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SUMMARY

Strain gradient implies an important characteristic in localized damage deformation, which can be
observed in the softening state of brittle materials, and strain gradients constitute the basic behaviours of
localization failure area of the materials. The most important point in strain gradient is its damaging
function including an internal length scale, which can be used to express the scale effects of mechanical
responses of brittle rock mass. By extending the strain gradient theory and introducing an intrinsic material
length scale into the constitutive law, the authors develop an isotropic damage model as well as a micro-
crack-based anisotropic damage model for rock-like materials in this paper. The proposed models were
used to simulate the damage localization under uniaxial tension and plain strain compression, respectively.
The simulated results well illustrated the potential of these models in dealing with the well-known mesh-
sensitivity problem in FEM. In the computation, elements with C1 continuity have been implemented to
incorporate the proposed models for failure localization. When regular rectangle elements are encountered,
the coupling between finite difference method (FDM) and conventional finite element method (FEM) is
used to avoid large modification to the existing FEM code, and to obtain relatively higher efficiency and
reasonably good accuracy. Application of the anisotropic model to the 3D-non-linear FEM analysis of
Ertan arch dam has been conducted and the results of its numerical simulation coincide well with those
from the failure behaviours obtained by Ertan geophysical model test. In this paper, new applications of
gradient theories and models for a feasible approach to simulate localized damage in brittle materials are
presented. Copyright # 2002 John Wiley & Sons, Ltd.
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method (FDM); mesh dependence

1. INTRODUCTION

Localized failure of geomaterials is a very common phenomenon and has attracted much
interest from scholars. Rudnicki and Rice [1], Ottosen and Runesson [2] and Benallal [3] treated
the localized shear band as a phenomenon of bifurcation. For rate-independent material,
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localized shear band is closely related to the unsteady behaviour of material. The incipience of
localized failure corresponds to the losts of ellipticity of the governing equation as well as the
uniqueness of the solution, and simultaneously the strain field becomes discontinuous, with
large flow rate and strain gradient in the band-like region. So far how to simulate and predict
the failure process}pre- and post-failure of brittle rock-like materials is still a focus. It consists
of several important points such as: formation of shear bands in rock-like materials at softening
state; fracture initiation, nucleation and propagation with intense strain gradients; the
mechanics meaning of gradient in deformations of rock materials under external loadings;
the physical meaning and mechanical role of the intrinsic material length and its relation with
localization formation.

On dealing with the problem of localization, the conventional continuum mechanics is always
used by scholars. However, this method comes out to be inadequate to identify the characterized
behaviours of localization. In fact, during the localized failure state of rock-like materials, the
strain gradient makes a crucial proportion of failure-driven force and becomes the controlling
factor of both localization condition and formation. Whereas, the conventional continuum
mechanics neglects the contribution of strain gradient to localization and has no intrinsic
material length in the constitutive law, which leads to such problems as zero-energy dissipation
and mesh dependence in the FEM simulation of localization, the incapability of determining the
direction and size of localized band and the indetermination of computation results in the failure
state.

To account for the influence of gradient items and avoid the deficiency of conventional
continuum mechanics on the problem of localization, different gradient models have been
developed. Generally, these gradient models can be classified into three types. The first
kind directly considers the gradient effects of damage variables within the continuum
damage mechanics, which has a similar purpose of the gradient of strain. E.g. Comi [4]
developed an isotropic gradient-enhanced damage model, in which the loading function not
only depends on the damage value, but also on its Laplacian. Fremond and Nedjar [5] proposed
a theory of continuum damage mechanics within the framework of the principle of virtual
work, taking into account the influence of damage velocity and its gradient on the work of the
internal forces. However, the physical meaning of damage gradients still cannot be clearly
interpreted.

