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ABSTRACT This paper presents a micromechanical study on the behavior of granular materials
under confined shear using a three-dimensional Discrete Element Method (DEM). We consider
rotational resistance among spherical particles in the DEM code as an approximate way to account
for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to
increase the shear strength of a granular system and to enhance its resistance to liquefaction. The
evolution of internal structure and anisotropy in granular systems with different initial conditions
depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of
rotational resistance, a good correlation is found between an analytical stress-force-fabric relation
and the DEM results, in which the normal force anisotropy plays a dominant role. The unique
properties of critical state and liquefaction state in relation to granular anisotropy are also explored
and discussed.

KEY WORDS granular media, anisotropy, discrete element method (DEM), rotational resistance,
liquefaction, critical state

I. INTRODUCTION
Granular materials are important to our daily life. The handling of granular materials is common

in civil, mining and chemical engineering, or agricultural, pharmaceutical and chemical industries.
Sand, as a typical granular material, is commonly seen in nature as well as in engineering fields. Many
important infrastructures pertaining to the quality and safety of our daily life, such as water dams,
residential buildings, bridges, motorways, engineered slopes, embankments and foundations, are built
in/on/with sand. The performance of sand under external loads may have a direct impact on the design,
construction and operation of these structures[1]. Under shear, granular sand may exhibit extremely
complicated behavior that draws wide attention in the community of soil mechanics as well as granular
physics. Perplexing phenomena relevant to sand such as pressure and density dependency, anisotropy,
dilatancy, combined isotropic and kinematic hardening, zero-dilation shear flow at critical state, non-
coaxiality, liquefaction, as well as pattern formations and jamming transitions, have been subjects of
intense recent studies[2–16]. The complicated behavior of granular media on the macroscopic level is
known to be closely related to the complexity of their underlying microstructure as well as their effective
macroscopic properties involving nontrivial detail of these microstructures[17]. Characteristics on the
grain scale may contribute significantly to the overall complexity of granular materials[18–23].

� Corresponding author. E-mail: jzhao@ust.hk
�� This work was financially supported by the Research Grants Council of Hong Kong through GRF 622910.



· 2 · ACTA MECHANICA SOLIDA SINICA 2014

Towards the study of granularmedia from the particle scale, the Discrete ElementMethod has become
a particularly popular tool. Starting from the pioneer work by Cundall and Strack[24], the majority of
DEM studies have been based on simplified 2D disks or 3D spherical particles with Coulomb’s friction law
governing the interparticle sliding. While these features may offer advantages in such aspects as contact
law formulation and contact detection for DEM, other fundamental properties of real particles may have
been inadvertently overlooked. Among many others, particle shape has been considered to be one of the
most important properties that affect the granular behavior as a whole. Realistic consideration of real
sand particles should take into account such shape factors of particles as form (reflected by the degree
of particle elongation or flatness), roundness (reflective of the degree of sharpness of corners and edges),
sphericity (reflected by the degree to which the external envelope of the particle approximates that of a
true sphere) and irregularity (reflected by the number and size of projections and indentations)[25–27].
Frequently, particle interlocking due to irregularity in shape has been observed in sand under shear
which may have significant impact on both the kinematic behavior and the strength of a granular system.
Accurate characterization and modeling of real particle shape in DEM proves to be a formidable work
which may cause numerous theoretical and computational challenges. There have been studies using
ellipse/ellipsoid or glued particles for this purpose (See e.g., Ng[28]). These approximations remain far
from accurate characterization of the real particle shape and can be computationally expensive in most
cases.

It is recognized that an irregular particle shape always causes resistance to the free rolling of particles,
and an alternative way of modeling real particle shape might be to consider the rotational resistance
among particles instead. In this paper, we shall employ a three dimensional Discrete Element Method to
investigate the effect of rotational resistance on the characteristic behavior of granular materials under
shear. A rotational resistance model is developed and implemented in the DEM code. The evolution of
different sources of anisotropy attributable to the overall strength of granular systems under undrained
shear is monitored. The internal structure formed in the granular system, in terms of contact force
network, will be closely examined. The force transmission patterns as well as deformation and energy
dissipation mechanisms will be identified and analyzed. The bimodal character of force transmission
observed by Radjai et al.[20] and others will be examined as well. The unique properties associated with
such characteristic states as liquefaction and critical state will be investigated.

