
R I1; J3
! "

is the Rubin scaling function, the detailed documentation
can be found in Ref. [27].

In the model, shear failure along the compression meridian is
defined in terms of I1 as an exponential function

Ff ðI1Þ ¼ α$γexp $βI1ð ÞþθI1 ð2aÞ

where the material parameters α; β; γ and θ are evaluated by
fitting experimental peak stress

ffiffiffiffi
J2

p
versus I1 from TXC test.

The shear curve for the stress states other than TXC is scaled by
the Rubin scaling function R I1; J3

! "
(a general Lode dependence in

the deviatoric plane) [28], e.g., via R I1; J3
! "

Ff I1ð Þ. Then the strength
in TOR and TXE can be expressed by the product Q1Ff I1ð Þ and

Q2Ff I1ð Þ respectively.

Q1 ¼ α1$γ1exp $β1I1
! "

þθ1I1 ð2bÞ

Q2 ¼ α2$γ2exp $β2I1
! "

þθ2I1 ð2cÞ

where the eight material parameters α1; β1; γ1; θ1 and
α2; β2; γ2; θ2 are evaluated by fitting the Q1Ff I1ð Þ and Q2Ff I1ð Þ
from TOR and TXE test, and 1=

ffiffiffi
3

p
rQ1r1;0:5rQ2r1 is

required to render the deviatoric plane shape of yield surface
changes from triangular in brittle regime to circle in ductile
regime as the confining pressure changes from tensile to high
compressive.

The cap surface [29,30] is a two-part function that is either
unity or ellipse (see Fig. 1b):

Fc I1; κð Þ ¼
1$ I1$L κð Þ½ '2= X κð Þ$L κð Þ½ '2; I14κ

1; otherwise

(

ð3Þ

where κ is an internal state variable denoting for hardening of the
cap, by which the intersection of the cap with the I1 axis X κð Þ and
the transitional point L κð Þ (see Fig. 1b) is determined; X κð Þ$L κð Þ
is the length of major axe of cap, which is proportional to Ff κð Þ
with the material constant S (the ratio of its major to minor axes)

X κð Þ ¼ L κð ÞþSFf κð Þ ð4Þ

The transitional point L κð Þ is defined by

L κð Þ ¼
κ; if κ4κ0
κ0; otherwise

(
ð5Þ

where κ0 is the value of I1 at the initial intersection of the cap and
shear failure surface.

The evolution of the cap’s motion (the cap is only permit to
expand for concrete) is defined by the isotropic hardening rule as
follows, while without cap motion the pressure–volumetric strain
curve is perfect plastic

εpv ¼W 1$e$D1 X κð Þ$X0½ '$D2 X κð Þ$X0½ '2
n o

ð6Þ

where εpv ¼ trεpij ¼
R
3λ∂f =∂I1dt is the plastic volumetric strain due

to its porosity reduction under compaction, W is the maximum
plastic volumetric strain, X0 ¼ X κ0ð Þ is the initial abscissa intercept
of the cap surface, D1 and D2 are material parameters determining
the shape of pressure volume curve.

Strain softening and modulus reduction of concrete are mod-
eled via an isotropic damage formulation in the model. Strain
softening corresponds to a post-peak decrease in strength and
modulus reduction denotes a reduction of elastic modulus in cyclic
loading case. The damage criterion is based on the damage energy
release rate-based approach, proposed by Simo and Ju [31], which
was considered more reasonable than the equivalent strain-based
and the stress-based ones [32]. The damaged stress tensor σ
(nominal stress tensor, defined as force divided by the total area)
is linked to effective stress tensor σ (undamaged stress tensor or
true stress tensor, defined as force divided by the total area)
according to the effective stress concept in CDM by

σ ¼ 1$dð Þσ ð7Þ

where the scalar damage variable d 0rdr1ð Þ grows from zero
(virgin undamaged material) to unity (completely damaged mate-
rial with effective area reduced to zero). 1$d is a reduction factor
associated with the amount of damage at a material point. To
account for different damage responses and to capture the
unilateral effect for concrete material, two distinct expressions
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dþ and d$ are used for brittle damage and ductile damage, where
brittle damage corresponds to tensile mean stress Po0ð Þ, and the
ductile corresponds to compressive mean stress P40ð Þ.

The two damage variables are defined as [3,24]

d7 ¼ G τ7
! "

¼ 1$
r70
τ7

1$A7! "
$A7 expB7 r7

0 $ τ7ð Þ 0rr70 rτ7

ð8Þ

where symbol “7” denoting “þ” or “$ ”, as appropriate,
G (ð Þ 0rG (ð Þr1ð Þ is a monotonically increasing scalar functions
of variable τ7 , a undamaged energy norm, defined as
τ7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σij : εij

p
in the effective stress space, and r70 is the damage

threshold, and the initial damage threshold is coincident with the
shear plasticity surface; damage d7 ¼ 0 if τ7 o r70 , and
d7 ¼ G τ7

! "
40 if τþ 4 rþ0 ; two pairs of parameters A7 ;B7

determine the shape of softening curve. It is worth nothing that
parameters A7 are non-dimensional, and the units for parameters

B7 are 1=
ffiffiffiffiffiffiffiffiffiffi
F=L2

q
because d7 in Eq.(8) are non-dimensional.