The second kind gradient model belongs to the non-local gradient theory. This kind of
gradient model is pioneered by Muhlhaus and Vardoulakis [6], de Borst and Muhlhaus [7] and
Bazant et al. [8–11]. They proposed a micro-plane-theory-based non-local model to analyse the
size effect of structure fracture. Peelings et al. [12–14] and Geers et al. [15,16] further developed a
gradient damage model by connecting local with non-local equivalent strains. Kuhl and Ramm
[17] made a combination of the above two models and proposed an anisotropic gradient-
enhanced damage model. Tvergaard and Needleman [18] adopted non-local method with
intrinsic material length scale included to minimize the mesh-sensitive problem for ductile
porous media. The gradient term of non-local model is derived from the spatial average of
strain, and at the same time, a material length scale is introduced. This model is successful in
predicting the localization formation in rock-like materials. However, it has its weak points
since this method leads to the weakening of total stiffness of materials due to the spatial average
of strain, which lowers the critical hardening modulus for localized bifurcation and makes the
computation results safer than the actual behaviour. As a result, its numerical simulation cannot
reflect the true failure process and the actual limit.
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The third kind can be called the local gradient model. Papers representing this kind of model
are presented by Cosserats [19], Toupin [20], Mindlin [21,22], Aifantis [23,24], Muhlhaus and
Aifantis [25], Fleck and Hutchinson [26,27], Fleck et al. [28], Gao et al. [29], and so on. Local
gradient model generally includes a rotation gradient or entire strain gradient in the model to
construct the constitutive law. An intrinsic material length is also introduced into the law to
balance the equations. Local gradient model experiences a process from elastic gradient models
to elasto-plastic models. These models mainly treat such materials as metals. In fact, for rock-
like geomaterials, the characteristic of strain gradient during localization is rather evident (see
References [30,31]). However, few literatures of local strain gradient model ever treat the
problem of localization in these materials.

The motivation of this paper is to introduce the effect of local strain gradient into continuum
damage mechanics and to account for those characteristic behaviours of localization that
conventional continuum mechanics has difficulties to deal with. Continuum damage mechanics
is an effective tool in describing the characteristic of anisotropy, shear dilatation and load-path
dependence of geomaterials. Here the authors choose the local strain gradient form presented in
the paper of Fleck and Hutchinson [26,27], and adopt a scalar variable and a second-order
tensor, respectively, for the isotropic and the anisotropic damage models. In the following
paragraphs the local strain gradient model of Fleck and Hutchinson [26,27] are briefly
described. The combinations of the local strain gradient with the continuum damage mechanics
are separately presented for the isotropic and anisotropic cases. These models were implemented
in FEM and were used to simulate localized shear bands. The engineering application to Ertan
arch dam by 3D-non-linear FEM analysis with the proposed models was also conducted with
the anisotropic model. The computed failure results by this model were compared with the
rupture behaviours from the geophysical model test of the dam.

As for notations and symbols, bold-face letters denote matrices and vectors; the symbol ‘:’
denotes an inner product of two second-order tensors (e.g. a : b ¼ aijbij), or a double
contraction of adjacent indices of tensors of rank two and higher (e.g. D : e ¼ Dijklekl); the
symbol ‘ ..

.
’ denotes an inner product of two third-order tensors (e.g. c ..

.
d ¼ cijkdijkÞ; or a triple

contraction of adjacent indices of tensors of rank three and higher (e.g. K ..
.
g ¼ LijklmnZlmn); the

rate of change with respect to time is denoted by an ascent dot (e.g. ’dd).

2. GRADIENT-ENHANCED DAMAGE MODEL

2.1. Isotropic damage model

2.1.1. Conventional continuum model: mesh dependence. The conventional continuum theories
generally neglect the effects of strain gradient in the process analysis of localized failure.
Although applicable for most situations, they are no longer sufficient to describe the localized
failure of strain-softening materials, like rock and concrete. FEM simulation based on these
theories will pose an obvious mesh-dependence problem, which can be seen from the following
numerical samples (Figure 1). In the example, three different meshes were used to study the
damage and failure behaviour of bars under uniaxial tension. An isotropic damage constitutive
law proposed by Simo and Ju [32] is applied to model them. The numbers of the mesh are 33, 90
and 550, respectively, and all the other conditions are the same. To trigger the localization, the
magnitudes of some material parameters are slightly decreased in the middle elements. As
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shown in Figure 1, a strong mesh dependence of strain distribution is obtained by FEM
simulation. This phenomenon is incorrigible under the framework of conventional constitutive
law due to the neglect of strain gradient and the lack of intrinsic length scale of material in the
constitutive law.

2.1.2. Isotropic gradient-enhanced damage model. The strain gradient theory proposed by Fleck
and Hutchinson [26,27] relates the strain and strain gradient to the displacement field u by

eij ¼ ðui;j þ uj;iÞ=2; Zijk ¼ ðuk;ij þ uk;jiÞ=2 ð1Þ

Here, eij is the symmetric strain tensor, and Zijk is the symmetric third-order strain gradient
tensor. The Cauchy stress sij and some higher-order stress tijk are assumed to be the work
conjugate of strain eij and strain gradient Zijk ; respectively. The higher-order stress should satisfy
the following symmetric condition: tijk ¼ tjik :

The strain gradient theory is originally developed within the framework of micro-mechanics
and meso-mechanics. By extending it to the materials with damaged micro-structure
and considering its macroscopic damage effect, the authors proposed an isotropic strain-
gradient-enhanced damage model. On supposing that the isotropic damage variable of the
material can be represented by a scalar d; the Helmholtz free energy function has the following
form:

c ¼ 1
2
ð1� dÞe : De : eþ 1

2
ð1� dÞg ..