II. ROTATIONAL RESISTANCE AND FORMULATION
A three-dimensional Discrete Element Method code has been modified and used for the present

study[29]. A linear force-displacement contact law is employed for the study in which the normal stiff-
ness kn and the tangential stiffness kt adopt an equal value of kn/r = kt/r = 100 MPa where r is an
averaged radius defined by r = (r1 +r2)/2, with r1 and r2 being the radii of the two particles in contact,
respectively. The interparticle sliding is assumed to be governed by Coulomb’s friction law wherein a
sliding frictional coefficient μ = 0.5 is adopted. In addition, a rotational resistance model is proposed
to account for the influence of irregular particle shape.

2.1. Particle Rolling and Rotational Resistance

In most popular DEM codes, such as Itasca PFC3D, spherical particles have been assumed to
be freely rotatable, i.e. the particle rolling is a direct consequence of the inter-particle friction and
the angular velocity of the particle is updated by the moments calculated from the frictional forces
applied to the surface of the particle. Evidently, this approach oversimplifies the particle kinematics and
contact behavior, and cannot adequately handle the real case in granular materials mentioned above. We
hereby develop a new approach based on spherical particle system. In view of the fact that real granular
particles are more often non-spherical and non-rounded than otherwise, the interparticle contact will be
frequently in form of plane-to-plane or point-to-plane types. The acute corners of a particle are easily
crushed during the deforming process such that point-to-plane contacts are rarely stable enough to
sustain large shear. As such, plane-to-plane contact can be regarded as the dominant type of contact.
At each of such contacts, the interlocking is considered to be attributable to the resistance to the rolling
of contacted particles. In this connection, we introduce a contact moment Mr at the contact plane to
restrict the relative rolling between particles. Note that similar measures have been adopted by Ishihara
and Oda[30] and Estrada et al.[31]. It is assumed that the extent of this restriction is governed by an
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efficient parameter of rolling stiffness which relatesMr with the relative rolling angle between particles
according to:

Mr = −krθr (1)

where θr is the relative rotation angle between two contacting particles. The rolling stiffness kr is
assumed to be related to the shear stiffness according to kr = ktr

2[30]. Similar to Coulomb’s friction
law, we consider a threshold moment

Mmax = μrfnl (2)

such that |Mr| ≤ Mmax, where μr is the rotational resistance coefficient, fn is the normal force and
l is the characteristic length which is related to the particle radii and the penetration depth between
particles (See Fig.1). When there is a tendency of relative rolling at a contact, a triangular normal
force distribution can be assumed along the contact plane as shown in Fig.1[32,33]. It is normally safe
to assume that the penetration depth of the two particles is about 2% of the equivalent radius r. l can
then be estimated by l = w/6 = 2

√
r2 − (0.99r)2/6 ≈ 0.05r. In this way, we may judge whether or not

relative rolling will occur at a contact.

Fig. 1. Contacting particles with a tendency of relative rolling and triangular distribution of normal force.

2.2. Packings with Different Initial States

A total of around 32000 spherical particles with radii rang-
ing from 0.2 mm to 0.6 mm are randomly generated in a cubic
box with six rigid frictionless walls. A power law distribution,
shown in Fig.2, has been employed to approximate the grain
size distribution for a granular medium (in comparison with
a log-normal distribution), wherein an exponent D = 3.63
is adopted. D has been referred to as the fractal dimension

by Mair and Hazzard[34]. After a desired number of particles
have been generated in the cubic box, we then perform staged
isotropic consolidation to generate packings with different ini-
tial void ratios. At different stages of consolidation, different
frictional coefficients μ are used until the confining pressure
reaches the designated value (p′0 ≈ 190 kPa here). Table 1
summarizes the various samples prepared for the subsequent
shear. e0 is the initial void ratio of a sample prior to shear.