In summary, there are 12 model parameters αi; βi; γi and
θi i¼ ;1;2ð Þ used for shear failure surface, 5 parameters W, D1, D2,
X0 and S for cap surface, and 4 parameters A7 ;B7 to describe
damage. A detailed description how to calibrate and determine these
parameters for different grades of concrete together with a summar-
ization of all those calibration equations will be provided in the
following sections. The calibration work in this research is based on
the units (mm, ton, s, N), the application can be extended to other
units when the proposed material parameters are converted to other
units according to the dimensional analysis results provided in
Table 1, or FE models in other units are converted into ones in
current unit through Precessor software i.e. ETA femb.

3. A calibration of the continuous surface cap model for
concrete materials

3.1. Constraints on allowable values of shear parameters

In view of the shear failure functions in Eq. (2a), these
expressions can be regarded as a linear combination of a liner
function Ff1ðI1Þ ¼ αþθI1 and an exponential function Ff2ðI1Þ ¼
$exp $βI1ð Þ with a combination coefficient γ. Parameters α and
θ are the intercept value in Ff1 axis and the slope of linear function,

respectively. Parameter β is the coefficient of exponential function
as shown in Fig. 2.

In order to satisfy the smooth and convex requirements for the
failure surface, the following constraints are imposed on allowable
values for theses shear parameters:

(1) The convexity requirement of the failure surface in both
meridian plane and deviatoric plane. In compressive meridian
plane it is required that

F″f ðI1Þ ¼ $β2γexp $βI1ð Þr0

In consideration of exp $βI1ð ÞZ0; β240, the following con-
straint is obtained

γZ0

(2) Positive slope at low pressures regimes

F 0f ðI1Þ ¼ βγexp $βI1ð Þþθ40

When I1 ¼ 0, it is readily seen that

βγþθ40

(3) Positive slope at a high pressures or the asymptotic slope of
compression line has a positive value. When I1-1, we have

θ40

(4) The apex of the meridian has a negative value

Ff1 ¼ α$γexp $βI1ð ÞþθI1 I1 ¼ 040

Table 1
Material parameters of the MAT 145 for different concrete grades (Units: mm, ton, s, N).

Concrete grade C10 C20 C30 C40 C50 C60

f 0c (MPa) 10 20 30 40 50 60
f 0t (MPa) 1.4 2.2 2.9 3.5 4.1 4.6
f 0bt (MPa) 1.4 2.2 2.9 3.5 4.1 4.6
α (MPa) 2.2887 4.8040 7.7088 11.1489 14.9516 19.6383
θ 0.3490 0.3454 0.3400 0.3333 0.3272 0.3191
γ (MPa) 0.1881 1.2821 2.9705 5.3623 8.1299 11.9416
β (MPa$1) 0.3513 0.1027 0.0540 0.0338 0.0240 0.0177
α2 0.76 0.76 0.76 0.76 0.76 0.76
θ2 (MPa$1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
γ2 0.42742 0.26443 0.26033 0.25616 0.25616 0.25616
β2 (MPa$1) 0.0166 0.0168 0.0115 0.0089 0.0071 0.0059
α1 0.83 0.82 0.82 0.82 0.82 0.82
θ1 (MPa$1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
γ1 0.2560 0.2471 0.2440 0.2407 0.2407 0.2407
β1 (MPa$1) 0.037455 0.019743 0.013497 0.010396 0.008317 0.006931
X0 (MPa) 32.14 51.14 70.14 89.14 108.14 127.14
D1 (MPa$1) 6.11E$04 6.11E$04 6.11E$04 6.11E$04 6.11E$04 6.11E$04
D2 (MPa$2) 2.225E$06 2.225E$06 2.225E$06 2.225E$06 2.225E$06 2.225E$06
W 0.065 0.065 0.065 0.065 0.065 0.065
S 3.8 2.7 2.3 2.1 2.0 1.9

0

J

I

θ

γ

α

Compressive
meridian

α−
γ

Fig. 2. Compressive meridian line.
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Thus

α4γZ0

(5) Positive requirement of shear stress in meridian plane except
on apex

Ff1 ¼ α$γexp $βI1ð ÞþθI140

Hence

0rexp $βI1ð Þr1 and β40

In summarizing above constraints, the requirements for com-
pressive meridian line parameters are non-negative values

α40; β40; γZ0; θ40

Following the same method, the constraints on allowable
values for the tensile and shear meridian parameters in Eqs. (2b)
and (2c) can be also obtained.

3.2. Shear surface parameter

3.2.1. Parameters for the compressive meridian in TXC
As shown in Fig. 3a, the strength data in four stress states,

including uniaxial compression (Point C), biaxial tension (Point B),
triaxial tension (equal tension in three directions, see Point A) and
triaxial compression (Point D), are used to determine four para-
meters α; β; γ and θ. According to CEB-FIP code [19], the
following relationship holds among the biaxial tensile strength
f 0bt , the uniaxial tensile strength f 0t and the uniaxial compressive
strength f 0c

f 0bt ¼ f 0t ¼ 1:4 f 0c=10
! "2=3 MPa ð9Þ

The triaxial compressive strength is obtained from test results
reported by Mills and Zimmerman [20], wherein 107 tests includ-
ing uniaxial, biaxial and true triaxial with concrete grade varying
from C21 to C40 were made. The proposed compressive strength
for concrete under multiaxial loading condition is

τ0
f 0c

¼
0:199þ0:843σ0

f 0c
ð10Þ

where shear strength defined by τ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx$σy
! "2þ σx$σzð Þ2þ σy$σz

! "2
q

=3¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2J2=3

p
, normal strength

defined by σ0 ¼ I1=3

The four parameters α; β; λ; θ in Eq. (2a) can then be obtained
by solving four equations corresponding to the four stress states
since f 0c is known. The results for different concrete grades are
summarized in Table 1.