.
Ke ..

.
gþ

Z k

0

fðkÞ d k
_

ð2Þ

where: De is the fourth-order elasticity tensor; Ke is the sixth-order strain-gradient-related
elasticity tensor, Ke

ijklmn ¼ l2De
ijlmdkn; dkn is the Kronecker delta (see Reference [33]), and k

is an additional internal variable. The third term
R k
0
fðkÞ d k

_
accounts for the softening/

hardening behaviour in the material. l is an intrinsic material length with a dimension of
length. Its magnitude is closely related to the micro-structure of the material. Generally,

Figure 1. FEM simulations of samples under uniaxial tension: based on the conventional damage model,
the strain distribution has a strong dependence on the mesh discretization.
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l remains constant for the observed objects or test samples. Its value is considered to be
only related to the initial micro-defects and can be obtained from the experiments.
Massive amount of experiments had been done for ductile materials, especially for metals
[28,34–41]. The material lengths obtained by experiments are: for copper, l � 4 mm and for
nickel, l � 6 mm: For rock-concrete-like materials, inhomogeneous micro-structure mainly
refers to micro-cracks, micro-voids and granule of the material. Pan [30] obtained the material
length for coal rock and sandstone by rock-burst test as l � 0:53 mm for coal rock and l �
0:47 mm for sandstone. Also, the length value of other harder rock is about 4–6 times larger
than that of sandstone. For granite treated in this paper, the material length is adopted as
l � 1:5 mm:

According to the Clausius–Duhem inequation, the Cauchy stress tensor sij and the
higher-order stress tensor tijk can be determined by the work conjugate of eij and Zijk ;
respectively.

sij ¼
@c
@eij

¼ ð1� dÞDe
ijklekl; tijk ¼

@c
@Zijk

¼ ð1� dÞl2De
ijkldmnZlmn ð3Þ

The above-mentioned Cauchy stress and higher-order stress satisfy the equilibrium equation
in the absence of body force given below

r � r�r � ðr � sÞ ¼ 0 ð4Þ

2.1.3. Damage evolution law. From Equation (2), the thermodynamic force Y conjugate to
damage variable d can be derived as

Y ¼ �
@c
@d

¼
1

2
e : De : eþ

1

2
g ..
.
Ke ..

.
g ð5Þ

Note that ð..
.
Þ denotes the third-order tensor product operator.

Define a damage surface like the plasticity-yielding surface in the stress space as
below [30]:

g½Y ; d; rt� ¼ GðY Þ � rtðd;kÞ40 ð6Þ

where GðY Þ denotes the equivalent fracturing force and rtðd;kÞ the representative radius
characterizing the damage surface, which implies the dependence of fracturing and yielding
behaviour on the accumulated damage magnitude in the material.

The flow rule of damage in the material analogous to that in plasticity theory is defined as

’dd ¼ ’gg
@g
@Y

ð7Þ

The damage surface yields the Kuhn–Tucker conditions:

g40; ’gg50; g’gg ¼ 0 ð8Þ

and the consistency condition

’gg’gg ¼ 0 ð9Þ

Equations (6)–(9) imply that, within the damage surface, ’dd ¼ 0 always holds and no
damage dissipation will be introduced for any loading/unloading process in the stress
space.
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Generally, the rate of internal variable, ’kk; can be implicitly assumed as ’kk ¼ ’gg: Therefore, given
the consistency condition of damage, one can have

’gg ¼
@g
@Y

’YY þ
@g
@d

’dd þ
@g
@k

’kk

¼
@g
@Y

’YY þ ’gg
@g
@d

@g
@Y

þ ’gg
@g
@rt

@rt
@k

¼
@g
@Y

’YY þ ’gg
@g
@d

@g
@Y

þ
@g
@rt

@rt
@k

� �

¼ 0 ð10Þ

Thus

’gg ¼ �B ’YY
@g
@d

@g
@Y

þ
@g
@rt

@rt
@k

� ��1@g
@Y

ð11Þ

where

B ¼
1 when g ¼ 0;

@g
@Y

’YY50

0 else:

8><
>:

Hence, the general form of damage evolution law can be expressed as

’dd ¼ �B ’YY
@g
@Y

@g
@d

@g
@Y

þ
@g
@rt

@rt
@k

� ��1@g
@Y

ð12Þ

However, the above implicit form of damage evolution law is inconvenient for numerical
implementation. An alternative simple explicit formulation is proposed in this paper. By the
definition of damage, the thermodynamic force Y conjugated to the damage variable can be
regarded as the energy-releasing rate in fracture mechanics. Consequently, the internal variable
k can be determined explicitly in terms of the maximum value between a threshold value k0 and
the energy release rate during the loading/unloading process in the following form [17]:

k ¼ max
�15t5t

1

2
eðtÞ : De : eðtÞ þ

1

2
gðtÞ ..