Fig. 2 Size distribution of particles used for pack-
ing. Ni is the number of particles with a radius
or ri, and Nmax denotes the number of particles
with a maximum radius rmax in the packing.

To examine the effect of rotational resistance, triaxial shear tests have been conducted on the var-
ious packings prepared above. In particular, we elect to shear the samples under undrained loading
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Table 1. Sample packings to be sheared under undrained condition

Sample Initial void ratio e0 Rotational resistance coefficient μr

UR0 0.644 0.0 (no rotational resistance)
UR1 0.647 0.1
UR3 0.648 0.3
UR5 0.649 0.5

conditions. Since only dry particles are involved in the DEM simulation, we approximate the undrained
condition in soil mechanics by imposing a constraint of constant volume on the sheared sample (See
also Yimsiri and Soga[35]). During the shearing, the horizontal strain is continuously adjusted with the
vertical compression to maintain a constant value for the total volume of the assembly. For the different
samples shown in Table 1, different rotational resistance coefficients have been used. Note that sample
UR0 corresponds indeed to the free rolling case.

2.3. Definitions of Macroscopic Descriptors

We employ the following definition of stress tensor proposed by Christoffersen et al.[36]:

σij =
1

V

∑
c∈Nc

f c
i d

c
j (3)

where V is the total volume of the assembly, Nc is the total number of contacts, fc is the contact force
at a contact and dc is the branch vector joining the centers of two contacting particles. It is ready from

Eq.(3) to derive the mean effective stress and the deviatoric stress p′ =
1

3
σii, q =

√
3

2
σ′ijσ

′

ij , where

σ′ij is the deviatoric part of the stress tensor σij . The strain tensor is calculated here according to the
displacement gradient at the boundary walls of a sample, i.e., εij = ∂ui/∂xj .

It is interesting to explore the shear-induced anisotropy in the study as well. In quantifying anisotropy
in a granular assembly, two classes of anisotropy with different mechanisms are distinguished, the
geometrical anisotropy and the mechanical anisotropy [37]. The geometrical anisotropy is defined by the
local orientation of contact plane which gives rise to the global anisotropic phenomenon. The mechanical
anisotropy, on the other hand, is mainly caused by the external forces and depends heavily on the induced
contact forces in relation to the orientation of contact planes. The geometrical anisotropy in an assembly
of polydispersive spherical particles can be expressed in terms of the distribution of contact normals

and branch vectors. This paper adopts the following expression of fabric tensor proposed by Satake[38]

and Oda[39]:

φij =

∫
Θ

E(Θ) ninjdΘ (4)

where n is the unit vector along the normal direction of the contact plane,Θ characterizes the orientation
of n relative to the global coordination system, and E(Θ) is the distribution probability function. In
most cases it suffices to employ the second-order Fourier expansion of E(Θ) to characterize the contact
normals (See e.g., Refs.[40,41]):

E(Θ) =
1

4π
(1 + ac

ijninj) (5)

wherein the second-order anisotropic tensor ac
ij is deviatoric and symmetric, and can be used to char-

acterize the fabric anisotropy. It is easily verified that

ac
ij = 15/2 φ′ij (6)

where φ′ij is the deviatoric part of φij .
Branch vectors may constitute an important part of geometrical anisotropy, especially when the

granular assembly comprises of polydispersive or non-spherical particles. The distribution of branch
vector may be expressed in a similar way as the contact normals in Eqs.(4) and (5):

dij =
1

4π

∫
Θ

d̄(Θ)ninjdΘ (7a)

d̄(Θ) = d̄0(1 + ad
ijninj) (7b)



Vol. 27, No. 1 Jidong Zhao et al.: Rotational Resistance and Shear-induced Anisotropy · 5 ·

where

ad
ij =

15

2

d′ij

d̄0

is the contribution of branch vector to the geometric anisotropy tensor. It has the same property with
ac

ij . d̄
0 = dii is the average branch vector length calculated over different Θ and may differ from d̄ which

is averaged over all contacts. It is noted that in polydisperse spherical assemblies which will be dealt
with in this paper, the branch vectors have normal components only.