To determine the parameters for concrete grades other than the
six listed in the table, the best fitting method is adopted to obtain
their values as functions of f 0c according to the existing results in
Table 1. Reasonably good fitting is observed as shown in Fig. 4, and
the fitting formulas are given by

α¼ 13:9846exp
f 0c

68:8756

$ %
$13:8981 ð11aÞ

θ¼ 0:3533$3:4105) 10$4f 0c$3:7150) 10$6f 0c
2 ð11bÞ

γ ¼ 3:6855exp
f 0c

40:0239

$ %
$4:7345 ð11cÞ

β¼ 18:2146f 0$1:7171
c ð11dÞ

3.2.2. Parameters for the tensile meridian in TXE
Typical stress sates in TXE are uniaxial tension (Point B), biaxial

compression (Point D), triaxial tension (Point A) and triaxial
extension (Point E) as seen in Fig. 3b. According to experimental
results in Ref. [6], the biaxial compressive strength f 0bc is related to
f 0c by

f 0bc ¼ 1:15f 0c ð12Þ

The triaxial extension strength is also taken from test results
reported by Mills and Zimmerman [20]

τ0
f 0c

¼
0:147þ0:550σ0

f c'
ð13Þ

Using the same method for the TXC state, the parameters in
TXE for different concrete grades are shown in Table 1 and
demonstrated good fits for parameter β2 as function of f 0c in
Fig. 5a. The four parameters α2; β2; γ2; θ2 are respectively
expressed as

α2 ¼ 0:76 ð14aÞ

θ2 ¼ 0 ð14bÞ

γ2 ¼ 0:26 ð14cÞ

β2 ¼ 0:285f 0$0:94843
c ð14dÞ

Compressive
meridian

Uniaxial
compression

Biaxial
compression

Triaxial
tension

Triaxial
compression

Triaxial
tension

Bxiaxial compression

Uniaxial tension

Triaxial
extension

Tensile
meridian line

Fig. 3. Meridian lines of failure surface: (a) compression, (b) tension.
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3.2.3. Parameters for shear meridian in TOR
Relatively few experimental results have been reported for

concrete under pure TOR states. The four parameters α1; β1; γ1; θ1
are obtained here according to the Rankine criterion with
Q1 ¼ 1=

ffiffiffi
3

p
, as well as Willans–Warnke Lode dependence with

Q1 corresponding to biaxial compression and triaxial extension
states. The parameters in TOR for different concrete grades are
listed in Table 1. The fitting results for parameter β1 are plotted in
Fig. 5b, with the following fitting formulas for α2; β2; γ2; θ2

α1 ¼ 0:82 ð15aÞ

θ1 ¼ 0 ð15bÞ

γ1 ¼ 0:2407 ð15cÞ

β1 ¼ 0:33565f 0$0:95383
c ð15dÞ

3.3. Cap surface parameters

There are five parameters W, D1, D2, X0 and S used on defining
the cap surface in the model, among which the first four can be
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Fig. 4. Evaluation of triaxial compression parameters for a wide range of concretes: (a) parameter α, (b) parameter θ, (c) parameter γ, and (d) parameter β.
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obtained from pressure–density (p–ρ) curves measured in hydro-
static compression test. The p–ρ curve can be further adapted to
the pressure–volumetric strain p$εv curves through the following
relationship εv ¼ ρ=ρ0$1, where ρ0 denotes the initial density. As
shown in Fig. 6, the p–ρ and p$εv relationships are separated into
three regions with three turning points A ρA; PHTL

! "
, B ρB; PHEL

! "
and

C ρC ; pC
! "

. The first region is marked by AB denoting the elastic
deformation part with an elastic limit PHEL ¼ X0=3. The second one
is marked by BC for the compaction part where the pore is being
crushed out. The last one defines the relationship for fully dense
material in solidification case.

The elastic limit X0 is set according to the pure hydrostatic
compression test for concrete, X0 ¼ 123:9 MPa is reported for con-
crete with f 0c ¼ 48:4 MPa in [21], X0 ¼ 70 MPa for f 0c ¼ 35 MPa and
X0 ¼ 280 MPa for f 0c ¼ 140 MPa according to Ref. [4]. A linear fitting
curve is followed to fit the relationship between X0 and f 0c.

W, D1 and D2 are set using the best fitting method according to
the p$εv curves reported by Green and Swanson [21] for concrete
with f 0c ¼ 48:5 MPa (see Fig. 7). The fitting formula is

$ ln
ε0v
W

$ %
¼D1ξþD2ξ

2 ð16Þ

where ξ¼ XðκÞ$X0 and volumetric strain occupied by void is
defined byε0v ¼W$εpv ¼We$ ξ D1 þD2ξð Þ according to Eq. (6). ε0v
decreases from W to 0 as the hydrostatic pressure increases
(Fig. 6c).

Derivative of ε0v with respect to ξ leads to

dε0v
dξξ ¼ 0

¼ $WD1 ð17Þ

Parameters D1 can be considered proportional to the initial
slope of the ε0v$ξ curve.

The last parameter S for the shape of the cap can be determined
from triaxial compression test. The process is summarized as follows:

( A hydrostatic load is applied to the specimen leading the
stress state to position A first (see Fig. 8), which results in a plastic
volumetric strain εpAv according to Eq. (6), and X0 is the elastic limit
subject to the hydrostatic load. The hardening of cap surface with
the increase of the hydrostatic load can be observed.