.
Ke ..

.
gðtÞ

� �
;k0

� �
ð13Þ

A power distribution model proposed by Geers et al. [15,16] is then used to determine the
damage variable to characterize the strain-softening behaviour in rock-like material

d ¼ 1�
k0
k

� �b kc � k
kc � k0

� �a

ð14Þ

where kc is an internal hardening/softening variable representing the upper limit value of k when
damage reaches maximum. The two exponents, a and b; reflect the slope and the shape of stress–
strain softening curve while the damage threshold k0 mainly relates to the peak of the loading
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displacement curve. For convenience of computation, Equation (14) is further simplified by
supposing b ¼ 1;

d ¼ 1�
k0
k

kc � k
kc � k0

� �a

¼ 1�
k0
k

1�
k� k0
kc � k0

� �a

¼ 1�
k0
k
ð1� zðk� k0ÞÞ

a ð15Þ

where z ¼ 1=ðkc � k0Þ: An alternative form of damage evolution law proposed by Carmeliet and
de Borst [42], which is more convenient to use, is adopted in the paper:

d ¼ fðkÞ ¼ 1�
k0
k
½1� aþ ae�zðk�k0Þ� ð16Þ

Figure 2 shows a relation curve for damage value, d; with the influencing parameters in (16).
Figure 3 gives a sketch of the effect of a on the uniaxial stress and strain curve.

2.2. Anisotropic damage model

2.2.1. Damage variable choice. Rock-like materials are frequently weakened by the emergence
of micro-cracks and micro-voids, which induce anisotropy for the mechanical behaviours of
materials, especially under compression. The isotropic damage model can illustrate the
propagation of the micro-defects and softening behaviour of this kind of material (see the third
part); however, it cannot account for the anisotropic behaviours of the material. Different
anisotropic damage models have been proposed by scholars [43–46]. In this paper, a

0

0.2

0.4

0.6

0.8

1

0.0001 0.0003 0.0005 0.0007 0.0009

d

0.10.0 →=α

�

Figure 2. Relation curves for d vs k and a (on condition that k0 ¼ 0:001; z ¼ 400).
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second-order damage tensor proposed by Oda [47] and Cowin [48] is used to describe the micro-
defect-induced anisotropy. Suppose a representative element volume (REV) with a volume of V 0

involves micro-cracks of total number n; the damage behaviour is delineated by the following
second-order fabric tensor:

X ¼
1

V 0

Xn
a¼1

r3ah
aha ð17Þ

where ra and ha are the radii and the normal unit vector of ath penny-shape micro-crack,
respectively. Although the anisotropic damage model in this paper is based on micro-cracks
distributed in the material, it is assumed that the interaction of the micro-cracks is taken into
account implicitly within the framework of the self-consistent method.

The following expression is used to obtain the elasticity tensors involving damage for the
material:

Dijkl ¼ lFijFkl þ mðFikFjl þ FilFjkÞ; Fij ¼ C1dij þ C2Oij þ C3OimOmj ð18Þ

For the sake of convenience, Swoboda and Yang [49] normalized the damage variables and
obtained a simple case for the coefficients: C1 ¼ 1; C2 ¼ �k; C3 ¼ �ð1� kÞ: In this paper, an
even simpler case presented by the authors [50] in the case of k ¼ 1 is used:

Dijkl ¼ ldijdkl þ mðdikdjl þ dildjkÞ � ½lOijdkl þ mðOikdjl þ OildjkÞ�

þ ðlþ 2mÞOijOkl ð19Þ

St
re

ss
0.10.0 →=α

Strain

Figure 3. The effect of a on the curve of uniaxial stress and strain.