The mechanical anisotropy can be split into normal force anisotropy caused by normal contact forces
and tangential force anisotropy induced by tangential contact forces, which are, respectively, defined
as follows:

χn
ij =

1

4π

∫
Θ

f̄n(Θ)ninjdΘ (8a)

f̄n(Θ) = f̄0(1 + an
ijninj) (8b)

and

χt
ij =

1

4π

∫
Θ

f̄ t(Θ)tinjdΘ (9a)

f̄ t
i (Θ) = f̄0[at

iknk − (at
klnknl)ni] (9b)

where

an
ij =

15

2

χ′nij

f̄0
, at

ij =
15

3

χ′tij
f̄0

Similar to previous cases, f̄0 = χn
ii denotes the average normal force calculated over different Θ and

may differ from the average normal force f̄ over all contacts. Note that f̄ will be used in the sequel to
distinguish the strong and weak contact forces.

Collectively, we have now defined a total of four anisotropic tensors, ac
ij , a

d
ij , a

n
ij and at

ij , which
can be conveniently used to characterize the anisotropic behavior originated from distinctive sources
in granular material. Since all four tensors are deviatoric in nature, it is handy to use the following
deviatoric invariant of each tensor to quantify the degree of anisotropy in each case

a∗ = sign(Sr)

√
3

2
a∗ija

∗

ij (10)

where the sub/super-script * stands for c, d, n or t corresponding to one of the four cases of anisotropy
mentioned above, respectively. Sr is a normalized quantity of the double contraction of a∗ij and σ′ij
defined below

Sr =
a∗ijσ

′

ij√
a∗kla

∗

kl

√
σ′mnσ

′
mn

(11)

The prefix sign(Sr) on the right-hand side of Eq.(10) signifies the relative orientation of the principal
direction of a∗ij with respect to that of the stress tensor. Consequently, a positive sign of a∗ij indicates

that the major principal direction of a∗ij is closer (e.g., within arccos(
√

3/3) for an axisymmetric case)
to the major principal direction of the stress tensor, and a negative sign for a∗ij if otherwise. Note that

a similar definition has been employed by Ouadfel and Rothenburg[40], Gao et al.[42] and Guo and
Zhao[43].

III. NUMERICAL RESULTS AND DISCUSSION
3.1. Macro Responses of Different Packings under Undrained Shear

The responses of samples with different rotational resistance coefficients μr are shown in Fig.3. As
is shown, the four samples demonstrate different responses under undrained shear. UR0 experiences
apparent liquefaction after around 7.5% axial strain, while the other three samples all exhibit an obvious
phase transformation stage before reaching the critical state. Among them, the response of UR1 is similar
to the typical response of a medium dense sand under undrained shear, while the other two share great
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Fig. 3. Undrained macroscopic response of granular assemblies with different rotational resistance coefficients.

resemblance of dense sand responses. The effect of considering rotational resistance is evident from the
figure. A sample apparently becomes stronger in consideration of rotational resistance than otherwise.
The shear strength of a sample (peak deviatoric stress) increases steadily with the increase of μr. In
view of this, the three samples, UR1, UR3 and UR5, all possess a looser initial state than UR0 which
makes them potentially more prone to liquefaction than UR0 if rotational resistance is not considered.
We see that the introduction of rotational resistance may indeed help an otherwise liquefiable sample
to develop appreciable resistance to avoid liquefaction. In particular, Sample UR1 experiences a drastic
contraction process and a reduction in effective stress up to around 20% of its initial value, but is still
able to pull its stress path back at the phase transformation point and develop dilative deformation
towards the critical state.

