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 A B S T R A C T

Methane hydrate-bearing sediment (MHBS) is a multiphase granular system characterized by 
complex thermo-hydro-mechanical–chemical (THMC) interactions involving phase transitions 
and large deformation behavior. Hydrate dissociation weakens sediment strength, potentially 
initiating geohazards such as submarine landslides. Simultaneously, large deformations in 
MHBS alter the sediment’s state, influencing hydrate reaction kinetics. Despite recent progress, 
modeling the coupled processes of hydrate dissociation and large deformation in MHBS remains 
a significant challenge. This study develops a THMC-coupled material point method (MPM) 
framework to simulate the pre- to post-failure behavior of MHBS associated with hydrate disso-
ciation. The framework incorporates three key advancements: (i) a six-field governing equation 
integrated with the Kim–Bishnoi hydrate reaction model to resolve dynamic phase transitions, 
multiphase interactions, and large deformations; (ii) a strain-softening Mohr–Coulomb model 
with hydrate saturation-dependent strength to capture sediment mechanical degradation; and 
(iii) a hybrid explicit–implicit time integration scheme designed to enhance computational 
efficiency for systems with low permeability and high reaction rates. The framework is validated 
against Masuda’s hydrate dissociation experiment and an extended Terzaghi consolidation 
benchmark, before being applied to simulate biaxial compression tests and hydrate dissociation-
triggered slope failures. We reveal that (1) shear dilation generates negative excess pore pressure 
in undrained conditions, triggering hydrate dissociation within the shear bands ; (2) shear 
heating resulting from rapid, large deformation promotes hydrate dissociation, exacerbating 
sediment softening; and (3) sediment strength degradation, hydrothermal variations, slope 
geometry, and other factors collectively shape the dynamic progression of retrogressive failures 
in MHBS. This work provides a powerful framework for modeling hydrate-related granular 
mechanics and geohazards.

. Introduction

Methane hydrate, an ice-like crystalline compound abundant in marine continental margin sediments and permafrost re-
ions (Archer, 2007; Reagan and Moridis, 2007; Demirbas, 2010; Ruppel and Kessler, 2017), has drawn significant scientific and 
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industrial interest due to its dual role as a potential energy resource and a driver of geohazards (Makogon, 2010; Boswell and Collett, 
2011; Chong et al., 2016; Yin and Linga, 2019; Yu and Zhao, 2021). Its destabilization, triggered by shifts in temperature-pressure 
equilibrium from natural processes (e.g., sea-level fluctuations, sedimentation, ocean warming) or human activities (e.g., drilling, 
gas exploitation) (Gatter et al., 2021; Jyothsna and Satyavani, 2024), poses two interrelated risks. Firstly, hydrate dissociation 
releases methane, a potent greenhouse gas, into the atmosphere, exacerbating climate feedback loops (Cardoso and Cartwright, 
2016; Mestdagh et al., 2017; Ketzer et al., 2020; Yu and Zhao, 2021; Davies et al., 2024). Secondly, the loss of hydrate cementation 
weakens sediment strength, creating zones of instability (Waite et al., 2009; Wu et al., 2020; Wang et al., 2021; Jiang et al., 2014). 
These weakened layers, coupled with excess pore pressures from impeded fluid flow in low-permeability sediments, can promote 
shear band formation parallel to the seafloor (Xu and Germanovich, 2006; Puzrin et al., 2004). Such mechanical degradation and 
pressure buildup act synergistically to trigger large-scale submarine landslides, jeopardizing offshore infrastructure and escalating 
environmental risks.

The behavior of methane hydrate-bearing sediments (MHBS) is governed by a complex interplay of coupled thermo-hydro-
mechanical–chemical (THMC) processes. The rate at which hydrate dissociates is dictated by reservoir temperature and the 
sediment’s capacity to supply the heat required for the endothermic dissociation of methane hydrate (Li et al., 2019). Absolute 
and relative permeabilities, governing the mobility of pore gas and water, directly influence methane transport efficiency (Xu 
and Germanovich, 2006; Zhao et al., 2016; Chen et al., 2018). Sediment properties further regulate dissociation-driven processes, 
including fine particle migration during rapid fluid flow, permeable pathway obstruction, and reservoir zone stability (Waite et al., 
2009; Hyodo et al., 2013; Klar et al., 2010). Compared to natural hydrate dissociation, gas exploitation activities pose a heightened 
risk of submarine landslides due to amplified dissociation rates and frequent geological disturbances. However, gaps in understanding 
THMC coupling mechanisms hinder accurate predictions of MHBS behavior and associated risks under both natural and industrial 
conditions (Sultan et al., 2004; Zhang et al., 2021; Jyothsna and Satyavani, 2024). Consequently, developing advanced numerical 
models to simulate hydrate dissociation and THMC responses remains critical for risk assessment and mitigation.

Early numerical efforts pioneered the modeling of thermo-hydro-chemical (THC) processes during methane hydrate dissociation, 
represented by Eulerian approaches such as finite difference (FDM) and finite volume (FVM) methods. A foundational study 
by Masuda (1999) developed a two-phase FDM simulator that integrated the Kim–Bishnoi kinetic dissociation model (Kim et al., 
1987) and Corey’s permeability model (Corey, 1954). This framework was later extended by Nazridoust and Ahmadi (2007) into 
an axisymmetric three-phase FVM model and by Sun and Mohanty (2006) into a multi-component FVM approach. Subsequent 
work refined governing equations and numerical discretization schemes and examined key factors influencing THC dynamics in 
MHBS, including initial hydrate saturation, outlet pressure, ambient temperature, and permeability heterogeneity (Liang et al., 
2010; Ju et al., 2020; Konno et al., 2010; Klar et al., 2013). Although Eulerian methods excel in fluid flow simulation, they struggle 
to capture history-dependent granular sediment behaviors, such as strain localization. In contrast, Lagrangian mesh-based finite 
element method (FEM) dominates geomechanical modeling due to its capacity to resolve stress–strain relationships effectively.

Current strategies for modeling fully coupled THMC processes in MHBS fall into two categories: (1) sequential or iterative 
coupling of Eulerian fluid solvers (FDM/FVM) with Lagrangian solid solvers (FEM), which, however, introduces inaccuracies during 
inter-solver data transfer (Kimoto et al., 2007; Lei et al., 2015; Sridhara et al., 2018; Queiruga et al., 2019); (2) fully coupled 
THMC-FEM solvers, which unify phase transition, fluid flow, heat transfer, and geomechanics within a single framework (Sun 
et al., 2018; Ye et al., 2022; Wu et al., 2025). Despite these advances, FEM remains susceptible to mesh distortion under large 
deformations, hindering its capacity to simulate post-failure dynamics. To date, few studies have achieved robust simulation of 
hydrate dissociation-related large deformation and failures. Thus, a critical need remains to develop advanced numerical frameworks 
capable of seamlessly bridging pre- and post-failure behavior during hydrate dissociation.

In recent decades, the computational mechanics community has witnessed substantial progress in particle-based methods 
inherently suited to large-deformation modeling. Among these, the material point method (MPM) (Sulsky et al., 1994, 1995) has 
emerged as a prominent hybrid Eulerian–Lagrangian technique. MPM tracks material states and motion via Lagrangian particles 
while solving governing equations on a fixed background mesh. This dual framework combines the advantages of Eulerian and 
Lagrangian methods while circumventing their limitations, enabling MPM to gain widespread adoption in fields such as computer 
graphics (Stomakhin et al., 2013, 2014; Hu et al., 2018), granualr mechanics (Soga et al., 2016; Chen et al., 2021; Dunatunga and 
Kamrin, 2017; Baumgarten et al., 2024), fluid dynamics (Mast et al., 2015; Chandra et al., 2024), and geohazard analysis (Li et al., 
2021; Gaume et al., 2018; Siron et al., 2023). Recent extensions of MPM address coupled multiphysics problems, including hydro-
mechanical (HM) (Yerro et al., 2015; Bandara and Soga, 2015; Zhao et al., 2020; Liang et al., 2023) and thermo-hydro-mechanical 
(THM) coupling (Pinyol et al., 2018; Lei et al., 2021; Yu et al., 2024c), with applications spanning rainfall-induced landslides (Lei 
et al., 2020, 2021), permafrost thaw (Sun et al., 2022; Yu et al., 2024e), pile installation (Ceccato et al., 2016; Galavi et al., 2017), 
thermally driven slope instability (Pinyol et al., 2018; Lei et al., 2024), and seismic liquefaction (Feng et al., 2021).

Existing MPM implementations exhibit considerable diversity in formulations, time integration schemes, material point discretiza-
tion, and stabilization techniques. For saturated porous media under HM coupling, the three-field 𝒗𝑠 − 𝒗𝑤 − 𝑝 formulation (𝒗𝑠: solid 
velocity; 𝒗𝑤: water velocity; 𝑝: pore pressure) is widely favored for its ability to resolve dynamic, high-frequency responses in large 
deformations. Yerro et al. (2015) generalized this framework to unsaturated soils by introducing a five-field 𝒗𝑠 − 𝒗𝑤 − 𝒗𝑔 − 𝑝𝑤 − 𝑝𝑔
formulation (𝒗𝑔 : gas velocity; 𝑝𝑤: pore water pressure; 𝑝𝑔 : pore gas pressure), although thermal effects and phase transitions were 
excluded. Current THM-coupled MPM studies predominantly focus on saturated systems (Pinyol et al., 2018; Yu et al., 2024c) or 
2 
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Fig. 1. Illustration of coupled THMC processes in MHBS.

employ simplified unsaturated formulations that neglect gas velocity (𝒗𝑔) and gas pressure (𝑝𝑔) (Lei et al., 2021; Zhan et al., 2024). 
Recent advances incorporate ice–water phase transitions in porous media, demonstrating progress in modeling complex granular 
materials (Sun et al., 2022; Zheng et al., 2023; Yu et al., 2024b,d). Nevertheless, a comprehensive MPM framework capable of 
simulating the full THMC coupling processes in MHBS remains absent.

In this study, we aim to develop a coupled THMC-MPM framework for MHBS, with a specific focus on modeling hydrate 
dissociation-related large deformations. The objectives are fourfold: (1) to formulate a rigorous mathematical model that captures 
the coupled THMC processes in MHBS, as illustrated in Fig.  1; (2) to develop a computationally efficient and accurate MPM 
algorithm for solving the formulations; (3) to validate the framework rigorously against classical geotechnical benchmarks; and 
(4) to investigate the bidirectional coupling effects of hydrate dissociation and large sediment deformation in practical applications 
using the developed framework.