( Holding the confining pressure σ2 ¼ σ3 ¼ const, applying the
axial compression load Δσ1 until the specimen fails in shear
indicated as position B and with the plastic volumetric strain
Δεpv ¼Δεv$Δσ1=3 K. The total plastic volumetric strain can be
expressed by εpBv ¼ εpAv þΔεpv .

Then I1c , the intersection of the cap with the I1 at position C,
can be estimated from the bellow quadratic equitation according
to Eq. (16) if parameters D1; D2; W are known

D1 I1c$X0ð ÞþD2 I1c$X0ð Þ2 ¼ $ In
1$εpBv
W

 !

ð18aÞ

Further, parameter S can be expressed by

S¼
I1c$ I1Bð Þffiffiffiffiffiffi

J2B
p ð18bÞ

In the absence of triaxial compression test data, S can be also
estimated from uniaxial compression test. It is known that the
plastic volumetric strain expansion occurs in the shear failure
surface according to an associated flow rule, while the plastic
volumetric strain compaction occurs in the cap surface. Position E
(initial cap intersection point) can then be regarded as the critical
point separating plastic volumetric expansion from plastic volu-
metric compaction. Because the plastic volumetric strain expan-
sion is found in uniaxial compression of concrete [6], so the
intersection point of cap curve with the shear failure curve lies
before point E is reached, and the minimum value of S can be
estimated by X0$ f 0c

! "
= f 0c=

ffiffiffi
3

p& '
.

Fig. 6. The equation of state for porous material.
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Table 1 summarizes the model parameters related to the cap
for different grades of concretes, the following fitting formulae
presents the cap parameters for different grade of concrete

X0 ¼ 17:087þ1:892f 0c ð19aÞ

D1 ¼ 6:11) 10$4 ð19bÞ

D2 ¼ 2:225) 10$6 ð19cÞ

W ¼ 0:065 ð19dÞ

S¼ 4:45994exp $ f 0c=11:51679
! "

þ1:95358 ð19eÞ

The linear fitting results for parameter X0 is shown in Fig. 9a,
and the fitting result for parameter S are shown in Fig. 9b, which
appears to be rather consistent with the existing results listed in
Table 1.

3.4. Damage parameters

Damage is defined within the framework of CDM. In CDM, the
damage and damage energy release rate (DERR) are commonly
considered as the thermodynamic conjugates [33–35]. A damage
surface is defined to determine whether damage loading occurs or
not, and damage initiates and accumulates when the energy norm
(a scalar measurement of strain energy), a function of DERR,

exceeds the current damage threshold It is called the damage
criterion here [31,32]. The evolution of the damage variables is
specified in accordance with the normality rule.

The choice of free energy function is critical to the damage
modeling of a material. In isothermal conditions, an equilibrium
state can be described by a scalar thermodynamic potential-the
Gibbs free energy density (per unit volume) g σij

! "
by the following

expression

g σij
! "

¼
1
2
σij : εij ¼

1
2
σij : D

$1
ijkl : σkl ¼

1þγ
2E

σ : σ$
γ
2E

tr2σ ð20Þ

where Eandγ are the Yong’s modulus and Poisson’s ratio, respec-
tively. D$1

ijkl is the fourth-order linear-elastic compliance matrix
tensor of the intact (undamaged) material, defined as

D$1
ijkl ¼

1
E

1þγ
2

δikδjlþδilδjk
! "

$γδijδkl

( )

¼
1
2G

I4$
I * I
3

$ %
þ
1
K
I * I¼

Idijkl
2G

þ
Iijkl
K

ð21Þ

where δij is “Kronecker delta”, the Bulk modulus K and Shear
modulus G can be expressed in terms of E; γ as K ¼ E=3 1$2γð Þ,
G¼ E=2 1þγð Þ, Iijkl and Idijklare the fourth-order identity tensor and
deviatoric tensor, respectively. Iij is the second-order identity
tensor. Eq. (20) represents an ellipsoidal damage shape in principal
undamaged stress space centered at the origin, as demonstrated in
Fig. 10a for γ ¼ 0:2 (a typical value for concrete). It also represents
a circular shape for γ ¼ 0.
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Fig. 9. Evaluation of the cap parameters for a wide range of concretes: (a) parameter X0, (b) parameter S.

Fig. 10. Damage threshold surface in principal undamaged stress space with σ ¼ I1I =3þS. (a) g σij
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By further decomposing the stress tensor into hydrostatic and
deviatoric parts as σ ¼ I1I =3þS, the Gibbs free energy density
g σij
! "

in Eq. (20) can be recast into a deviatoric part g1 J2
! "

and a
volumetric part g2 I1

! "
as

g σij
! "

¼ g I1; J2
! "

¼
1þγ
E

J2þ
1$2γ
6E

I
2
1 ¼

J2
2G

þ
I
2
1

18K
¼ g1 J2

! "
þg2 I1

! "

ð22Þ

where g1 J2
! "

also presents an ellipsoidal shape in the principal
stress space shown in Fig. 10b for γ ¼ 0:2.

The brittle damage energy norm τþ is defined as

τþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Eε2max

q
ð23Þ

where εmax is the maximum principal strain. Substituting
εmax ¼ f 0t=E in uniaxial tension into Eq. (23), the initial damage
threshold rþ0 can be estimated as f 0t=

ffiffiffi
E

p
.