3.2. Stress-force-fabric Relationship

An analytical correlation between the anisotropy and stress, the so-called stress-force-fabric rela-
tionship, has been established by Rothenburg[44] and Rothenburg and Bathurst[18] based on DEM
study of two-dimensional disk-like particles. The relationship has been further generalized to the three-
dimensional case by Chantawarungal[45] with the following form:

σij =
Ncf̄ d̄

3V

{
δij +

2

5

(
ac

ij + an
ij +

3

2
at

ij

)
+

2

35

[(
an

kl − at
kl

)
ac

klδij +
(
4an

il + 3at
il

)
ac

lj

]}
(12)

where δij is the Kronecker delta. In the original equation, Chantawarungal[45] has neglected the con-
tribution by the branch vector. As mentioned before, in assemblies composed of highly polydispersive
particles or particles of nonspherical shapes, the contribution from the branch vector could be signif-
icant. By including ad, further manipulation of Eq.(12) readily leads to the following expression of
stress-force-fabric relationship in terms of q/p′ and the invariants of anisotropic tensors (with the cross
products between two anisotropic tensors being neglected):

q

p′
=

2

5

(
ac + ad + an +

3

2
at

)
(13)

For a 2D granular system Voivret et al.[46] have given an expression q/p′ = (ac+ad+an+at)/2. Note
that not all sources of anisotropy contribute positively to the shear strength. For example, consideration
of non-spherical particle shape may lead to a negative contribution of ad to the overall shear strength,
as has been noted by Ouadfel and Rothenburg[40].

With the available DEM simulation results, we are able to explore if the correlation is still valid in
consideration of rotational resistance. As is shown in Fig.4, the analytical stress-force-fabric relationship
in Eq.(13) correlates very well with the DEM simulations, even in the case of UR0. The shear strength
of a granular assembly can hence be directly related to its capability of developing anisotropy. It is
noticed, however, the employment of rotational resistance does slightly change the critical state stress
ratio (or the so-called slope of critical state line). A higher value of μr generally leads to a higher stress
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ratio at critical state. In essence, different rotational resistance coefficients may lead to different cases
of roundness for sand particles, such that they can no longer be treated as the same material. It is hence
no surprise that the resultant critical state stress ratio is different. Meanwhile, rotational resistance
renders the contacts in the horizontal direction of a sample much harder to be detached and thus tends
to facilitate the formation of stronger lateral support. This feature will be discussed later in relation
with the bimodal character.

3.2.1. Weight of different anisotropy sources in shear strength

It is also interesting to compare the contributions of differ-
ent sources of anisotropy to the overall shear strength. Figure
5 presents the relative weights of ac, an, at as well as ad for
the four samples. Except for the case of UR0, the normal force
anisotropy an in general dominates the shear strength by con-
tributing more than 50% in weight to the total value, and
is the main bearer that carries the external deviatoric loads.
The contact normal anisotropy ac plays a second important
role and contributes around 30%, while the tangential force
anisotropy at normally contributes less than 20%. The con-
tributing weight of ad is negligibly small and is only around
2%. Evidently, the mechanical anisotropy (an plus at) plays a
dominant role in resisting the external shear force. The ratios
of weights among an, ac and at is close to 5:3:2. While con-
sideration of rotational resistance may help increase the shear

Fig. 4 Correlation of the analytical stress-force-
fabric relationship in Eq.(13) (q/p′) with DEM
simulation for packings considering rotational
resistance, a = 2/5(ac + ad + an + 3/2at).

strength of the material, it does not appear to change the relative weights of the different anisotropies

Fig. 5. Contributing weights of various anisotropy sources to the shear strength of samples (including coefficients in Eq.(13)
for each term).
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in contributing to the overall shear strength.

As for UR0, the weight of ac is found to increase rapidly and surpasses that of an before the sample
enters liquefaction. This indicates that at liquefaction, the geometric anisotropy dominates over any
mechanical anisotropies in the sample, which appears to be a very special feature associated with
liquefaction only. Indeed, from the observation of other samples, the mechanical anisotropy, an in
particular, has to be dominant in the material strength, in order for a sample to avoid liquefaction.