The mathematical model will incorporate the following key components: (a) a six-field governing equation (𝒗𝑠−𝒗𝑤−𝒗𝑔−𝑝𝑤−𝑝𝑔−𝑇 ) 
to comprehensively describe THMC processes in MHBS, enabling simulations of dynamic, large-deformation behaviors that extend 
beyond the quasi-static assumptions typically used in existing FEM studies; (b) a hydrate kinetic reaction model to accurately 
represent hydrate dissociation and formation processes; and (c) a detailed consideration of variations in hydraulic, thermal, and 
mechanical properties arising from phase transitions and skeleton deformation. To address the numerical challenges inherent to 
coupled MPM modeling, a hybrid explicit–implicit time integration scheme is developed to achieve a balance between computational 
efficiency, simplicity, and accuracy. This work will not only advance the state-of-the-art in the modeling of hydrate-related granular 
mechanics but also provide a new framework for assessing geohazards in hydrate-rich environments.

The structure of this paper is organized as follows. Section 2 presents the mathematical model for MHBS, including the governing 
conservation laws and the constitutive models employed to describe the coupled THMC processes. Section 3 details the numerical 
implementation of the proposed formulations within the MPM framework. In Section 4, the framework is rigorously validated against 
two classical benchmarks. Section 5 applies the framework to two large-deformation problems: biaxial compression tests and hydrate 
dissociation-triggered submarine landslides. Finally, Section 6 gives some concluding remarks and outlooks.
3 
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Fig. 2. Schematic illustration of single-point multiphase MPM for MHBS.

2. Governing equations for MHBS

2.1. Preliminaries and prerequisites

2.1.1. Basic assumptions
MHBS are typically multiphase, multicomponent porous media consisting of solid grains, methane hydrate, liquid water, methane 

gas, vapor, and chemical solutes. For simplicity, while maintaining generality, we consider MHBS as porous media composed of four 
primary phases or components: solid grain (𝑠), hydrate (ℎ), water (𝑤), and gas (𝑔). The current model does not account for fluidized 
sand, dissolved gas, vapor, and chemical inhibitors. The dissociation of methane hydrate is governed by reaction kinetics that depend 
on the thermodynamic state of the MHBS system, described by the following reaction, 

CH4 ⋅𝑁ℎH2O
𝑇>𝑇𝑒 , 𝑝<𝑝𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ CH4 +𝑁ℎH2O, (1)

where 𝑁ℎ represents the hydration number. Although natural gas hydrates may include multiple guest gases, methane hydrate is 
the predominant component in most geological settings. Therefore, this study focuses exclusively on the methane hydrate reaction. 
It is worth noting that the hydration number 𝑁ℎ plays a critical role in representing the chemical composition and phase behavior 
of methane hydrate, which directly impacts the accuracy of the mass exchange and phase transition modeling. In our study, we 
assumed a hydration number 𝑁ℎ = 6, which is a commonly used value in methane hydrate research (Liang et al., 2010; Ruan et al., 
2012; Sun et al., 2018; Hardwick and Mathias, 2018; White et al., 2020; Ye et al., 2022). This assumption is based on the structure 
I-type methane hydrate, where typically 6 water molecules per methane molecule are required to form the clathrate structure (Sloan 
and Koh, 2007; Ke et al., 2019).

2.1.2. Degree of saturation and effective saturation
The mathematical model is developed based on mixture theory within the single-point multi-phase MPM framework, where all 

phases in the MHBS medium are represented at a single Lagrangian material point, as illustrated in Fig.  2. For an MHBS system 
assumed to be isotropic, homogeneous, and uniformly distributed, the pore space is shared among the hydrate, liquid water, and 
gas phases. The porosity 𝜙 is defined as (Lewis and Schrefler, 1998), 

𝜙 ∶=
𝑉ℎ + 𝑉𝑤 + 𝑉𝑔

𝑉
, (2)

where 𝑉ℎ, 𝑉𝑤, and 𝑉𝑔 are the volumes of the hydrate, water, and gas phases, respectively, in a representative volume element (RVE), 
and 𝑉  is the total volume of the RVE.

The degree of saturation for each pore phase in MHBS is defined as (Sun et al., 2018; Ye et al., 2022), 

𝑆𝜋 ∶=
𝑉𝜋 , 𝜋 = ℎ,𝑤, 𝑔. (3)
𝑉ℎ + 𝑉𝑤 + 𝑉𝑔

4 
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The summation of 𝑆𝜋 for all phases must satisfy the following constraint: 𝑆ℎ + 𝑆𝑤 + 𝑆𝑔 = 1.
In hydrate-bearing sediments, gas and water can become trapped within the pore space as ‘‘residual gas’’ and ‘‘residual water’’, 

with their magnitudes influenced by hydrate saturation. To account for these phenomena, an effective water saturation 𝑆𝑒 is defined 
as (Lewis and Schrefler, 1998; Sun et al., 2018), 

𝑆𝑒 ∶=
𝑉𝑤 − 𝑉𝑤𝑟

𝑉𝑤 + 𝑉𝑔 − 𝑉𝑤𝑟 − 𝑉𝑔𝑟
=
𝑆𝑤∕

(

1 − 𝑆ℎ
)

− 𝑆𝑤𝑟
1 − 𝑆𝑤𝑟 − 𝑆𝑔𝑟

, (4)

where 𝑆𝑤𝑟 and 𝑆𝑔𝑟 are the residual water saturation and residual gas saturation, respectively, and are defined as, 

𝑆𝑤𝑟 ∶=
𝑉𝑤𝑟

𝑉𝑤 + 𝑉𝑔
, 𝑆𝑔𝑟 ∶=

𝑉𝑔𝑟
𝑉𝑤 + 𝑉𝑔

. (5)

Here, 𝑉𝑤𝑟 and 𝑉𝑔𝑟 denote the volumes of residual water and residual gas, respectively.
The effective saturation can be determined using the soil–water retention curve (SWRC). In this study, we assume a uniform 

wettability for the hydrate-bearing sediment, which means that the sediment grains and hydrates share the same wettability 
characteristics. Several analytical or empirical models have been proposed to describe the SWRC (Brooks, 1965; Van Genuchten, 
1980; Fredlund and Xing, 1994). Among them, the Van Genuchten (1980) model is widely used for various methane hydrate 
simulations (e.g., Waite et al., 2009; Sun et al., 2018; White et al., 2020; Zhang et al., 2024). Following these studies, the VG 
model is employed in this work, expressed as, 

𝑆𝑒 =

[

1 +
( 𝑝𝑔 − 𝑝𝑤

𝑝0

)1∕(1−𝑚)
]−𝑚

, (6)

where 𝑝𝑔 − 𝑝𝑤 = 𝑝𝑐 represents the capillary force, 𝑝𝑔 and 𝑝𝑤 are the pore gas pressure and pore water pressure, respectively, 𝑝0 is 
the reference pressure, and 𝑚 is a constant model parameter. In this study, the VG model parameters are assumed to be constant for 
the sake of simplicity. However, experimental studies have shown that these parameters are influenced by factors such as hydrate 
saturation and the properties of hydrates (e.g., hydrophilicity or hydrophobicity) (Mahabadi et al., 2016). In future work, more 
advanced SWRC models will be considered to better capture these dependencies.

Using Eqs.  (4) and (6), the partial derivatives of water saturation with respect to pore water or gas pressure can be derived as, 
𝜕𝑆𝑤
𝜕𝑝𝑤

= −
𝜕𝑆𝑤
𝜕𝑝𝑔

=
𝜕𝑆𝑤
𝜕𝑆𝑒

𝜕𝑆𝑒
𝜕𝑝𝑤

, (7)

where 𝜕𝑆𝑤
𝜕𝑝𝑤

 and 𝜕𝑆𝑤
𝜕𝑝𝑔

 are important for deriving the mass balance equations.

2.1.3. Partial densities and equation of state
Based on mixture theory (Lewis and Schrefler, 1998), the partial densities of the solid and pore phases are defined as follows, 

𝜌𝑠 ∶= (1 − 𝜙)𝜌𝑠, (8a)

𝜌𝜋 ∶= 𝜙𝑆𝜋𝜌𝜋 , 𝜋 = ℎ,𝑤, 𝑔, (8b)

where 𝜌𝜋 is the intrinsic density of phase 𝜋. The overall density of the MHBS mixture, 𝜌𝑚, is then expressed as, 

𝜌𝑚 = (1 − 𝜙)𝜌𝑠 + 𝜙𝑆ℎ𝜌ℎ + 𝜙𝑆𝑤𝜌𝑤 + 𝜙𝑆𝑔𝜌𝑔 . (9)

To relate the intrinsic density of each phase to its thermodynamic properties, the equation of state (EOS) is employed. The EOS 
for the solid, hydrate, and water phases is derived using a first-order Taylor expansion, expressed as, 

1
𝜌𝜋

𝐷𝜋𝜌𝜋
𝐷𝑡

= 𝛼𝜋
𝐷𝜋𝑝𝜋
𝐷𝑡

− 𝛽𝜋
𝐷𝜋𝑇
𝐷𝑡

, 𝜋 = 𝑠, ℎ,𝑤, (10)

where 𝛼𝜋 is the compressibility, 𝛽𝜋 is the thermal expansivity, 𝑝𝜋 is the pressure, and 𝑇  is the temperature. The parameters 𝛼𝜋 and 
𝛽𝜋 may be assumed to be constants or functions of temperature and pressure. In this study, the compressibility of soil grains and 
methane hydrates is neglected, assuming 𝛼𝑠 = 𝛼ℎ = 0.

The intrinsic density of the gas phase exhibits a highly nonlinear dependence on temperature and pressure. To describe this 
behavior, the equation of state (EOS) for an ideal gas is adopted, given by, 

𝜌𝑔 =
𝑀𝑔𝑝𝑔
𝑅𝑇

, (11)

where 𝑀𝑔 is the molar mass of the gas phase, and 𝑅 is the universal gas constant.