The ductile damage energy norm τ$ is defined as

τ$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σij : εij

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g σij

! "q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
G
þ

I
2
1

9K

s

ð24Þ

Then, ductile damage threshold r$0 can be estimated from

uniaxial compression from Eq. (24) as r$0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0c f 0c=E
! "q

¼ f 0c=
ffiffiffi
E

p
.

If substituting Eq. (8) into Eq. (7) and applying the result to a
uniaxial tension case, another expression of the stress can be
written as

σ ¼ E εþ0 1$Aþ! "
þAþ εþ expBþ ffiffi

E
p

εþ
0 $ εþð Þ

h i
¼ Eε ð25Þ

where ε is the effective strain (as shown in Fig. 11), εþ0 is the strain
corresponds to peak tension strength and εþ εþ Zεþ0

! "
is the

strain in strain softening section. Two parameters Aþ and Bþ help
to regulate the curve shape after peak strength.

Fig. 12 shows the effect of the brittle damage parameter Bþ on
the strain softening response. It is found that the curve becomes
increasingly softening with the increase of Bþ while Aþ ¼ 1 is kept

unchanged, and the curve becomes a horizontal line correspond-
ing to an undamaged case when Bþ ¼ 0.

It is known to all that the strain softening response will not be
objective upon mesh refinement, and will be mesh-dependent
[36]. Objective can be achieved by modifying the constitutive law
and making it depend on mesh size by introducing a parameter
called “crack band width” [37,38] or “characteristic length”[39].
Damage parameter A7 ; B7 , considering the characteristic length
[40,41], can be determined as follow:

3.4.1. Brittle damage
The definition of the tension fracture energy GF (per unit area)

is written according to the fictitious crack model [40], which is
also used in the Mat 159 model to regulate mesh size dependence
[14]

GF ¼
Z 1

o0

σ oð Þdo¼
Z 1

o0

1$dþ! "
f 0tdo ð26Þ

where σ oð Þ and w are respectively the stress and displacement, w0

is the displacement at peak tension strength f 0t.
Substituting brittle damage definition in Eq. (8) into Eq. (26),

gives

GF ¼ f 0t
Z 1

o0

rþ0
τþ

1$Aþ! "
þAþ exp$Bþ ðτþ $ r þ0 Þ

( )
do ð27Þ

The integration on the first term

f 0t
Z 1

o0

rþ0
τþ

1$Aþ! "
do¼ f 0t 1$Aþ! "

o01 ð28Þ

In order to obtain a reasonable value, Aþ ¼ 1 is required in
Eq. (28), which means that elastic-brittle behavior with no
residual strength in tension will appear because limτþ -1dþ-1
is obtained from Eq. (8).

When Aþ ¼ 1, we can obtain

GF ¼
lnrþ0
Bþ ¼

lnf 0t
Bþ ffiffiffi

E
p ð29Þ

where ln is a characteristic length of the finite element, and
typically set equal to the cube root of the element volume in
three-dimensional (3D) [7,40].

In the absence of experimental data for a particular concrete, GF

can be estimated from CEB–FIP code [19]

GF ¼ GF0
f ckþ8
! "

10

( )0:7
ð30Þ

where f ck is the characteristic compressive strength of concrete,
and GF0 is base value of fracture energy (see Table 2), depends on
the maximum aggregate size, dmax.

Note: a linear fit is used for other size of aggregate, the fit
equitation is GF0 ¼0.021þ5.357)10$4dmax.

From Eq. (29), Bþ can be obtained by

Bþ ¼
lnf 0t

GF
ffiffiffi
E

p ð31Þ

O

E
E

E

O

Fig. 11. Stress–strain curve for uniaxial tension.

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

τEnergy norm

1−
+ d

Fig. 12. Effects of brittle damage parameter Aþ on strain softening curve.

Table 2
Base values of fracture energy GF0 [14,19].

dmax (mm) GF0 (N mm/mm2)

8 0.025
16 0.030
32 0.038
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3.4.2. Ductile damage
The compression fracture energy Gc (per unit area) is written

by

Gc ¼
Z 1

o0

σ wð Þdw¼
Z 1

o0

1$d$ð Þf 0cdo ð32Þ

Substituting ductile damage definition in Eq. (8) into Eq. (29),
gives

Gc ¼ f 0c
Z 1

o0

r$0
τ$

1$A$ð ÞþA$ exp$B$ ðτ $ $ r $
0 Þ

h i
do ð33Þ

The integration on the first term

f 0c
Z 1

o0

r$0
τ$

1$A$ð Þdo¼ 2 1$A$ð Þf 0c
ffiffiffiffiffi
x0

p
1$

ffiffiffiffiffi
x0

p! "
ð34Þ

A$ ¼ 1 is required in Eq. (34) to obtain a reasonable value.
When Aþ ¼ 1, we obtain the following expression of Gc

Gc ¼
2ln

B$2þ
2
B$

ffiffiffiffiffiffiffiffiffi
f 0cln

q ffiffiffiffiffiffi
o0

p
ð35Þ

Solving quadratic equation, we finally derive the expression of
B$

B$ ¼
f 0c=

ffiffiffi
E

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gc=l

nþ f 0c2=E
q

Gc=l
n ð36Þ

where GC Unfortunately, only limited research works on GC can be
found [42,43], and there is no GC provided in CEB–FIP code [19].