3.2.2. Characteristics of anisotropy and its evolution

It is interesting to take a quantitative look at the characteristics of anisotropy and its evolution
during the loading process. The four anisotropic invariants as defined in Eq.(10) are convenient terms
to be monitored. It is noticed that owing to the use of spherical particles with a relatively narrow size
distribution, the branch vector anisotropy ad has been found to contribute less than 3% of the total
strength. Its behavior shall not be discussed in detail in this subsection. Since the responses of UR3 and
UR5 are quite similar to those of UR1, UR1 has hereby been chosen to demonstrate the characteristics
of anisotropy during the undrained shear, in close comparison with the case of UR0. The results are
presented in Fig.6. In particular, Radjäı et al.[20] have found that the contact force network within a
dense granular system under direct shear largely consists of two complementary subnetworks, a weak
force subnetwork and a strong force subnetwork. The weak force subnetwork comprises of interparticle
contacts with force below the average, while the strong force subnetwork consists of contacts which
have greater than average contact forces. The weak force subnetwork has been found largely isotropic
and functions to balance the hydrostatic pressure in the assembly. The strong subnetwork is acutely
anisotropic and sustains a major proportion of the deviatoric load. It is interesting to examine the
validity of this bimodal theory for granular systems with different initial packing states in consideration
of rotational resistance. In presenting the results, we have hereby separated the contributions of the weak
force subnetwork from the strong force subnetwork, along with the total value, to verify the bimodal
character observed by Radjäı et al.[20]. The contribution from the strong force subnetwork is denoted
by Γstrong, the part from the weak force subnetwork by Γweak, and the entire contact network by Γtotal.

From the evolution of ac in UR1 in Fig.6, the rotational resistance appears to enhance the weak
contact force subnetwork. ac in Γweak has exhibited a surprising positive value from 3.5% to 23% axial
strain range. Rotational resistance appears to have reduced the role of the weak force subnetwork as
purely a lateral propping system, but contribute more to sharing part of the deviatoric load with the
strong force subnetwork. Indeed, in a recent study of the role of weak subnetwork in the buckling of force
chains, Tordesillas and Muthuswamy[47] have observed that the introduction of rotational resistance
may help to stabilize the force chain structure directly by providing greater rotation resistance which is
regarded as a key mechanism of buckling, and it may also facilitate the stabilization of the lateral support
from the weak force subnetwork and hence enhance the stability of strong force chains indirectly. We
have however noted that at least from ac of UR1 in Fig.6 the change of role of the weak force subnetwork
caused by the rotational resistance is only temporary (e.g., only at certain early deformation stages).
When the deformation is large enough (e.g., beyond 30% of axial strain up to the critical state), ac in
Γweak turns from positive to negative again. The role of weak force subnetwork in UR1 hence returns
to its normal way of providing lateral support only, which is consistent with the observation by Radjäı
et al.[20].

Different than the cases of ac, an in Γweak plays a distinctively positive contribution to the overall
anisotropy during the entire shear process. This implies that it aligns more in the deviatoric direction
rather than perpendicular to it. However, the magnitude of an in Γweak remains small compared to
that in Γstrong, and is only 25%∼30% of the latter for UR1. The total an is still dominated by the
strong force subnetwork. We note that the total an is not a simple weighted value of an in Γstrong and
Γweak. As such its value is greater than the an in either strong or weak subnetwork as shown in Fig.6,
unlike the case of ac. It is noticeable that the contact force anisotropy is mobilized quickly after the
application of shear force and develops to its peak value comparable to the steady state value within
5% of axial strain. This is especially apparent in the strong force subnetwork. In contrast, it needs
relatively larger deformation for the fabric anisotropy (ac) to be fully mobilized (greater than 10% axial
strain), evidently from the slope of the curves at the initial deformation stage. Not presenting here we
have found the difference is clearer in the smaller rotational resistance cases, but not so obvious in the
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Fig. 6. Evolution of anisotropy in Sample UR0 (a, c, e) and UR1 (b, d, f).

other cases (such as UR5). It is believed that the instantaneous contraction a sample has to experience
may attribute to the prolonged process of establishing stable fabric structure and hence steady fabric
anisotropy.

Compared to the cases of ac and an, the tangential force anisotropy at during the shearing course
is much smaller, even in the strong force subnetwork, as is shown in Fig.6. Interestingly, it is observed
that upon shearing, at can be mobilized instantly (e.g., within 1% axial strain) to a peak, and then
drops slightly before regaining its increasing trend as the shearing proceeds. The change is even more
drastic than in the an case. Meanwhile, the values of at in Γstrong and Γtotal are found to be close to each
other. The contribution from the weak force subnetworks to the total at is very small. The evolving
curves of at are more fluctuated than those for an and ac. The numerous fluctuations in at reflect a
typical ‘slip and stick’ mode for frictional contact[48].