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2002; 26:793–813

W. ZHOU ET AL.800



2.2.2. Constitutive relations and damage evolution law. A form of Helmholtz free energy similar
to (2) is given for anisotropic behaviour:

c ¼
1

2
e : D : eþ

1

2
g ..
.
K ..
.
gþ

Z k

0

fðkÞ d k
_

ð20Þ

Suppose the gradient-related elastic tensors still have the form

Kijklmn ¼ l2Dijlmdkn ð21Þ

Analogous to the isotropic case, the constitutive relations are obtained through Clausius–
Duhem inequation

sij ¼
@c
@eij

¼ Dijklekl; tijk ¼
@c
@Zijk

¼ l2DijkldmnZlmn ð22Þ

Note that the Cauchy stress and higher-order stress tensor above formulated still satisfy the
equilibrium equation (4).

The conjugate force of damage can be defined similarly as

Y ¼ �
@c
@X

¼
1

2
e :

@DðXÞ
@X

: eþ
1

2
g ..
. @KðXÞ

@X
..
.
g ð23Þ

From (17) and (19), one can obtain

@Dijkl

@Omn
¼ �ðDe

rjkldimdnr þ De
ijkrdrmdnlÞ þ De

rjksOirdsmdnl þ De
rjksOsldimdnr ð24Þ

@Lijklab

@Omn
¼ l2

@Dijla

@Omn
dkb ð25Þ

where De
ijkl ¼ ldijdkl þ mðdikdjl þ dildjkÞ is the initial elasticity tensor.

A conjugate-force-based damage evolution law is defined as

’XX ¼ J : Y

where ’XX is the evolution rate of damage; J ¼ JðXÞ is the damage characteristic tensor, a tensor
of rank four for a second-order damage tensor. It is defined as

JðXÞ¼
P3

v¼1 o2
v 4Tv þ

9

4
Nv

� �
; Nv

ijkl ¼ mv
i m

v
jm

v
km

v
l

T v
ijkl¼

1
2
ðmv

im
v
kdjl þ mv

i m
v
ldjk þ mv

jm
v
kdil þ mv

jm
v
ldikÞ � mv

i m
v
jm

v
km

v
l

ð27Þ

Here, mv and ov ðv ¼ 1; 2; 3Þ are the principal vector and the principal value of damage tensor
X; respectively.

It should be noted that, such a conjugate-force-based damage evolution law presented in (26)
furnishes a much more general and compact form than does a stress/strain-based one. It
possesses the same form in both stress and strain spaces and internal variables.
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3. NUMERICAL SIMULATION OF DAMAGE LOCALIZATION BY FEM

3.1. Element continuity for FEM implementation

To account for the strain gradient in implementation of FEM, element with C1 continuity
should be adopted instead of C0 continuity element. The C1 continuity element was extensively
discussed in the geometrically non-linear section by Zienkiewicz [51]. Xia and Hutchinson [52]
proposed a triangle element with C1 continuity and extended it to elements with more nodes.
Wei and Hutchinson [53] studied the effects of strain-gradient plasticity of steady crack tip using
this element. Zervos et al. [54] also developed a kind of triangular element of C1 continuity with
36 DOF to include the gradient of both elasticity and plasticity, with two different intrinsic
length scales for the two periods of constitutive law, respectively. However, they include so
many gradient items (both the first order and the second order of strain) that the interpolation
and computation of FEM are intensely complicated. Comparably, this paper adopts the method
proposed by Xia and Hutchinson [52] to only account for the first gradient of strain, within the
framework of brittle damage mechanics for rock-like materials.

Generally, keeping the continuity of first-order gradient of displacement will preserve the C1

continuity of an element. Thus, four and six additional DOF are needed for each node for two-
dimensional and three-dimensional problems, respectively. Figure 4 shows a plain-strain
element with 18 DOF, namely, N3U18, developed by Xia and Hutchinson [52]. It is briefly
introduced here and it was used in the FE analysis.

The nodal displacement vector for the three nodes of the element is defined as

a ¼ ða1 a2 a3Þ
0; ai ¼ ðu u;x u;y v v;x v;yÞ

t
i ð28Þ

The general displacement is supposed to be

u ¼
X3
i¼1

aiL1 þ a4L1L2 þ a5L2L3 þ a6L1L3

þ a7fL21L2 þ
1
2
L1L2L3½3ð1� m3ÞL1 � ð1þ 3m3ÞðL2 � L3Þ�g

L2

(v,v,x,v,y)
(u,u,x,u,y)

1

l2

P L1

(v,v,x,v,y)
(u,u,x,u,y)

l3

L3

2

(v,v,x,v,y)(u,u,x,u,y)3

l1

Figure 4. N3U18 triangular element with C1 continuum for gradient strain.
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þ a8fL22L3 þ
1
2
L1L2L3½3ð1� m1ÞL2 � ð1þ 3m1ÞðL3 � L1Þ�g