2.2. Conservation equations

2.2.1. Conservation of momentum
In dynamic analyses of multiphase systems, resolving the momentum equations for individual phases while incorporating inertia 

effects offers significant advantages over quasi-static assumptions for the entire mixture. In this model, the hydrate phase is assumed 
5 
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to be rigidly bonded to the solid phase, resulting in identical velocities for the hydrate and solid phases, i.e., 𝒗ℎ = 𝒗𝑠. This assumption 
reduces the system to three independent kinematic variables: solid velocity (𝒗𝑠), water velocity (𝒗𝑤), and gas velocity (𝒗𝑔), governed 
by three momentum balance equations. Specifically, the system’s motion is described by momentum equations for (1) the MHBS 
mixture, (2) the water phase, and (3) the gas phase.

The momentum balance equation for the MHBS mixture is given by, 
[

(1 − 𝜙)𝜌𝑠 + 𝜙𝑆ℎ𝜌ℎ
] 𝐷𝑠𝒗𝑠
𝐷𝑡

+ 𝜙𝑆𝑤𝜌𝑤
𝐷𝑠𝒗𝑤
𝐷𝑡

+ 𝜙𝑆𝑔𝜌𝑔
𝐷𝑠𝒗𝑔
𝐷𝑡

= ∇ ⋅ 𝝈 + 𝜌𝑚𝒃, (12)

where 𝝈 is the total Cauchy stress tensor, 𝒃 is the body force vector, and 𝜌𝑚 is the mixture density. Here, the inertia contributions 
from the solid grains and hydrate are combined into a single term due to their shared velocity.

The flow of the water and gas phases is assumed to be governed by Darcy’s law (Ruan et al., 2012; Chen et al., 2016; Ye et al., 
2022), with the Darcy fluid flux expressed as, 

𝑱 𝜋 = 𝜙𝑆𝜋
(

𝒗𝜋 − 𝒗𝑠
)

, 𝜋 = 𝑤, 𝑔. (13)

Accordingly, the momentum balance equations for the water and gas phases are formulated as, 

𝜙𝑆𝜋𝜌𝜋
𝐷𝑠𝒗𝜋
𝐷𝑡

= −𝜙𝑆𝜋∇𝑝𝜋 + 𝜙𝑆𝜋𝜌𝜋𝒃 − 𝜙𝑆𝜋
𝜇𝜋
𝑘𝑎𝑘𝑟𝜋

𝑱 𝜋 , 𝜋 = 𝑤, 𝑔, (14)

where 𝑝𝑤 and 𝑝𝑔 are the pore water and pore gas pressures, respectively; 𝑘𝑎 is the absolute permeability, which depends on porosity 
and hydrate saturation; 𝑘𝑟𝜋 is the relative permeability, which depends on the saturation of phase 𝜋; and 𝜇𝜋 is the viscosity, which 
is assumed to be constant in this study.

The relationship between the total stress, the effective stress on the solid skeleton, and the pore fluid pressures follows an 
extended form of Bishop’s effective stress theory (Gallipoli et al., 2003; Jommi, 2000; Oka et al., 2006), 

𝝈 = 𝝈′ − 𝑝𝑰 ,  with 𝑝 = 𝜒𝑤𝑝𝑤 + 𝜒𝑔𝑝𝑔 . (15)

Here, 𝝈′ is the effective stress tensor, 𝑝 is the pore fluid pressure, and 𝜒𝑤 and 𝜒𝑔 are the Bishop coefficients, which are approximated 
as, 

𝜒𝑤 =
𝑆𝑤

𝑆𝑤 + 𝑆𝑔
, 𝜒𝑔 =

𝑆𝑔
𝑆𝑤 + 𝑆𝑔

. (16)

It is important to note that the effective stress must account for the influence of the hydrate phase on the solid skeleton, which will 
be discussed in detail in Section 2.3.3.

2.2.2. Conservation of mass
Considering phase transitions between hydrate, water, and gas, and assuming no additional mass exchange, the mass balance 

equation for solid grains in a Lagrangian reference frame is expressed as, 
𝐷𝑠 [(1 − 𝜙)𝜌𝑠

]

𝐷𝑡
+ (1 − 𝜙)𝜌𝑠∇ ⋅ 𝒗𝑠 = 0. (17)

For the remaining phases (hydrate, water, and gas), the mass balance equation is given as, 
𝐷𝑠 (𝜙𝑆𝜋𝜌𝜋

)

𝐷𝑡
+ 𝜙𝑆𝜋𝜌𝜋∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝜋𝜌𝜋

(

𝒗𝜋 − 𝒗𝑠
)

= 𝑚̇𝜋 , 𝜋 = ℎ,𝑤, 𝑔, (18)

where 𝑚̇𝜋 is the rate of mass change per unit volume due to hydrate dissociation. The total mass exchange among the phases is 
conserved, satisfying the condition: 𝑚̇ℎ + 𝑚̇𝑤 + 𝑚̇𝑔 = 0. The value of 𝑚̇𝜋 is determined by the kinetic hydrate dissociation rate, which 
will be detailed in Section 2.3.1.

Using the chain rule and incorporating the equation of state (EOS) for the solid phase, the mass balance for solid grains can be 
reformulated as, 

𝐷𝑠𝜙
𝐷𝑡

= −(1 − 𝜙)𝛽𝑠
𝐷𝑠𝑇
𝐷𝑡

+ (1 − 𝜙)∇ ⋅ 𝒗𝑠. (19)

This equation describes the material derivative of the porosity 𝜙.
Considering 𝒗𝑠 = 𝒗ℎ and applying the EOS for the hydrate phase, the mass balance for the hydrate phase can be reformulated 

as, 

𝜙
𝐷𝑠𝑆ℎ
𝐷𝑡

=
𝑚̇ℎ
𝜌ℎ

+ 𝛽𝑠ℎ
𝐷𝑠𝑇
𝐷𝑡

− 𝑆ℎ∇ ⋅ 𝒗𝑠, (20)

where 𝛽𝑠ℎ = (1 − 𝜙)𝑆ℎ𝛽𝑠 + 𝜙𝑆ℎ𝛽ℎ. This equation describes the material derivative of the hydrate saturation 𝑆ℎ. It is evident that 
the evolution of 𝑆ℎ is influenced not only by the hydrate reaction dynamics but also by changes in the solid skeleton’s volumetric 
deformation and variations in porosity.

Similarly, the mass balance equations for the water and gas phases can be reformulated in terms of the primary variables, 𝑝𝑤, 
𝑝 , and 𝑇 , as follows:
𝑔
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Water phase: 
(

𝜙
𝜕𝑆𝑤
𝜕𝑝𝑤

+
𝜙𝑆𝑤
𝐾𝑤

)

𝐷𝑠𝑝𝑤
𝐷𝑡

− 𝜙
𝜕𝑆𝑤
𝜕𝑝𝑤

𝐷𝑠𝑝𝑔
𝐷𝑡

− 𝛽𝑤𝑠
𝐷𝑠𝑇
𝐷𝑡

+ 𝑆𝑤∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑱𝑤 =
𝑚̇𝑤
𝜌𝑤

, (21)

Gas phase: 
(𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔

𝑅𝑇
+ 𝜙

𝜕𝑆𝑤
𝜕𝑝𝑤

) 𝐷𝑠𝑝𝑔
𝐷𝑡

− 𝜙
𝜕𝑆𝑤
𝜕𝑝𝑤

𝐷𝑠𝑝𝑤
𝐷𝑡

− 𝛽𝑔ℎ𝑠
𝐷𝑠𝑇
𝐷𝑡

+
(

𝑆𝑔 + 𝑆ℎ
)

∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑱 𝑔 =
𝑚̇𝑔
𝜌𝑔

+
𝑚̇ℎ
𝜌ℎ
, (22)

with 
𝛽𝑤𝑠 = (1 − 𝜙)𝑆𝑤𝛽𝑠 + 𝜙𝑆𝑤𝛽𝑤, (23a)

𝛽𝑔ℎ𝑠 = (1 − 𝜙)
(

𝑆𝑔 + 𝑆ℎ
)

𝛽𝑠 + 𝜙𝑆ℎ𝛽ℎ +
𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔𝑝𝑔
𝑅𝑇 2

, (23b)

where 𝐾𝑤 = 1∕𝛼𝑤 is the liquid bulk modulus.
Eqs. (21) and (22) can be combined into a single equation representing the mass balance for the multiphase mixture, 

𝜙𝑆𝑤
𝐾𝑤

𝐷𝑠𝑝𝑤
𝐷𝑡

+
𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔

𝑅𝑇
𝐷𝑠𝑝𝑔
𝐷𝑡

− 𝛽𝑚
𝐷𝑠𝑇
𝐷𝑡

+ ∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑱𝑤 + ∇ ⋅ 𝑱 𝑔 =
𝑚̇𝑤
𝜌𝑤

+
𝑚̇𝑔
𝜌𝑔

+
𝑚̇ℎ
𝜌ℎ
, (24)

with 

𝛽𝑚 = (1 − 𝜙)𝛽𝑠 + 𝜙𝑆ℎ𝛽ℎ + 𝜙𝑆𝑤𝛽𝑤 +
𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔𝑝𝑔
𝑅𝑇 2

. (25)

In this study, capillary pressure, the pressure difference between the water and gas phases, is explicitly considered. However, 
many existing studies neglect this effect, simplifying the multiphase mass balance equations into a single unified equation where 
the pore fluid pressure 𝑝 serves as the only pressure variable, expressed as, 

(

𝜙𝑆𝑤
𝐾𝑤

+
𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔

𝑅𝑇

)

𝐷𝑠𝑝
𝐷𝑡

− 𝛽𝑚
𝐷𝑠𝑇
𝐷𝑡

+ ∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑱𝑤 + ∇ ⋅ 𝑱 𝑔 =
𝑚̇𝑤
𝜌𝑤

+
𝑚̇𝑔
𝜌𝑔

+
𝑚̇ℎ
𝜌ℎ
. (26)

2.2.3. Conservation of energy
For homogeneous mixtures, thermal equilibrium among all phases is assumed at a given spatial location. Under this assumption, 

the transient energy balance equation for the MHBS mixture is consolidated into a single governing equation as:, 
𝐶𝑚

𝐷𝑠𝑇
𝐷𝑡

+ (𝜌𝑤𝑐𝑤𝑱𝑤 + 𝜌𝑔𝑐𝑔𝑱 𝑔) ⋅ ∇𝑇 + ∇ ⋅ 𝑱 𝑒 − 𝜃𝝈′∶𝜺̇𝑝 = 𝑞𝑒, (27)

where 𝐶𝑚 is the mixture heat capacity, 𝑐𝜋 is the specific heat capacity of phase 𝜋, and 𝑞𝑒 represents the heat source resulting from 
hydrate reactions.