In contrast, for UR0, ac in Γweak exhibits a quite different behavior. Instead of staying approximately
zero, it evolves steadily from negative to positive and finally reaches ac = 0.39 prior to liquefaction.
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The total value of ac in sample UR0 is greater than that in other samples at the same level of axial
strain, whereas the values of an and at observed from Figs.6(c) and 6(e) are much smaller.

3.3. Liquefaction and Critical State

The behavior of granular materials at liquefaction or critical state is particularly interesting, due
to their theoretical significance and practical importance. Liquefaction has long been regarded as
an important attribute to various engineering disasters involving sand. Under undrained or partially
drained conditions, rapid shear may generate quick accumulation of excessive pore water pressure which
cannot dissipate timely and reduces the effective mean stress sharply. Liquefaction occurs when the
effective mean stress in such a process becomes negligibly small and the material can no longer sustain
any deviatoric stress according to Coulomb’s friction law. Critical state refers to a special stage of a
granular material at very large strain when continuous flow with constant volume and constant stresses[2]

occur. The concept of critical state builds the cornerstone of critical state soil mechanics. Among the
four samples that have been treated, UR0 reaches a state of liquefaction, and all the other three samples
reach critical state.

It is interesting herein to first compare the internal structure at the two states. A granular system
transmits forces through the interparticle contact force network. Many features of the contact force
network make it ideal for the study of the characteristics of internal structure. The network reflects not
only the interparticle fabric connection but also how the fabric transmits the external load within the
granular system. The bimodal character of force transmission suggested by Radjäı et al.[20] has been
based on the contact force network. To compare the internal structure formed at the liquefaction state
and critical state, we take the cases of UR0 and UR5 as demonstrative examples. Figure 7 presents
the final internal structures formed in UR0 and UR5, respectively. Note that in the case of UR0, the
thickness of the force chains has been magnified around 20 times to render visibility. Evidently, the
critical state reached in UR5 features a clear anisotropic structure with vertical thick column-like strong
force chains and very thin weak contact force network which is largely isotropic. This is precisely a clear
signature of the bimodal character observed by Radjäı et al.[20]. In contrast, the entire force network
at liquefaction in the case of UR0 is very weak, with an average contact force far smaller than that at
the critical state in UR5 (over 50 times smaller). The bimodal feature in this network also becomes less
distinctive. The entire sample becomes so loose that no sufficiently strong force chains can be established
within the system to sustain the small yet existing deviatoric force. In this case, it is observed that
even in the weak force subnetwork a certain proportion of contacts have been mobilized to orient more
to the vertical direction to share part of the deviatoric force.

Fig. 7. Force chain network: (a) at the liquefaction state for Sample UR0, and (b) the critical state for Sample UR5.
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Fig. 8. Proportion of weak force contact (a) and sliding contact (b) in the contact network during the loading course.

It is found that a relatively higher proportion of weak force contacts is present in the force network
when rotational resistance is considered. The greater μr is, the higher this fraction becomes. The
proportions of weak contacts as well as sliding contacts in the contact network for the four cases are
depicted in Fig.8. While at the peak stage, all samples have roughly the same proportion of weak
contacts. The weak contact weighs a slightly smaller fraction at liquefaction in the case of UR0 than
other cases at the critical state. Meanwhile, a granular assembly dissipates energy primarily through
interparticle sliding. The proportion of sliding contact can thus be regarded as an indicator of energy
dissipation. As shown in Fig.8, at the liquefaction state in UR0, sliding contact accounts for more
than 40% of the total contacts in the assembly, in contrast to an approximation of 15% in other cases
at critical state. It is also noticed that these sliding contacts are exclusively mobilized in the weak
force subnetwork. And the proportion of sliding contacts in weak contacts is around 65% in UR0 at
liquefaction, while in other cases this proportion is only about 24% at the critical state. It appears that
this fraction of mobilized sliding contacts in weak force contacts may serve as a clearer indicator of the
distinction between liquefaction and critical state, as well as the susceptibility to flow liquefaction in
granular materials. Note that the percentage of sliding contacts at critical state, along with the critical
coordination number, may be affected by interparticle friction (See, e.g., Refs.[21,49]). Other factors in
DEM may affect the behavior of critical state. Increase of interparticle friction, for example, has been
shown by Thornton[49] to be able to lead to increased critical void ratio but decreases in the percentage
of sliding contact and coordination numbers at critical state.