þ a7fL21L2 þ
1
2
L1L2L3½3ð1� m2ÞL3 � ð1þ 3m2ÞðL1 � L2Þ�g ð29Þ

where Li is the ith area co-ordinate ði ¼ 1; 2; 3Þ; ai ðj ¼ 1; . . . ; 9Þ is the coefficient to be
determined. mi ¼ ðl2k � l2j Þ=l

2
i ði; j; kÞ; where ði; j; kÞ reiterates according to the circle permutations

as ð1 ! 2 ! 3 ! 1Þ:
The displacement field is expressed in terms of shape function as

u ¼
X3
i¼1

Niai; Ni ¼ ðN 1
i N2

i N 3
i Þ ¼

3L2i � 2L3i � 2LiLjLk

�cjðL2i Lk þ LiLjLkÞ þ ckL2i Lj

bjðL2i Lk þ LiLjLkÞ � bkL2i Lj

8>>><
>>>:

9>>>=
>>>;

t

ð30Þ

where bi ¼ yj � yk ; ci ¼ yk � yj:
Then the general element strain including the effect of strain gradient appears as the vector

form given below:

E ¼ ðexx eyy gxy Zxx3 Zxy3 Zyy3Þ
T ¼ Ba ¼

X3
i¼1

N1
i; x N2

i; x N3
i; x 0 0 0

0 0 0 N1
i; y N2

i; y N3
i; y

N 1
i; y N 2

i; y N 3
i; y N 1

i;x N 2
i; x N 3

i; x

N 1
i; xx N 2

i; xx N 3
i; xx 0 0 0

N1
i; yy N 2

i; yy N 3
i; yy 0 0 0

N1
i; xy N2

i; xy N3
i; xy 0 0 0

0 0 0 N1
i; xx N2

i; xx N3
i; xx

0 0 0 N 1
i; yy N2

i; yy N3
i; yy

0 0 0 N1
i; xy N2

i; xy N 3
i; xy

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

�

ui

ðu; xÞi

ðu; yÞi

vi

ðv; xÞi

ðv; yÞi

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð31Þ

where B is the strain–displacement matrix.
The extension of C1 continuity finite element to three-dimensional case is straightforward.

Based on the idea of plane triangular elements, 3D tetrahedron element, 3D cubic element and
triangular prism element of C1 continuity have been constructed by the authors. Further
development of various variable-nodal 3D elements, such as 8 nodal and 9–20 nodal
hexahedron elements, are still under study and will soon be applied to the 3D FEM simulation
of gradient model.
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3.2. Finite difference method (FDM) coupled with FEM for regular rectangle element

When elements in FEM computation are all regular rectangles, a simple coupled method
between FEM and FDM can be achieved. The advantages of this method have the following
points: (1) simple for computation; (2) little effort is required to modify the normal FEM code;
(3) high computation efficiency; (4) no larger loss of precision compared with FEM for general
simple cases. These can be seen from a comparison in Section 3.3. The main idea is a
combination of nodal gradient obtained by FDM into the strain of FEM computation. Here an
illustration is given.

As sketched in Figure 5, rectangular plane-strain elements are considered. In this case, only
Z113; Z223; Z123 and Z213 are non-zero among the components of Zijk for each node. From the
theory of finite difference method, for a variable u; when the difference pace Dx is infinitesimal,
the first derivative can be approximated as

du
dx

’¼¼
uðxþ DxÞ � uðxÞ

Dx
ð32Þ

According to the definition of strain gradient of Equation (2), the strain gradient of the node
ði; jÞ in Figure 3 can be determined similarly

Zi;j113 ¼
uiþ1;j � 2ui;j þ ui�1;j

ðDxÞ2
; Zi;j223 ¼

vi;jþ1 � 2vi;j þ vi;j�1

ðDyÞ2
ð33Þ

Zi;j123 ¼
uiþ1;jþ1 � ui�1;j � uiþ1;j�1 þ ui�1;j�1

4DxDy
;

Zi;j213 ¼
viþ1;jþ1 � viþ1;j�1 � vi�1;jþ1 þ vi�1;j�1

4DxDy

ð34aÞ

Since strain gradient tensor is symmetric, Z123 ¼ Z213: The above-approximated difference
may not necessarily preserve this symmetry. Therefore, their average values are going to be

(i,j+1)

(i,j)

(i+1,j+1)(i-1,j+1)

(i-1,j)

(i-1,j-1)
(i,j-1)

(i+1,j-1)

(i+1,j)

y

x

      

   
   

 

∆x

∆y

Figure 5. A sketch of the FDM determination of the strain gradient for each node.
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adopted as their final values:

Zi;j123 ¼ Zi;j213

¼
uiþ1;jþ1 � ui�1;j � uiþ1;j�1 þ ui�1;j�1 þ viþ1;jþ1 � viþ1;j�1 � vi�1;jþ1 þ vi�1;j�1

8DxDy
ð34bÞ

Note that for each mid-boundary node, the gradient is obtained by difference on the two
neighbouring collinear nodes. For each corner node, the gradients are obtained by averaging the
gradient of two nearest neighbouring nodes.