The term 𝜃𝝈′∶𝜺̇𝑝 quantifies energy dissipation due to irreversible deformation, where 𝜺̇𝑝 is the plastic strain rate, 𝝈′ is the effective 
stress tensor, and 𝜃 is the plastic work-to-heat conversion coefficient. Plastic heat generation serves as a significant heat source in 
large deformation problems and will be further explored in the numerical examples. 

Remark 1.  Note that the plastic work-to-heat conversion coefficient 𝜃 is not a constant and varies depending on the material 
type and loading history (Rosakis et al., 2000). Experimental studies indicate that 𝜃 ranges from 0.2 to 1.0 for metals (Taylor 
and Quinney, 1931; Yang et al., 2018). However, for granular media, including MHBS, such experimental data remain lacking. 
In most existing studies on granular media and MPM simulations that incorporate thermal effects, 𝜃 is typically assumed to be 
1.0 for simplicity (Pinyol et al., 2018; Alvarado et al., 2019; Veveakis et al., 2007). Nevertheless, in MHBS, not all plastic work 
may be converted into heat due to significant energy storage associated with particle rearrangement and hydrate bond breakage, 
suggesting that 𝜃 can be considerably lower. In this study, a default value of 𝜃 = 1 is adopted. However, in the final landslide 
example (Sections 5.2.2 and 5.2.3), a lower value of 𝜃 = 0.5 is adopted to demonstrate the pronounced impact of shear heating, even 
when only a small fraction of plastic work is converted into heat. Future research should focus on developing a more physics-based 
approach to determine 𝜃.

The heat conduction within the mixture follows Fourier’s law, expressed as, 
𝑱 𝑒 = −𝜅𝑚∇𝑇 , (28)

where 𝜅𝑚 is the effective thermal conductivity of the mixture. The effective thermal properties, 𝐶𝑚 and 𝜅𝑚, computed as weighted 
averages of the contributions from individual phases, 

𝐶𝑚 = (1 − 𝜙)𝜌𝑠𝑐𝑠 + 𝜙𝑆ℎ𝜌ℎ𝑐ℎ + 𝜙𝑆𝑤𝜌𝑤𝑐𝑤 + 𝜙𝑆𝑔𝜌𝑔𝑐𝑔 , (29a)

𝜅𝑚 = (1 − 𝜙)𝜅𝑠 + 𝜙𝑆ℎ𝜅ℎ + 𝜙𝑆𝑤𝜅𝑤 + 𝜙𝑆𝑔𝜅𝑔 , (29b)

where 𝜅𝜋 is the thermal conductivity of phase 𝜋.
The heat source from hydrate reactions is calculated by (Ye et al., 2022), 

𝑞𝑒 = 𝛥𝐻𝑚̇ℎ = (𝐶0 + 𝐶1𝑇 )𝑚̇ℎ, (30)

where 𝛥𝐻 is the enthalpy change, and 𝐶  and 𝐶  are empirical coefficients characterizing the latent heat of hydrate dissociation.
0 1
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2.2.4. Boundary conditions
The problem domain is represented by Ω, with its boundary denoted by 𝜕𝛺. The time domain is defined as  = [0, 𝑡]. The 

Dirichlet and Neumann boundary conditions for the THMC-coupled problem under consideration are specified as follows.
Dirichlet boundary conditions: 

𝒗𝜋 = 𝒗̂𝜋 on 𝜕𝛺𝐷
𝑣𝜋 ×  , 𝜋 = 𝑠,𝑤, 𝑔, (31a)

𝑝𝜋 = 𝑝̂𝜋 on 𝜕𝛺𝐷
𝑝𝜋 ×  , 𝜋 = 𝑤, 𝑔, (31b)

𝑇 = 𝑇̂ on 𝜕𝛺𝐷
𝑇 ×  . (31c)

Neumann boundary conditions: 

𝝈𝜋 ⋅ 𝒏 = 𝒕̂𝜋 on 𝜕𝛺𝑁
𝑡𝜋 ×  , 𝜋 = 𝑠,𝑤, 𝑔, (32a)

−𝑱 𝜋 ⋅ 𝒏 = 𝑞𝜋 on 𝜕𝛺𝑁
𝑞𝜋 ×  , 𝜋 = 𝑤, 𝑔, (32b)

−𝑱 𝑒 ⋅ 𝒏 = 𝑞𝑒 + 𝛼(𝑇𝑎 − 𝑇 ) on 𝜕𝛺𝑁
𝑇 ×  . (32c)

Here, 𝝈𝜋 represents the partial stress for each phase, 𝒕̂𝜋 , 𝑞𝜋 , and 𝑞𝑒 denote the prescribed traction, fluid flux, and conductive heat 
flux, respectively. The term 𝛼 (𝑇𝑎 − 𝑇

) represents the convective heat flux, where 𝛼 is the convective heat transfer coefficient and 𝑇𝑎
is the ambient temperature. For the traction boundary, it is often convenient to prescribe the total traction for the mixture, expressed 
as 𝝈 ⋅ 𝒏 = 𝒕̂ on 𝜕Ω𝑁𝑡 ×  .

2.3. Constitutive models

2.3.1. Kinetic hydrate reaction model
The source term can be determined based on the kinetic reaction rate of hydrate 𝑅𝑟 in a given thermodynamic condition, 

expressed as follows, 

𝑚̇ℎ = −𝑀ℎ𝑅𝑟, (33a)

𝑚̇𝑔 =𝑀𝑔𝑅𝑟, (33b)

𝑚̇𝑤 = 𝑁ℎ𝑀𝑤𝑅𝑟, (33c)

where 𝑀ℎ, 𝑀𝑔 , and 𝑀𝑤 are the molar masses for hydrate, gas, and water, respectively, and 𝑁ℎ is the hydration number.
Accurate prediction of the hydrate dissociation rate is crucial for modeling MHBS. This study employs the Kim–Bishnoi kinetic 

reaction model (Kim et al., 1987), one of the most widely accepted hydrate reaction models, to describe the rate of hydrate reaction, 

𝑅𝑟 = 𝐾𝑑𝐴𝑠(𝑝𝑒 − 𝑝), (34)

where 𝐾𝑑 is the kinetic dissociation rate, 𝐴𝑠 is the specific surface area of methane hydrate, 𝑝 is the pore pressure, and 𝑝𝑒 is the 
equilibrium pressure (hydrate stability pressure). Note that the pore pressure 𝑝, rather than the gas pressure 𝑝𝑔 , is used to determine 
the reaction rate, as the hydrate phase balance is influenced by both gas and water pressures.

According to the experiments of Clarke and Bishnoi (2000, 2001b,a), 𝐾𝑑 can be defined with an Arrhenius description, 

𝐾𝑑 = 𝐾0 exp
(

− 𝛥𝐸
𝑅𝑇

)

, (35)

where 𝐾0 is the kinetic dissociation constant, 𝛥𝐸 is the activation energy, and 𝑅 is the gas constant.
The specific surface area 𝐴𝑠 is defined as (White et al., 2020), 

𝐴𝑠 = 𝐴𝑔𝑒𝑜

{

𝜙𝑆ℎ, 𝑝 ≤ 𝑝𝑒
𝑆𝑤𝑆𝑔(1 − 𝑆ℎ), 𝑝 > 𝑝𝑒

, (36)

where 𝜙 is the porosity, 𝑆ℎ is the hydrate saturation, and 𝐴𝑔𝑒𝑜 is the surface area to volume ratio of hydrate particles. During the 
hydrate dissociation process, 𝐴𝑠 primarily depends on the hydrate saturation, whereas for the hydrate formation process, it also 
relies on the saturations of water and gas.

The equilibrium pressure 𝑝𝑒 is calculated using the empirical equation (Sloan, 1987; Liang et al., 2010; Ruan et al., 2012), 

𝑝𝑒 = 𝐴1 exp
(

𝐴2 −
𝐴3

𝑇 + 273.15

)

, (37)

where 𝐴1, 𝐴2, and 𝐴3 are regression coefficients.
As this is a purely empirical equation, alternative models may also be employed (Makogon, 1997; Moridis, 2003; Chen et al., 

2016; Hardwick and Mathias, 2018). Fig.  3 illustrates the phase equilibrium curve for three models, which provide similar predictions 
within the temperature range of −10 ◦C to 30 ◦C.
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Fig. 3. Hydrate phase equilibrium curve.

2.3.2. Absolute and relative permeability model
The absolute permeability 𝑘𝑎 is influenced by both porosity and hydrate saturation. The following equation is adopted to evaluate 

𝑘𝑎, 

𝑘𝑎 = 𝑘0𝑓𝜙(𝜙)𝑓𝑆ℎ (𝑆ℎ), (38)

where 𝑘0 is the hydrate–free permeability at the porosity of 𝜙0, and 𝑓𝜙 (𝜙) and 𝑓𝑆ℎ
(

𝑆ℎ
) are the functions that define the effects of 

porosity 𝜙 and hydrate saturation 𝑆ℎ, respectively. The function 𝑓𝜙 (𝜙) is given by (Ye et al., 2022), 

𝑓𝜙 =
(

𝜙
𝜙0

)1.5 ( 1 − 𝜙
1 − 𝜙0

)3
, (39)

Among various options for 𝑓𝑆ℎ , the following expression is adopted (Masuda, 1999; Liang et al., 2010; Ruan et al., 2012), 

𝑓𝑆ℎ (𝑆ℎ) =

{

𝑘ℎ, 𝑆ℎ > 𝑆ℎ𝑐
𝑘ℎ + (1 − 𝑘ℎ)(𝑆ℎ𝑐 − 𝑆ℎ)∕𝑆ℎ, 𝑆ℎ < 𝑆ℎ𝑐

, (40)

where 𝑆ℎ𝑐 is a threshold hydrate saturation beyond which the permeability is reduced to 𝑘ℎ. The value of 𝑘ℎ is dependent on the 
initial hydrate saturation 𝑆ℎ0 and is typically estimated using the Masuda’s model (Masuda, 1999), 

𝑘ℎ = (1 − 𝑆ℎ)𝑚ℎ , (41)

where 𝑚ℎ is a permeability reduction parameter that depends on the pore structure.
The relative permeabilities 𝑘𝑟𝑤 and 𝑘𝑟𝑔 for the water and gas phases are calculated using a modified Corey’s model (Corey, 1954; 

Liang et al., 2010; Ruan et al., 2012), 

𝑘𝑟𝜋 =
[

𝑆𝜋∕(1 − 𝑆ℎ) − 𝑆𝑟𝜋
1 − 𝑆𝑟𝑤 − 𝑆𝑟𝑔

]𝑛𝜋
, 𝜋 = 𝑤, 𝑔, (42)

where 𝑛𝑤 and 𝑛𝑔 are material constants.