In the absence of GC , B$ can be determined by comparing the
predicted uniaxial compression curve with the test data. Besides,
considering that several constitutive models (i.e. the MAT 14, MAT
84 in LS-DYNA) with elastoplatic response for uniaxial compres-
sion [44–46] perform well for predicting reinforced concrete (RC)
structures subject to impact loading, B$ ¼ 0 can be simply adopted
for the MAT 145, which recovers elasto-plastic behavior for
concrete under uniaxial compression. For convenience, the sug-
gested range of B$ can be 0rB$ rBþ = f 0c=f

0
t

! "
, where the upper

limit Bþ = f 0c=f
0
t

! "
is an empirical parameter.

3.5. Strain rate effect parameters

Existing experimental data shows that the peak strength
attained during the direct pull and unconfined compression test
is sensitive to the strain rate, which is also specified by the CEB–
FIP code [19]. To account for the effect, a viscoplastic formulation

with a fluidity coefficient parameter, denoted by η, was employed.
It is indeed a three-dimensional generalization of the Duvaut–
Lions viscoplastic strain rate formulation [23].

σij$ ~σ ij ¼ ηCijkl _ε
vp
kl ð37Þ

where σij and ~σ ij are the viscid and inviscid stress tensor, Cijkl is the
fourth-order linear elastic tensor and _εvpkl is the viscoplastic strain
rate tensor.

Using an implicit backward Euler algorithm for the viscoplastic
strain rate, the update for the stress tensor can be written as

σnþ1$ ~σnþ1 ¼
η
Δt

CΔεvp ¼
η
Δt

C Δε$Δεe
! "

¼
η
Δt

σtrialnþ1$σnþ1

& '
ð38Þ

where the elastic trial stress σtrialnþ1 ¼ σnþCΔε, and stress tensor
σnþ1 ¼ σnþCΔεe. Readily it is seen that the viscid stress tensor can
be expressed as

σnþ1 ¼
σtrialnþ1þ ~σnþ1Δt=η

1þΔt=η
ð39Þ

σnþ1 ¼ ~σnþ1 is obtained from the above equation by seeting η¼ 0,
which corresponds to the rate-independent situation. σnþ1 ¼ σtrialnþ1
is obtained by setting η¼1, which corresponds to the elastic
situation.

Regarding the strain rate effect for concrete, it has been argued
that the 3D FE model is capable of calculating the strength
increase due to the confining stresses generated by the inertia of
the structure, and there is a risk of overestimating the strength if
FE calculates the failure of concrete by using both strain rate
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dependent strength increase factors and confining stresses due to
the inertia [47–50]. In consideration of this, η¼ 0 is suggested in
this study.

4. Numerical validations

To validate the applicability of the proposed material para-
meters for the MAT 145 to concrete in tension and compression
under different confining pressures, experimental strain–stress
data from existing literatures for the quasi-static case is used.
Furthermore, falling weight impact test on RC beams is used to
check the dynamic performance of the MAT 145 with the proposed
parameters. The parameters of the MAT 145 are generated based
on the calibration equations summarized in Appendix. In order to
compare with a similar model-MAT 159, validations of the MAT
159 with default parameters (internal generation parameter based
on uniaxial compression strength, the maximum aggregate size
and units) is also carried out.

In the numerical simulation, the compression or tension are
applied to the top surface of the element via nBoundary Prescribed
Motion keywords with a constant velocity of compression or tension,
while the bottom surface is constrained on the motion direction. For
triaxial compression, the confining pressure is applied to the side and
ends of the element via nLoad Segment keywords [3].

4.1. Uniaxial tensile test

Fig. 13 shows a comparison of the predicted stress–strain relation
curves by the MAT 145 and MAT 159 against data of uniaxial tension
tests on concrete reported by Geopalaeratnam and Shah [51]. The test
material parameters included 28 days compression strength
f 0c ¼ 43:88 MPa¼ 6364 psi, tension strength f 0t ¼ 3:62 MPa¼
525 psi, fracture energy GF ¼ 0:00564 N=mm¼ 0:322 lb=in: and
stress–strain curve measured in 83 mm length. In the following

simulations, a single cubic element model with three different size
(25 mm, 50 mm and 83mm) was used to show the element size
dependent of the stress–strain curve, where C44 concrete with a
maximum aggregate size of 10mm was used to generate material
parameters for the MAT 145 and MAT 159. Tables 3 and 4 show the
input material parameters of the MAT 145 and MAT 159 for the
element size of 83 mm.

Evidently, the model predictions by the MAT 145 based on
mesh size of 83 mm (the same as the test length) match well with
the pre-peak test data and show generally acceptable agreements
for the post-peak response, whilst the predictions using the MAT
159 show appreciable discrepancies for both pre-peak and post-
peak responses no matter what mesh size is used.

Fig. 14 further shows a comparison of the peak tensile strength
for different grades of concrete predicted by the MAT 145 and MAT
159. The predictions by the MAT 145 are apparently higher than
those by the MAT 159. Not presented here, a further prediction of
the peak tensile strength by the MAT 72 show nearly identical
values with those by the MAT 145 for different grade of concrete.
Besides, the predicted peak tensile strength by the MAT 159 shows
very small value when f 0cr20 MPa, and gives decreasing value
when f 0cZ50 MPa because the default material parameters gen-
erated by the MAT 159 is for concrete about 20 MPar
f 0cr58 MPa, with emphasis on the midrange between 28 and
48 MPa [14]. Hence the MAT 159 may be not suitable for high
strength concrete with f 0cZ48 MPa. In comparison, the predicted
peak tensile strength by the MAT 145 based on the proposed
material parameter performs well for all grades of concrete.