Then the elemental strain gradient can be interpolated by the same shape function of FEM for
each element

g ¼

Z113

Z223

Z123

8>>><
>>>:

9>>>=
>>>;

¼ N

Ze113

Ze223

Ze123

8>>><
>>>:

9>>>=
>>>;

¼ Nge ð35Þ

However, disadvantages of the above method are obvious: (1) only applicable for regular
rectangle element; (2) large precision loss for complicate problems.

3.3. FEM simulation of localization

3.3.1. Uniaxial tension test: for the same problem presented in Figure 1. The isotropic strain-
gradient-enhanced damage model presented in this paper was used to simulate the same
problem in Figure 1. A rectangle C1 continuity element N4U24, similar to N3U18 element
presented by Xia and Hutchinson [49], is developed. To compare with the traditional results, the
combining effects of strain with strain gradient should be considered instead of strain alone. The
following form of equivalent strain proposed by Fleck and Hutchinson [25] is adopted:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
eijeij þ l2ZijkZijk

r
ð36Þ

Figure 6 shows the simulated results by N4U24 element incorporated into the isotropic
gradient-damage model. Figure 7 shows the results of damage distribution for both models. The
chosen parameters of the material for simulations of Figures 1 and 6 are all the same: (a) size:
33 cm in length and 3 cm in width; (b) Lam!ee constants: m ¼ 9:0� 109 Mpa; l ¼ 6:0� 109 Mpa;
(c) value of a in expression (13) is assumed to be 0.94, and z; 400. The values of damage
threshold, k0; for all the elements are assumed as 0.0001, except for those of the middle row at
the value of 0.00009, which generates an agitation for localization.

Obvious differences can be found between Figures 1 and 6, Figure 7(a) and 7(b). Using the
isotropic model presented in this paper, the distribution of equivalent strain and damage
including strain gradient is nearly independent of the FEM mesh, which shows the great
advantage of incorporating strain gradient and intrinsic material length.

3.3.2. Comparison between method using C1 continuity element and FDM–FEM mixed

method. Computations by using N4U24 C1 continuity element and FDM–FEM coupling
method are implemented separately. The same mesh of (a) in Figure 4 is used. A comparison of
equivalent strain along the Y direction for the two methods is shown in Figure 8. As can be seen,
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no significant loss of precision is caused by coupled FEM–FDM method, when its results were
compared with that of FEM computation with C1 continuity element. For this simple problem,
the time consumptions of computation by coupled method and C1 continuity element method
are 87 and 124 s; respectively. With the former method, the efficiency of computation is
promoted by approximately 43%. However, great deviation may occur when dealing with
complicated problems, and in those cases, the difference-obtained gradient will no longer be
sufficiently accurate, and special attention should be paid to that issue.

3.3.3. Compression test in plane strain by the anisotropic model. The damage localization of
compression test in plain strain by the anisotropic gradient-damage model is demonstrated in
Figure 9, in which three different meshes are used to test the mesh-sensitive characteristic. The
samples have identical size of 16 cm� 8 cm ðheight� widthÞ and the discretized meshes are
8� 9; 16� 16; 24� 24; respectively. Two sets of micro-cracks are considered with the averaged
trace length and orientation, *rrð1Þ ¼ *rrð2Þ ¼ 0:08 mm; yð1Þ ¼ 458; yð2Þ ¼ �458: Total cracks for each
set are numbered 20. However, microcracks are not simulated directly in the mesh. They are
used only to obtain a general damage tensor for the computation. A disturbing imperfection,
with a little lower principal value of the damage tensor, is set for the centre elements of each
sample to trigger localization. Figure 10 illustrates the comparison of load–displacement curve
for the three samples. As can be seen from Figures 9 and 10, obvious localized damage shear
bands are found under compression. The simulated results are nearly free of mesh dependence
and the localized shear bands are almost of the same size and orientation.

4. ENGINEERING APPLICATION

The above-proposed models were also applied to the failure analysis of dam engineering by non-
linear FEM. The engineering case chosen in this paper is Ertan arch dam.