2.3.3. Skeleton deformation model
It is assumed that the hydrate is formed after soil deposition, and initially soil skeleton carries the in situ effective stress 𝝈′

0. As 
the hydrate soil deforms, both the soil skeleton and the hydrate carry the additional stress increment. The rate of effective stress of 
the hydrate soil skeleton, 𝝈̇′, can be calculated based on the following constitutive relation (Klar et al., 2010, 2013), 

𝝈̇ = D𝑒𝑠ℎ ∶ (𝜺̇ − 𝜺̇𝑝) + Ḋ𝑒𝑠ℎ(D
𝑒
𝑠ℎ)

−1(𝝈′ − 𝝈′
0), (43)

where D𝑒𝑠ℎ is the elastic stiffness matrix including both the contribution of sediment grains and hydrate, 𝜺̇ is the strain rate, 𝜺̇𝑝 is 
the plastic strain rate, and 𝝈′

0 is the initial effective stress. The second term represents the stress relaxation part due to hydrate 
dissociation. As discussed in Klar et al. (2013), this term is very important in modeling the softening behavior of hydrate-bearing 
soil as the hydrate dissociates.
9 
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Under non-isothermal conditions, the strain rate can be decomposed into two parts: 𝜺̇ = 𝜺̇𝑠 + 𝜺̇𝑇 , which represent the rates of 
mechanical deformation and thermal expansion, respectively. They are calculated as follows, 

𝜺̇𝑠 =
1
2
[

∇𝒗𝑠 + (∇𝒗𝑠)𝑇
]

, and 𝜺̇𝑇 = −1
3
𝛽𝑠ℎ𝑇̇ 𝑰 , (44)

where 𝛽𝑠ℎ is the average thermal expansivity of the hydrate-cemented sediment skeleton, evaluated by, 

𝛽𝑠ℎ =
(1 − 𝜙)𝛽𝑠 + 𝜙𝑆ℎ𝛽ℎ

1 − 𝜙 + 𝜙𝑆ℎ
. (45)

The elastic stiffness matrix D𝑒𝑠ℎ is dependent on hydrate saturation, expressed as D𝑒𝑠ℎ = D𝑒𝑠ℎ(𝑆ℎ). Triaxial tests reveal that 𝑆ℎ
influences Young’s modulus, while having minimal effect on Poisson’s ratio (Santamarina and Ruppel, 2010). The modified Young’s 
modulus 𝐸 is calculated using the following equation, 

𝐸 = 𝐸0 + 𝑎ℎ𝐸ℎ(𝑆ℎ)𝑏ℎ , (46)

where 𝐸0 and 𝐸ℎ are the Young’s moduli of the hydrate–free skeleton and pure hydrate, respectively, and 𝑎ℎ and 𝑏ℎ are two material 
constants.

The incremental plastic strain is computed using a plastic potential function, 𝑃 , as follows, 

𝑑𝜺𝑝 = 𝑑𝜆 𝜕𝑃
𝜕𝝈′ , (47)

where 𝜆 is the plastic multiplier. A modified non-associated Mohr–Coulomb strain-softening model is employed to describe the 
hydrate-dependent elasto-plastic behavior of MHBS (Menetrey and Willam, 1995; Klar et al., 2010). The yield function 𝐹  and flow 
potential function 𝑃 , defined in terms of friction angle 𝜑, cohesion 𝑐, and dilation angle 𝜓 , are given by,

𝐹 = 𝑅𝑚𝑐𝑞 + 𝑝 tan𝜑 − 𝑐, (48)

𝑃 =
√

(𝜖𝑐 tan𝜓)2 +
(

𝑅𝑚𝑤𝑞
)2 + 𝑝 tan𝜓, (49)

where 
𝑅𝑚𝑐 (𝜃, 𝜑) =

1
√

3 cos𝜑
sin

(

𝜃 + 𝜋
3

)

+ 1
3
cos

(

𝜃 + 𝜋
3

)

tan𝜑, (50a)

𝑅𝑚𝑤 (𝜃, 𝑒) =
4
(

1 − 𝑒2
)

cos2𝜃 + (2𝑒 − 1)2

2
(

1 − 𝑒2
)

cos 𝜃 + (2𝑒 − 1)
√

4
(

1 − 𝑒2
)

cos2𝜃 + 5𝑒2 − 4𝑒
𝑅𝑚𝑐

(𝜋
3
, 𝜑

)

. (50b)

Here, 𝑝 and 𝑞 are the effective mean stress and the deviatoric stress, respectively. 𝜃 is the Lode’s angle, 𝜖 is the meridional eccentricity, 
and 𝑒 is the deviatoric eccentricity.

Laboratory tests demonstrate that the peak cohesion and dilation of MHBS exhibit a positive correlation with hydrate saturation, 
whereas the friction angle remains largely unaffected (Soga et al., 2006; Waite et al., 2009). In this study, we establish a relation 
between peak cohesion and dilation with hydrate saturation through the following exponential expressions, 

𝑐𝑝𝑒𝑎𝑘,ℎ = 𝑐𝑚𝑖𝑛 +
(

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
)

exp[𝜂ℎ(𝑆ℎ − 𝑆ℎ𝑚𝑎𝑥)], (51a)

𝜓𝑝𝑒𝑎𝑘,ℎ = 𝜓𝑚𝑖𝑛 +
(

𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛
)

exp[𝜂ℎ(𝑆ℎ − 𝑆ℎ𝑚𝑎𝑥)], (51b)

where 𝑐𝑝𝑒𝑎𝑘,ℎ and 𝜓𝑝𝑒𝑎𝑘,ℎ represent the peak cohesion and dilation at a given hydrate saturation 𝑆ℎ, 𝑐𝑚𝑎𝑥 and 𝜓𝑚𝑎𝑥 denote the peak 
cohesion and dilation at maximum hydrate saturation 𝑆ℎ𝑚𝑎𝑥, while 𝑐𝑚𝑖𝑛 and 𝜓𝑚𝑖𝑛 indicate the lower limits of cohesion and dilation as 
𝑆ℎ approaches zero. 𝜂ℎ is a shape factor that governs the rate of decrease in strength as hydrate saturation diminishes. For simplicity, 
the peak friction angle is assumed to be constant, independent of hydrate saturation, i.e., 𝜑𝑝𝑒𝑎𝑘,ℎ = 𝜑𝑚𝑎𝑥, as discussed earlier.

In addition, granular media subjected to large deformations may exhibit strain softening behavior. It has been observed that, 
while the peak strength of MHBS may vary with hydrate saturation, the residual strength at large shear strains remains relatively 
constant, regardless of hydrate saturation. This phenomenon arises because the hydrate’s contribution to shear behavior is primarily 
due to its cohesive nature rather than frictional (Uchida et al., 2012). Therefore, it is reasonable to assume that the residual strength 
is independent of hydrate saturation. Although Uchida et al. (2012) used the critical state soil mechanics concept to model this 
behavior, this study introduces an exponential softening law (Pinyol et al., 2018; Lian et al., 2023), which describes the reduction 
in effective strength with increasing plastic deviatoric strain, 𝜀𝑑𝑝 , given as follows, 

𝑐 = 𝑐𝑟𝑒𝑠 +
(

𝑐𝑝𝑒𝑎𝑘,ℎ − 𝑐𝑟𝑒𝑠
)

exp
(

−𝜂𝑠𝜀
𝑝
𝑑
)

, (52a)

𝜑 = 𝜑𝑟𝑒𝑠 +
(

𝜑𝑝𝑒𝑎𝑘,ℎ − 𝜑𝑟𝑒𝑠
)

exp
(

−𝜂𝑠𝜀
𝑝
𝑑
)

, (52b)

𝜓 = 𝜓𝑝𝑒𝑎𝑘,ℎ exp
(

−𝜂𝑠𝜀
𝑝
𝑑
)

, (52c)

where 𝑐𝑟𝑒𝑠 and 𝜙𝑟𝑒𝑠 denote the residual cohesion and friction angle, respectively, 𝜂𝑠 is a shape factor that determines the sensitivity of 
shear strength to strain softening. For simplicity, we adopt the same shape factor for all strength variables. For the detailed effective 
stress update algorithm, please refer to Appendix  A.
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Remark 2.  The mechanical model employed for MHBS in this study is relatively simplified, yet it can effectively capture the 
key hydrate-dependent characteristics. Although more sophisticated models, such as critical state models, can yield more realistic 
predictions (Uchida et al., 2012; Sun et al., 2018), they typically necessitate additional model parameters and remain fundamentally 
phenomenological in nature. An alternative approach involves multiscale modeling, wherein stress–strain relationships are derived 
from discrete element method (DEM)-based RVE simulations. This method offers more physics-based, state-dependent responses for 
granular materials and has been explored in the authors’ previous work (Liang et al., 2023; Yu et al., 2024b). However, given the 
scope and focus of this study, the multiscale modeling will be deferred to future research.

3. Solution scheme based on material point method

The THMC-coupled system is governed by Eqs. (12), (14), (21), (22), and (27), with six primary unknowns to be solved: 𝒗𝑠, 
𝒗𝑤, 𝒗𝑔 , 𝑝𝑤, 𝑝𝑔 , and 𝑇 . For dynamic large-deformation problems, explicit time integration in MPM offers simplicity by sequentially 
solving kinematic and thermal fields on the background mesh and updating pressure fields on material points using interpolated 
nodal velocities and temperatures. However, conventional explicit two-phase MPM encounters computational inefficiencies in low-
permeability regimes due to numerical stability constraints, often necessitating excessively small time steps. Implicit schemes, while 
less sensitive to permeability variations, introduce convergence challenges and implementation complexity in multiphysics coupling.