4.2. Uniaxial and triaxial compression tests

Fig. 15 presents a comparison of the model predictions with
uniaxial and triaxial compression test data reported by Green
and Swanson [21], where the compression tests for C48.4

Table 3
Material input card of the MAT 145 for the element size of 83 mm.

Table 4
Material input card of the MAT 159 for the element size of 83 mm.
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(f 0c ¼ 48:4 MPa ¼ 7:02 ksi) concrete were conducted on 68.6 mm
(2.7 in.) diameter by 152.4 mm(6.0 in.) long cylinders at three
confining pressure of 0, 6.8959 MPa (1 ksi) and 13.79 MPa (2 ksi),
respectively. The maximum aggregate size was 76.2 mm (3/8 in.),
and the elastic modulus E was about 41368.6 MPa (6000 ksi). The
simulations adopted a multi-element structural model with the
same size of the test specimens, which include 2139 hexahedral
elements with a mesh size of 8 mm (Fig. 15a). C48.4 concrete was

used to generate the material parameters for the MAT 145 and
MAT 159. Ductile damage parameters A$¼1.0, B$¼0.0 was used
in the MAT 145 (Table 5), and the suggested range of B$ is
0rB$ r0:09. The predicted stress is the average value in the
mid-section of the specimen shown in Fig. 15a, and the strain is
calculated from the total displacement in top section of the
specimen. It is evident that the predicted results by the MAT 145
compare well with test data in the case of high confining pressure,
whilst the predictions by the MAT 159 shows large difference from
the test data in all three cases.

Fig. 16 shows a comparison of peak compressive strength for
different concrete (C10 to C70) produced by the MAT 145 and MAT
159. The results given by the MAT 145 agree well with the
theoretical value for all those concrete, whilst the results predicted
by the MAT 159 are slightly smaller than the theoretical value for
most concrete types though C20 concrete lies in its application
range.

4.3. Hydrostatic compression tests

Fig. 17 presents the comparisons of experimental and analytical
results of hydrostatic load–unload tests. In the hydrostatic com-
pression test, conducted by Green and Swanson [21], the size of
specimen and concrete mix are the same as those introduced in
Section 4.2, and the measurable permanent compaction began
about 41.4 MPa (6 ksi) pressure. The simulated diagrams of the
MAT 145 compares well with the experimental data especially in
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Table 5
Material input card of the MAT 145.
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loading test, whilst the predictions by the MAT 159 differs a
lot from the experimental data in both loading and unloading
tests.

4.4. Reinforced concrete beams subject to impact loads

Fujikake [52,53] conducted tests on RC beams subject to the
failing weight impact which will be used in this study to validate
the performance of the Mat 145 for concrete under impact loads.
In the test, a rigid hammer with a mass of 400 kg was dropped
freely onto the top surface of RC beams at mid-span from four
different heights (0.15 m, 0.30 m, 0.60 m, and 1.20 m). The uniaxial
compressive strength of concrete was 42 MPa in the test, and the
estimated tensile strength of concrete according to Japan Society
of Civil Engineers code was 2.8 MPa [52].

In the FE model, the concrete was meshed with 57852 eight-noded
solid elements with size of 12.5 mm. C42 concrete with the maximum
aggregate size of 10 mmwas used to generate material parameters for
the MAT 145 and MAT 159. The material input card of the MAT 145 is
shown in Table 6, where ductile damage parameter B$ ¼ 0:1 with the
estimated range 0rB$ r0:164 is used.

Fig. 18 shows comparisons of predicted and testing impact
force and mid-span displacement for the four impact cases. For
impact force history, the numerical results predicted by the MAT
145 agree rather well with the test data in terms of peak force in

all impact cases, while those predicted by the MAT 159 tend to
overestimate the peak force and have short impact duration.
Focusing on mid-span displacement, the results predicted by both
models agree well with the test curve before peak displacement,
and the residual displacements from both models are slightly
larger than the test value.

Fig. 19 presents the comparisons of the predicted damage by
two models and experimental results, wherein the contours of the
damage range from 0 (blue) to 1 (red). In the numerical simula-
tion, both vertical cracks and diagonal shear cracks caused by
overall failure of RC beams are predicted reasonably well by both
models, and the damage predicted by the MAT 145 appears to be
slightly larger than that by the MAT 159.

The above comparisons indicate that the MAT 145 performs
better in predicting the impact force, while the MAT 159 may be
better in predicting mid-span displacement and damage distribu-
tion of the RC beam with moderate damage.

5. Conclusions

The MAT 145 in LS-DYNA is an advanced constitutive model for
geomaterials with sounded theoretical background, but contains
too many parameters which limit its wide applicability. To facil-
itate this model for convenient use by more users, a detailed
procedure of calibration of this model for concrete was presented
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Fig. 17. Comparison of experimental and simulated hydrostatic stress–strain response: (a) MAT 145 and (b) MAT 159.

Table 6
Material input card of the MAT 145.
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Fig. 18. Comparisons of analytical and test results for four impact cases.
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in this study. The material parameters other than those related to
the damage were obtained as functions of the uniaxial compres-
sion strength of concrete based on the CEB–FIP code and empirical
formulas reported in the literature. The damage parameters are
determined with consideration of a characteristic length of the
finite element. The proposed formulae and relationships greatly
expedite the engineering application of the model.