Figure 6. Uniaxial tension sample: the obtained distribution of equivalent global strain independent of the
mesh division with the application of isotropic strain-gradient-enhanced damage model.
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Figure 7. Damage distribution along the Y direction for samples in Figures 1 and 6: (a) traditional damage
model; (b) isotropic strain-gradient-enhanced damage model.
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The Ertan arch dam is located in the downstream reach of the Yalong River in southwestern
China. It is the highest arch dam in China at present. The rock mass at the dam site is generally
composed of igneous crystalline rocks. The reservoir was impounded and flood was discharged
in June 1998. Characterized data of the project are listed in Table I.

Geophysical model tests, a means to verify the limit capacity under static structural loads and
ultimate failure modes for arch dams, have been conducted during the construction of the dam.
The models were reproduced to simulate the dam itself, with the dam geological foundations.
The model scale is 1:100. Three-dimensional FEM implementation of the proposed anisotropic

0.00E+00

3.00E-05

6.00E-05

9.00E-05

1.20E-04

1.50E-04

1.80E-04

2.10E-04

0 3 6 9 12 15 18 21 24 27 30 33

Y-Coordinate (cm)

E
qu

iv
al

en
t

St
ra

in

FEM-FDM Mixed
Method

N4U24 Element
FEM

Figure 8. Comparison of nodal effective strain between FEM–FDM mixed method and N4U24
continuum element method (Mesh: 3� 11).

Figure 9. Damage distribution of compression test (with imperfection in the centre): Mesh (a): 8� 9;Mesh
(b): 16� 16; Mesh (c): 24� 24:
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model in this paper was conducted to account for the behaviours of complex geological and
fracture conditions of the bed rock mass. Altogether 2523 elements are simulated, and among
them, 523 elements are dam body elements. The 3D FE mesh can be seen from Figure 11(a).
Altogether 31 materials with different parameters are used to account for the complicate
geological conditions, including several large faults and millions of micro-fracture in the bed
rock mass.

From geophysical model tests, the dam body and dam foundation collapses under the
pressure of 7 times normal water load, which coincides rather well with that from the FEM
computation. Moreover, from the final failure modes of geophysical model tests in Figure 11(c),
there is an intensified, elliptical-shape-like collapse zone in the middle of the dam body (grey
coloured zone), which is similar to that of the final damage distribution of FEM computation in
Figure 11(b). Therefore, the results from geophysical model tests and FEM numerical
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Figure 10. Comparison of the load–displacement curves of the compression tests in Figure 9.

Table I. Characterized data of the Ertan project.

Ertan project Dam body

Location Yalong river, China Dam type Double curvature
arch dam

Main function Power generation Max. height 240 m
Total installed 3 300 MW Crest length 774:69 m
capacity
Annual power 17 000 GM h Thickness at the base of crown 58:51 m
output
Project Arch dam, water releasing Thickness at the top of crown 11 m
configuration structure, diversion channel, Max central angle of arch 91:58

switch station, log-passing Max. overhang ratio of upstream 0.18
system and secondary dam Curvature radii range 349.19–981:15 m
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simulations were mutually verified, and both may be served as useful tools for engineering
failure evaluation and prediction. Thus, it is verified that the models in this paper can make
sense both in theory and practical applications.

Figure 11. Comparison between FEM analysis and geophysical model test for the failure behaviour of
Ertan arch dam: (a) FE Mesh of Ertan arch dam and the bed rock mass; (b) damage distribution of the
dam body obtained by FEM analysis under 7 times overloading; (c) Rupture behaviours by geophysical

model test (conducted in 1994).
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5. CONCLUSIONS

The strain-gradient-enhanced damage model presented in this paper can properly characterize
and describe the phenomena of strain localization in rock-like materials. It can solve
the problem of mesh dependence in FEM simulation and avoid the loss of well posedness
of the governing equation in traditional damage models. To avoid a great modification
of the procedure of FEM implementation, the results of strain gradient by finite difference
methods are combined into the FEM procedure. However, a disadvantage of this approach
is that the requirement for mesh discretization is overly rigorous, thus its application is
limited. The anisotropic model can well illustrate the anisotropic characteristic of
localized damage for rock-like materials, which frequently exhibit great anisotropic
behaviours due to the existence of large quantities of micro-cracks and micro-voids. Application
of the anisotropic model to the 3D-non-linear FEM analysis of Ertan arch dam was conducted
and the results of numerical simulation of the failure behaviours coincide well with
those obtained by geophysical model test of the dam. However, the uncertainty of intrinsic
length scale associated with strain gradient and damage needs further experimental and
theoretical studies.

Figure 11. (continued)
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