To address these limitations, we propose a hybrid explicit–implicit scheme. In this approach, diffusion terms, such as drag 
forces and reaction source terms, are treated implicitly to alleviate stability restrictions, while other terms continue to be updated 
explicitly. This strategy balances computational efficiency, accuracy, and implementation simplicity, particularly in the context of 
low-permeability hydrate-bearing sediments where traditional explicit methods perform poorly.

3.1. Weak form

The weak form of momentum balance equations is obtained by multiplying arbitrary test functions 𝛿𝒗𝜋 with zeros on the 
boundaries, given by:

MHBS mixture, 

∫𝛺
𝛿𝒗𝑠 ⋅ 𝜌𝑠ℎ𝒂𝑠𝑑𝑉 + ∫𝛺

𝛿𝒗𝑠 ⋅ 𝜙𝑆𝑤𝜌𝑤𝒂𝑤𝑑𝑉 + ∫𝛺
𝛿𝒗𝑠 ⋅ 𝜙𝑆𝑔𝜌𝑔𝒂𝑔𝑑𝑉 = −∫𝛺

𝝈∶∇𝛿𝒗𝑠𝑑𝑉 +

∫𝜕𝛺
𝛿𝒗𝑠 ⋅ 𝒕̂𝑑𝑆 + ∫𝛺

𝛿𝒗𝑠 ⋅ 𝜌𝑚𝒃𝑑𝑉 ,
(53)

Water and gas phases: 

∫𝛺
𝛿𝒗𝜋 ⋅ 𝜙𝑆𝜋𝜌𝜋𝒂𝜋𝑑𝑉 = ∫𝛺

∇𝛿𝒗𝜋 ⋅ (𝜙𝑆𝜋𝑝𝜋𝑰)𝑑𝑉 + ∫𝜕𝛺
𝛿𝒗𝜋 ⋅ 𝒕̂𝜋𝑑𝑆 + ∫𝛺

𝛿𝒗𝜋 ⋅ 𝜙𝑆𝜋𝜌𝜋𝒃𝑑𝑉 −

∫𝛺
𝛿𝒗𝜋 ⋅ 𝜙𝑆𝜋

𝜇𝜋
𝑘𝑎𝑘𝑟𝜋

[𝜙𝑆𝜋 (𝒗𝜋 − 𝒗𝑠)]𝑑𝑉 , 𝜋 = 𝑤, 𝑔,
(54)

where 𝜌𝑠ℎ = (1 − 𝜙) 𝜌𝑠 + 𝜙𝑆ℎ𝜌ℎ, ̂𝒕 is the mixture traction, and 𝒕𝜋 =
(

−𝜙𝑆𝜋𝑝𝜋𝑰
)

⋅ 𝒏 is the phase traction.
Similarly, the weak form of the energy balance equation is obtained by introducing a test function 𝛿𝑇 , given by, 

∫𝛺
𝛿𝑇 ⋅ 𝐶𝑚𝑇̇ 𝑑𝑉 = −∫𝛺

𝛿𝑇 ⋅
[

𝜙𝑆𝑤𝜌𝑤𝑐𝑤(𝒗𝑤 − 𝒗𝑠) + 𝜙𝑆𝑔𝜌𝑔𝑐𝑔(𝒗𝑔 − 𝒗𝑠)
]

⋅ ∇𝑇𝑑𝑉 +

∫𝛺
(−𝜅𝑚∇𝑇 ) ⋅ ∇𝛿𝑇 𝑑𝑉 − ∫𝜕𝛺

𝛿𝑇 ⋅ 𝑞𝑒𝑑𝑆 + ∫𝛺
𝛿𝑇 ⋅ 𝜃𝝈′∶𝜺̇𝑝𝑑𝑉 + ∫𝛺

𝛿𝑇 ⋅ 𝑞𝑒𝑑𝑉 ,
(55)

where 𝑞𝑒 is the prescribed heat flux. The pore water and gas pressures are solved based on mass balance equations on particles, 
eliminating the need to derive their weak forms.

3.2. MPM spatial discretization

The generalized interpolation material point (uGIMP) method is employed to discretize the weak formulations (Bardenhagen 
and Kober, 2004). The method effectively mitigates the numerical noise when material points (interchangeable with ‘‘particles’’) 
cross the cell boundary in large deformation modeling. With the GIMP shape function 𝑆𝐼𝑝 = 𝑆𝐼

(

𝒙𝑝
) and its gradient ∇𝑆𝐼𝑝 (𝐼 and 𝑝

denote the indices of active nodes and particles, respectively), the weak forms are further discretized spatially. To facilitate explicit 
time integration, lumped matrices are utilized.

The energy balance equation can be reformulated into the following compact form, 
𝐶𝑚𝑇̇ = 𝑠𝑜𝑢𝑟𝑐𝑒𝑇 + 𝑒𝑥𝑡𝑇 +  𝑖𝑛𝑡𝑇 +𝑸𝑐𝑜𝑛𝑣

𝑤 ⋅ (𝒗𝑤 − 𝒗𝑠) +𝑸𝑐𝑜𝑛𝑣
𝑔 ⋅ (𝒗𝑔 − 𝒗𝑠), (56)

where 𝐶𝑚 represents the nodal heat capacity of the mixture, 𝑠𝑜𝑢𝑟𝑐𝑒𝑇  is the nodal heat source, and 𝑒𝑥𝑡𝑇  and  𝑖𝑛𝑡𝑇  denote the nodal 
external and internal heat, respectively. The terms 𝑸𝑐𝑜𝑛𝑣

𝑤  and 𝑸𝑐𝑜𝑛𝑣
𝑔  are the nodal coefficients of heat convection due to water and 

gas flow, respectively. These node-wise coefficients can be projected from particles according to, 
(𝐶𝑚)𝐼 =

∑

𝑉𝑝𝐶𝑚𝑝𝑆𝐼𝑝, (57a)

𝑝
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(𝑸𝑐𝑜𝑛𝑣
𝑤 )𝐼 = −

∑

𝑝
𝑉𝑝𝜙𝑝𝑆𝑤𝑝𝜌𝑤𝑝𝑐𝑤𝑝∇𝑇𝑝𝑆𝐼𝑝, (57b)

(𝑸𝑐𝑜𝑛𝑣
𝑔 )𝐼 = −

∑

𝑝
𝑉𝑝𝜙𝑝𝑆𝑔𝑝𝜌𝑔𝑝𝑐𝑔𝑝∇𝑇𝑝𝑆𝐼𝑝, (57c)

(𝑠𝑜𝑢𝑟𝑐𝑒𝑇 )𝐼 =
∑

𝑝
𝑉𝑝𝑞𝑒𝑝𝑆𝐼𝑝, (57d)

(𝑒𝑥𝑡𝑇 )𝐼 = −
∑

𝑝
𝑉𝑝ℎ

−1𝑞𝑒𝑝𝑆𝐼𝑝 +
∑

𝑝
𝑉𝑝(𝜃𝝈′∶𝜺̇𝑝)𝑆𝐼𝑝, (57e)

( 𝑖𝑛𝑡𝑇 )𝐼 =
∑

𝑝
𝑉𝑝

(

−𝜅𝑚∇𝑇𝑝
)

⋅ ∇𝑆𝐼𝑝. (57f)

The momentum balance equations can be written into the following compact forms,
𝑀𝑠ℎ𝒂𝑠 +𝑀𝑤𝒂𝑤 +𝑀𝑔𝒂𝑔 = 𝒇 𝑒𝑥𝑡𝑚 + 𝒇 𝑖𝑛𝑡𝑚 , (58)

𝑀𝜋𝒂𝜋 = 𝒇 𝑒𝑥𝑡𝜋 + 𝒇 𝑖𝑛𝑡𝜋 +𝑄𝑑𝜋 ⋅ (𝒗𝜋 − 𝒗𝑠), 𝜋 = 𝑤, 𝑔, (59)

where 𝑀𝑠ℎ, 𝑀𝑤, and 𝑀𝑔 represent lumped nodal masses for the hydrate-solid skeleton, water phase, and gas phase, respectively. 
The terms 𝒇 𝑒𝑥𝑡(∗)  and 𝒇 𝑖𝑛𝑡(∗) denote the nodal external and internal forces for the mixture (𝑚), water (𝑤), and gas (𝑔) phases, respectively. 
Additionally, 𝑸𝑑

𝑤 and 𝑸𝑑
𝑔  are the nodal coefficients of drag force for the water and gas phases, respectively. These coefficients at 

each node can be interpolated from particles according to, 
(𝑀𝜋 )𝐼 =

∑

𝑝
𝑉𝑝𝜙𝑝𝑆𝜋𝑝𝜌𝜋𝑝𝑆𝐼𝑝, 𝜋 = 𝑤, 𝑔, (60a)

(𝑀𝑠ℎ)𝐼 =
∑

𝑝
𝑉𝑝𝜌𝑠ℎ𝑝𝑆𝐼𝑝, (60b)

(𝑄𝑑𝜋 )𝐼 = −
∑

𝑝
𝑉𝑝(𝜙𝑝𝑆𝜋𝑝)2

𝜇𝜋𝑝
𝑘𝑎𝑝𝑘𝑟𝜋𝑝

𝑆𝐼𝑝, 𝜋 = 𝑤, 𝑔, (60c)

(𝒇 𝑒𝑥𝑡𝜋 )𝐼 =
∑

𝑝
𝑉𝑝ℎ

−1
𝑝 𝒕̂𝜋𝑝𝑆𝐼𝑝 +

∑

𝑝
𝑉𝑝𝜙𝑝𝑆𝜋𝑝𝜌𝜋𝑝𝒃𝑆𝐼𝑝, 𝜋 = 𝑤, 𝑔, (60d)

(𝒇 𝑖𝑛𝑡𝜋 )𝐼 =
∑

𝑝
𝑉𝑝𝜙𝑝𝑆𝜋𝑝𝑝𝜋𝑝∇𝑆𝐼𝑝, 𝜋 = 𝑤, 𝑔, (60e)

(𝒇 𝑒𝑥𝑡𝑚 )𝐼 =
∑

𝑝
𝑉𝑝ℎ

−1
𝑝 𝒕̂𝑆𝐼𝑝 +

∑

𝑝
𝑉𝑝𝜌𝑚𝒃𝑆𝐼𝑝, (60f)

(𝒇 𝑖𝑛𝑡𝑚 )𝐼 = −
∑

𝑝
𝑉𝑝𝝈𝑝∶∇𝑆𝐼𝑝. (60g)

3.3. Solution of primary variables

3.3.1. Solution of velocity fields
In explicit time integration, the acceleration of each phase is computed from Eqs. (58) and (59) as follows,

𝒂𝑘+1𝜋 =
(

𝒇 𝑒𝑥𝑡𝜋 + 𝒇 𝑖𝑛𝑡𝜋 +𝑄𝑑𝜋 ⋅ (𝒗
𝑘
𝜋 − 𝒗𝑘𝑠 )

)

∕𝑀𝜋 , 𝜋 = 𝑤, 𝑔, (61)

𝒂𝑘+1𝑠 =
(

𝒇 𝑒𝑥𝑡𝑚 + 𝒇 𝑖𝑛𝑡𝑚 −𝑀𝑤𝒂𝑘+1𝑤 −𝑀𝑔𝒂𝑘+1𝑔

)

∕𝑀𝑠ℎ, (62)

where the superscripts ‘𝑘’ and ‘𝑘 + 1’ denote the current and the next time steps, respectively.