The proposed method was further verified by a single element
and a multi-element simulation by the MAT 145 which offered
reasonably good predictions for the stress–strain relationship as
compared to experimental results. Compared with the MAT 159,
the MAT 145 with proposed material parameters shows nearly
identical peak tensile strength f 0t as the MAT 72, and can be used
for different grade of concrete including high strength concrete
f 0cZ48 MPa
! "

. Furthermore, numerical simulations of RC beams

subjected to the failing weight impact using the MAT 145 and MAT
159 were carried out. The results show that the MAT 145 with
proposed parameters performs better than the MAT 159 for
predicting the impact force, and the difference between two
predicted mid-span displacements in each case is negligible.
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Fig. 19. Damage distribution of four RC beams after the impact test: (a) experiment, (b) MAT 145, (c) MAT 159. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

H. Jiang, J. Zhao / Finite Elements in Analysis and Design 97 (2015) 1–19 15



Appendix. Input parameter card for the MAT 145

Note: Parameters marked in rectangle are important parameters calibrated in this paper. Parameters marked in ellipse are ignored
parameters with default value. The remaining parameters are the output opinions for users.
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Associated calibration equations of the MAT 145

RO (mass density) [19]
RO¼ 2:4) 10$9 (Card 1-2)

SHEAR (shear modulus) [19]

G¼ E
2 1þ γð Þ ¼

9137:5
1þ γ

f 0c
10

& '1=3
MPa

(Card 1-3)

BULK (bulk modulus) [19]

K ¼ E
3 1$2γð Þ ¼

6092
1$2γ

f 0c
10

& '1=3
MPa

(Card 1-4)

GRUN (Gruneisen ratio) [3]
GRUN¼0 (Card 1-5)

SHOCK (Shock velocity) [3]
GRUN¼0 (Card 1-6)

PORE (flag for pore collapse for constant bulk modulus)
PORE¼1 (Card 1-7)

ALPHA (shear failure parameter)
α¼ 13:9316exp f 0c=68:7383

! "
$13:8380 (Card 2-1)

THETA (shear failure parameter)
θ¼ 0:3533$3:3294) 10$4f 0c$3:8182) 10$6f 0c

2 (Card 2-2)
GAMMA (shear failure parameter)

γ ¼ 3:6657exp f 0c=39:9363
! "

$4:7092 (Card 2-3)
BETA (shear failure parameter)

β¼ 18:17791f 0$1:7163
c

(Card 2-4)

EFIT (dilitation damage mechanics parameter) [3]
EFIT¼1 (no dilatation damage) (Card 2-5)

FFIT (dilitation damage mechanics parameter) [3]
FFIT¼0 (no dilatation damage) (Card 2-6)

ALPHAN (kinematic strain hardening parameter)
ALPHAN¼0 (no hardening) (Card 2-7)

CALPHAN (kinematic strain hardening parameter)
CALPHAN¼0 (no hardening) (Card 2-8)

R0 (initial cap surface ellipticity)
S¼ 4:45994exp $ f 0c=11:51679

! "
þ1:95358 (Card 3-1)

X0 (initial cap surface J1 axis intercept)
X0 ¼ 17:087þ1:892f 0c (Card 3-2)

IROCK [3]
IROCK¼0 (soils-cap can contract) (Card 3-3)
IROCK¼1(rock/concrete-cap cannot contract) (Card 3-3)

SECP (shear enhanced compaction)
SECP ¼0 (no consideration of shear enhanced compaction) (Card 3-4)

AFIT (ductile damage mechanics parameter)
A$ ¼ 1 (Card 3-5)

BFIT (ductile damage mechanics parameter)

B$ ¼ f 0c=
ffiffi
E

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gc=l

n þ f 0c2=E
p

Gc=l
n

(Card 3-6)

Or 0rB$ rBþ = f 0c=f
0
t

! "
(Card 3-6)

RDAM0 (ductile damage mechanics parameter)

r$0 ¼ f 0cffiffi
E

p ¼ f 0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18275 f 0c=10ð Þ1=3

p (Card 3-7)

W (plastic volume strain parameter)
W ¼ 0:065 (Card 4-1)

D1 (plastic volume strain parameter)
D1 ¼ 6:11) 10$4 (Card 4-2)

D2 (plastic volume strain parameter)
D2 ¼ 2:225) 10$6 (Card 4-3)

CFIT (brittle damage mechanics parameter)
Aþ ¼ 1 (Card 4-6)

DFIT (brittle damage mechanics parameter)

Bþ ¼ ln f 0t
GF

ffiffi
E

p (Card 4-7)

TFAIL (tensile failure stress)

f ¼ f 0t ¼ 1:4 f 0c=10
! "2=3 MPa (Card 4-8)

DBETA(rounded vertices parameter)
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DBETA¼0 (Card 5-2)
DDELTA (rounded vertices parameter)

DDELTA¼0 (Card 5-3)
VPTAU (viscoplasticity relaxation time parameter, η)

η¼0 (Card 5-4)
ALPHA1 (torsion scaling parameter)

α1 ¼ 0:82 (Card 6-1)
THETA1 (torsion scaling parameter)

θ1 ¼ 0 (Card 6-2)
GAMMA1 (torsion scaling parameter)

γ1 ¼ 0:2407 (Card 6-3)
BETA1 (torsion scaling parameter)

β1 ¼ 0:33565f 0$0:95383
c

(Card 6-4)

ALPHA2 (tri-axial extension scaling parameter)
α2 ¼ 0:76 (Card 6-5)

THETA2 (tri-axial extension scaling parameter)
θ2 ¼ 0 (Card 6-6)
γ2 ¼ 0:26 (Card 6-7)

BETA2 (tri-axial extension scaling parameter)
β2 ¼ 0:285f 0$0:94843

c
(Card 6-8)
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