It is also interesting to investigate the effect of rolling resistance on the critical state. Plotted in
Fig.9 are the critical state data points and fitting with rotational resistance taken into consideration.
To gain a better curve a number of extra tests on samples with different initial void ratios under both

Fig. 9. Critical state lines of samples with different rotational resistance coefficients (pa = 1 atm). Numerical data points
are denoted by triangles and diamonds.
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drained and undrained shear have been performed for each case of rotational resistance (UR0 has been
tested under drained shear to reach critical state for μr = 0). A linear relation between critical void
ratio ec and p′ has been found for each case of rotational resistance (See also Guo and Zhao[43]. This is
consistent with experimental data on Erksak sand[50] and Toyoura sand[51], as well as other numerical
results[28]. The different cases of rotational resistance demonstrate roughly parallel critical state lines
which possess an identical slope at around −0.009. Higher rotational resistance renders the line higher.
Interestingly, a similar linear relation has been found between the critical fabric anisotropy ac and ln p′,
as shown in Fig.9(b). The lines for different cases are parallel to one another at a slope of −0.007 with
the greater μr case located higher, as in the case of critical void ratio. This is a rather new finding which
has not been mentioned in the classic critical state theory. Note that Li and Dafalias[52] have recently
proposed a new critical state theory in which the role of fabric anisotropy has been emphasized.

IV. CONCLUSIONS
A micromechanical study on the behavior of granular material under triaxial undrained shear has

been presented using a three- dimensional Discrete Element Method with spherical particles. Emphasis
is placed on the consideration of rotational resistance as an alternative way to consider the non-spherical
particle shape. It has been found that the internal structure formed in a granular body under shear
can be characterized by the contact force network. The network is essentially anisotropic and depicts
a clear bimodal character as observed by Radjäı et al.[20]. In consideration of rotational resistance,
a good correlation between an analytical expression for stress-force-fabric relation and the numerical
results on anisotropy has been found still valid, which proves that in granular materials, certain degree of
anisotropy has to be developed in order to mobilize adequate shear strength to balance the applied shear.
The mechanical anisotropy is found to dominate in the shear strength except in the liquefied sample.
In the case of liquefaction, the entire force network becomes very weak, and the bimodal character
also becomes less distinctive. The shear strength may be dominated by geometrical anisotropy rather
than mechanical anisotropy at liquefaction state. Also, a liquefaction state is always associated with a
high proportion of sliding contacts in the weak force contacts. Rotational resistance may help increase
the shear strength of the material (see also, Estrada et al.[31]), in particular the liquefaction resistance
for a loose sample. It can be seen from the triaxial test results that the critical state can be uniquely
characterized by two linear relations between e − p′ and ac − ln p′. Different rotational resistances
may shift the critical lines, for both critical void ratio and critical fabric anisotropy, in a translational
manner. Greater rotational coefficient generally leads to higher lines for critical e as well as for critical
ac. We note however that the conclusions drawn here may still be subjected to further verification with
additional data obtained under more general and complex loading conditions (e.g., rotational shear
and/or cyclic loading) and on samples with initial anisotropy. This will be pursued in the future.
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[3] Rowe,P.W., The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Pro-

ceedings of the Royal Society A, 1962. 269(1339): 500-527.

[4] McDowell,G.R., Bolton,M.D. and Robertson,D., The fractal crushing of granular materials. Journal of the

Mechanics and Physics of Solids, 1996, 44(12): 2079-2102.

[5] Li,X.S. and Dafalias,Y.F., Dilatancy for cohesionless soils. Géotechnique, 2000, 50(4): 449-460.
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