Remark 3.  Critically, the explicit evaluation of drag forces in Eqs. (61) and (62) using the current-step velocity (𝒗𝑘𝜋) ties the critical 
time step size 𝛥𝑡 to the magnitude of permeability. In low-permeability MHBS, this requires prohibitively small 𝛥𝑡 to maintain 
numerical stability. To decouple the timestep constraints from permeability, we implicitly evaluate drag forces using velocity updates 
from the next timestep: 𝒗𝑘+1𝜋 (= 𝒗𝑘𝜋 + 𝛥𝑡𝒂𝑘+1𝜋 , 𝜋 = 𝑠,𝑤, 𝑔) instead of 𝒗𝑘𝜋 . This explicit–implicit treatment, combined with lumped 
matrices, reduces the problem to solving the following node-based 3 × 3 linear equation system, 

⎡

⎢

⎢

⎣

𝑀𝑠ℎ 𝑀𝑤 𝑀𝑔
𝛥𝑡𝑄𝑑𝑤 𝑀𝑤 − 𝛥𝑡𝑄𝑑𝑤 0
𝛥𝑡𝑄𝑑𝑔 0 𝑀𝑔 − 𝛥𝑡𝑄𝑑𝑔

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝒂𝑘+1𝑠

𝒂𝑘+1𝑤

𝒂𝑘+1𝑔

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝒇 𝑒𝑥𝑡𝑚 + 𝒇 𝑖𝑛𝑡𝑚
𝒇 𝑒𝑥𝑡𝑤 + 𝒇 𝑖𝑛𝑡𝑤 +𝑄𝑑𝑤 ⋅ (𝒗𝑘𝑤 − 𝒗𝑘𝑠 )
𝒇 𝑒𝑥𝑡𝑔 + 𝒇 𝑖𝑛𝑡𝑔 +𝑄𝑑𝑔 ⋅ (𝒗

𝑘
𝑔 − 𝒗𝑘𝑠 )

⎤

⎥

⎥

⎦

. (63)

Such implicit treatment of drag force terms allows for the use of larger time steps in low-permeability problems without incurring 
additional computational costs associated with large-scale matrix handling and solving.

3.3.2. Solution of temperature field
Again, in explicit time integration, the rate of temperature change is computed from Eq. (56) as follows, 

𝑇̇ 𝑘+1 =
(

𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑒𝑥𝑡 +  𝑖𝑛𝑡 +𝑸𝑐𝑜𝑛𝑣 ⋅ (𝒗𝑘 − 𝒗𝑘) +𝑸𝑐𝑜𝑛𝑣 ⋅
(

𝒗𝑘 − 𝒗𝑘
))

∕𝐶 , (64)
𝑇 𝑇 𝑇 𝑤 𝑤 𝑠 𝑔 𝑔 𝑠 𝑚
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Remark 4.  The source term 𝑞𝑒 is sensitive to temperature 𝑇 , and small variations in the primary variables can lead to considerable 
changes in them, causing inaccuracy and instability issues at certain time steps. To address this, we linearize the source term using 
a first-order Taylor expansion, 

𝑞𝑒(𝑇 𝑘+1) = 𝑞𝑒(𝑇 𝑘) + 𝛥𝑡
𝜕𝑞𝑒
𝜕𝑇

𝑇̇ 𝑘+1, (65)

Consequently, the rate of temperature can be calculated by, 
𝑇̇ 𝑘+1 =

(

𝑠𝑜𝑢𝑟𝑐𝑒𝑇 + 𝑒𝑥𝑡𝑇 +  𝑖𝑛𝑡𝑇 +𝑸𝑐𝑜𝑛𝑣
𝑤 ⋅ (𝒗𝑘𝑤 − 𝒗𝑘𝑠 ) +𝑸𝑐𝑜𝑛𝑣

𝑔 ⋅ (𝒗𝑘𝑔 − 𝒗𝑘𝑠 )
)

∕𝐶𝑚, (66)

where 

(𝐶̃𝑚)𝐼 =
∑

𝑝
𝑉𝑝

(

𝐶𝑚𝑝 + 𝛥𝑡
𝜕𝑞𝑒
𝜕𝑇

)

𝑆𝐼𝑝. (67)

Note that although 𝑞𝑒 also depends on pressure, 𝑝𝑘 is used in the calculation of 𝑇̇ 𝑘+1, as a one-step sequential scheme is employed 
in this work, with temperature being solved prior to pressure.

3.3.3. Solution of pressure fields
After updating the velocities and temperature, the pore water and gas pressures can be directly computed at the particle level 

by solving the following set of equations,
Water phase: 

𝐾𝑤𝑤𝑝̇
𝑘+1
𝑤𝑝 +𝐾𝑤𝑔 𝑝̇𝑘+1𝑔𝑝 − 𝛽𝑤𝑠𝑇̇ 𝑘+1𝑝 + 𝑆𝑤𝜀̇𝑘+1𝑠𝑝 + 𝜙𝑆𝑤

(

𝜀̇𝑘+1𝑤𝑝 − 𝜀̇𝑘+1𝑠𝑝

)

=
𝑚̇𝑤
𝜌𝑤

, (68)

Gas phase: 

𝐾𝑔𝑔 𝑝̇
𝑘+1
𝑔𝑝 +𝐾𝑔𝑤𝑝̇𝑘+1𝑤𝑝 − 𝛽𝑔ℎ𝑠𝑇̇ 𝑘+1𝑝 +

(

𝑆𝑔 + 𝑆ℎ
)

𝜀̇𝑘+1𝑠𝑝 + 𝜙𝑆𝑔
(

𝜀̇𝑘+1𝑔𝑝 − 𝜀̇𝑘+1𝑠𝑝

)

=
𝑚̇𝑔
𝜌𝑔

+
𝑚̇ℎ
𝜌ℎ
, (69)

where 𝜀̇𝑘+1𝑠𝑝 , 𝜀̇𝑘+1𝑤𝑝 , and 𝜀̇𝑘+1𝑔𝑝  are the volumetric strain rate of the solid, water, and gas phases, with the coefficients 𝐾𝑤𝑤, 𝐾𝑔𝑔 , 𝐾𝑤𝑔 , 
and 𝐾𝑔𝑤 given by, 

𝐾𝑤𝑤 =
𝜙𝑆𝑤
𝐾𝑤

+ 𝜙
𝜕𝑆𝑤
𝜕𝑝𝑤

, (70a)

𝐾𝑔𝑔 =
𝜙𝑆𝑔
𝜌𝑔

𝑀𝑔

𝑅𝑇
+ 𝜙

𝜕𝑆𝑤
𝜕𝑝𝑤

, (70b)

𝐾𝑤𝑔 = 𝐾𝑔𝑤 = −𝜙
𝜕𝑆𝑤
𝜕𝑝𝑤

. (70c)

Remark 5.  Similar to the heat source, the mass source terms are sensitive to variations in pore pressure and temperature. The 
temperature-dependent 𝐾𝑑 and 𝑝𝑒 are computed using the updated 𝑇 𝑘+1. Additionally, to enhance numerical accuracy and stability, 
pore pressure is implicitly evaluated using 𝑝𝑘+1(= 𝑝𝑘 + 𝛥𝑡𝑝̇𝑘+1), as follows, 

𝑚̇𝑤
𝜌𝑤

=
𝑁ℎ𝑀𝑤
𝜌𝑤

𝐾𝑑𝐴𝑠(𝑝𝑒 − 𝑝𝑘+1), (71a)

𝑚̇𝑔
𝜌𝑔

+
𝑚̇ℎ
𝜌ℎ

=
(𝑀𝑔

𝜌𝑔
−
𝑀ℎ
𝜌ℎ

)

𝐾𝑑𝐴𝑠(𝑝𝑒 − 𝑝𝑘+1). (71b)

Then, the mass balance equations are discretized as, 
[

𝐾𝑤𝑤 𝐾𝑤𝑔
𝐾𝑔𝑤 𝐾𝑔𝑔

][

𝑝̇𝑘+1𝑤𝑝

𝑝̇𝑘+1𝑔𝑝

]

=

[

𝑓𝑤
𝑓𝑔

]

, (72)

where 

𝐾𝑤𝑤 = 𝐾𝑤𝑤 + 𝛥𝑡
𝑁ℎ𝑀𝑤
𝜌𝑤

𝐾𝑑𝐴𝑠𝜒𝑤, (73a)

𝐾𝑤𝑔 = 𝐾𝑤𝑔 + 𝛥𝑡
𝑁ℎ𝑀𝑤
𝜌𝑤

𝐾𝑑𝐴𝑠𝜒𝑔 , (73b)

𝐾𝑔𝑔 = 𝐾𝑔𝑔 + 𝛥𝑡
(𝑀𝑔

𝜌𝑔
−
𝑀ℎ
𝜌ℎ

)

𝐾𝑑𝐴𝑠𝜒𝑔 , (73c)

𝐾𝑔𝑤 = 𝐾𝑔𝑤 + 𝛥𝑡
(𝑀𝑔

𝜌𝑔
−
𝑀ℎ
𝜌ℎ

)

𝐾𝑑𝐴𝑠𝜒𝑤, (73d)

𝑓𝑤 =
𝑁ℎ𝑀𝑤𝐾𝑑𝐴𝑠(𝑝𝑒 − 𝑝𝑘) + 𝛽𝑤𝑠𝑇̇ 𝑘+1 + 𝑆𝑤𝜀𝑘+1 + 𝜙𝑝𝑆𝑤

(

𝜀̇𝑘+1 − 𝜀̇𝑘+1
)

, (73e)

𝜌𝑤 𝑝 𝑠𝑝 𝑤𝑝 𝑠𝑝
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𝑓𝑔 =
(𝑀𝑔

𝜌𝑔
−
𝑀ℎ
𝜌ℎ

)

𝐾𝑑𝐴𝑠(𝑝𝑒 − 𝑝𝑘) + 𝛽𝑔ℎ𝑠𝑇̇ 𝑘+1𝑝 +
(

𝑆ℎ + 𝑆𝑔
)

𝜀̇𝑘+1𝑠𝑝 + 𝜙𝑝𝑆𝑔
(

𝜀̇𝑘+1𝑔𝑝 − 𝜀̇𝑘+1𝑠𝑝

)

. (73f)

3.4. Complete solution procedure

The solution procedure of the proposed THMC-MPM for modeling MHBS is outlined as follows.
(1) Assign initial material point properties, including 𝒗0𝑠𝑝, 𝒗0𝑤𝑝, 𝒗0𝑔𝑝, 𝑝0𝑤𝑝, 𝑝0𝑔𝑝, 𝑇 0

𝑝 , 𝑉 0
𝑝 , 𝜌0𝑠𝑝, 𝜌0ℎ𝑝, 𝜌0𝑤𝑝, 𝜌0𝑔𝑝, 𝜙0

𝑝, 𝑆0
ℎ𝑝, 𝑆0

𝑤𝑝, 𝑆0
𝑔𝑝, 𝑘0𝑎𝑝, 𝑘0𝑟𝑤𝑝, 

𝑘0𝑟𝑔𝑝. Note that initial permeability should be evaluated based on the porosity and saturations.
(2) Initialize background mesh and compute shape functions.
(3) Evaluate source terms based on the current thermodynamic conditions: calculate the kinetic reaction rate 𝑅𝑟 based on 

Eqs. (34)–(37), and then compute the source terms.
(4) Map particle properties, including mass, momentum, heat capacity, and heat, to nodes using Eqs. (57a) and (60a)–(60b). 

Then, compute the nodal velocities 𝒗𝑘𝑠𝐼 , 𝒗𝑘𝑤𝐼 , and 𝒗𝑘𝑔𝐼 , as well as the temperature 𝑇 𝑘𝐼  at the current time step, 

𝒗𝑘𝑠𝐼 =
(

𝑀𝑘
𝑠ℎ
)−1
𝐼

∑

𝑝

(

𝑚𝑘𝑠𝑝 + 𝑚
𝑘
ℎ𝑝

)

𝒗𝑘𝑠𝑝𝑆𝐼𝑝, (74a)

𝒗𝑘𝜋𝐼 =
(

𝑀𝑘
𝜋
)−1
𝐼

∑

𝑝
𝑚𝑘𝜋𝑝𝒗

𝑘
𝜋𝑝𝑆𝐼𝑝, 𝜋 = 𝑤, 𝑔, (74b)

𝑇 𝑘𝐼 =
(

𝐶𝑘𝑚
)−1
𝐼

∑

𝑝
𝑉 𝑘
𝑝 𝐶

𝑘
𝑚𝑝𝑆𝐼𝑝. (74c)

(5) Assembly nodal internal and external forces/heats according to Eqs. (57b)–(57f), (60c)–(60e), and (67). Then, calculate the 
nodal temperature 𝑇̇ 𝑘+1 based on Eq. (64) and calculate acceleration 𝒂𝑘+1𝑠𝐼 , 𝒂𝑘+1𝑤𝐼 , and 𝒂𝑘+1𝑔𝐼  based on Eq. (63). And then, compute 
the updated nodal temperature 𝑇 𝑘+1𝐼  and velocities 𝒗𝑘+1𝑠𝐼 , 𝒗𝑘+1𝑤𝐼 , and 𝒗𝑘+1𝑔𝐼 , 

𝑘+1𝐼 = 𝑘𝐼 + ̇𝑘+1𝐼 𝛥𝑡,  = 𝒗𝑠, 𝒗𝑤, 𝒗𝑔 , 𝑇 , (75)

where  represents different field variables.
(6) Map updated nodal variables to particles and update particle primary variables using the FLIP strategy, 

𝑘+1𝑝 = 𝑘𝑝 + 𝛥𝑡
∑

𝐼
̇𝑘+1𝐼 𝑆𝐼𝑝,  = 𝒗𝑠, 𝒗𝑤, 𝒗𝑔 , 𝑇 . (76)

(7) Update particle strain and stress. The strain rate is calculated by, 

𝜺̇𝑘+1𝜋𝑝 = 1
2

⎡

⎢

⎢

⎣

∑

𝐼
𝒗𝑘𝜋𝐼∇𝑆𝐼𝑝 +

(

∑

𝐼
𝒗𝑘𝜋𝐼∇𝑆𝐼𝑝

)𝑇
⎤

⎥

⎥

⎦

, 𝜋 = 𝑠,𝑤, 𝑔. (77)

The particle stress is updated based on an objective stress rate, e.g., Jaumann stress rate, to accommodate large deformation and 
rotations, 

𝝈̇′𝑘+1
𝑝 = D𝑒𝑠ℎ ∶ 𝜺̇𝑘+1𝑝 + 𝝈′𝑘

𝑝 ⋅ 𝝎̇𝑘+1𝑝 − 𝝎̇𝑘+1𝑝 ⋅ 𝝈′𝑘
𝑝 + Ḋ𝑒𝑠ℎ(D

𝑒
𝑠ℎ)

−1(𝝈′𝑘
𝑝 − 𝝈′

𝑝0), (78)

where 𝝎̇𝑝 is the rate of the spin tensor, and 𝜺̇𝑘+1𝑇 𝑝  is the particle thermal strain calculated using Eq. (44).
(8) Update porosity and hydrate saturation based on Eqs. (19) and (20), 

𝜙̇𝑘+1𝑝 =
(

1 − 𝜙𝑘+1𝑝

) [

−𝛽𝑠𝑇̇ 𝑘+1𝑝 + 𝜀̇𝑘+1𝑠𝑝

]

, (79)

𝑆̇𝑘+1ℎ𝑝 = (𝜙𝑘+1𝑝 )−1
(

𝑚̇ℎ
𝜌ℎ

+ 𝛽𝑠ℎ𝑇̇ 𝑘+1𝑝 − 𝑆𝑘+1ℎ𝑝 𝜀̇𝑘+1𝑠𝑝

)

, (80)

where 𝜀̇𝑘+1𝑠𝑝 = 𝑡𝑟
(

𝜺̇𝑘+1𝑠𝑝

)

.
(9) Update pore water and gas pressures based on Eq. (72).
(10) Update the densities of each phase using Eqs. (10) and (11), compute water and gas saturations using Eqs. (4)–(6), and 

compute the absolute and relative permeability according to Eqs. (38)–(42).
(11) Update particle displacements 𝒖𝑝 and positions 𝒙𝑝 by mid-point method, 

𝛥𝒙𝑘+1𝑝 = 𝛥𝒖𝑘+1𝑝 = 𝒗𝑘𝑠𝑝𝛥𝑡 +
1
2
𝒂𝑘+1𝑠𝑝 𝛥𝑡2. (81)

(12) If 𝑡 < 𝑡𝑓𝑖𝑛𝑎𝑙, proceed to the next time step.
The flow chart of the MPM solution algorithm is depicted in Fig.  4.

4. Validation of the proposed THMC-coupled MPM

This section validates the proposed THMC-MPM framework through two benchmark cases. The first case replicates Masuda’s 
sandstone core hydrate dissociation experiment (Masuda, 1999), focusing on the TMC response while neglecting mechanical 
deformation. The second case solves an extended Terzaghi consolidation problem from the 2nd international code comparison study 
on MHBS multiphysics (White et al., 2020), providing a rigorous evaluation of the performance for modeling fully coupled THMC 
processes during hydrate phase transitions.
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Fig. 4. Solution flow chart for modeling MHBS using MPM.

Table 1
Model dimensions, initial and boundary conditions.
 Parameters Value 
 Dimensions of the cone Length of the cone, 𝐿: mm 300  
 Diameter of the cone, 𝑑: mm 50.8  
 

Initial conditions

Initial porosity, 𝜙 0.182 
 Initial hydrate saturation, 𝑆ℎ0 0.501 
 Initial water saturation, 𝑆𝑤0 0.351 
 Initial gas saturation, 𝑆𝑔0 0.148 
 Initial pore pressure, 𝑝0: MPa 3.75  
 Initial temperature, 𝑇0: ◦C 2.3  
 Boundary conditions Outlet boundary pressure, 𝑝𝑎: MPa 2.84  
 Air bath temperature, 𝑇𝑎: ◦C 2.0  

4.1. THC validation: Masuda’s hydrate dissociation experiment

Masuda’s experiment (Masuda, 1999) serves as a foundational benchmark for validating hydrate dissociation models (Nazridoust 
and Ahmadi, 2007; Liang et al., 2010; Zhao et al., 2012; Ruan et al., 2012; Chen et al., 2016; Hardwick and Mathias, 2018; Ye et al., 
2022). The experimental setup, as illustrated in Fig.  5, involved a Berea sandstone core (300 mm in length and 30.2 mm in radius) 
saturated with methane hydrate, water, and gas, enclosed within a rubber sleeve. Hydrate dissociation was induced by a pressure 
reduction at the fluid outlet (front boundary), while thermal conditions were maintained via constant-temperature air bath heating. 
Key experimental measurements included surface temperatures at three locations (T1: 75 mm, T2: 150 mm, and T3: 225 mm from 
the outlet), far-field pressure, and cumulative methane gas production.

The MPM simulation simplified the problem to axisymmetric geometry, neglecting gravity effects and mechanical deformation by 
constraining solid velocities to zero. Axisymmetric formulations were derived from plane strain formulations (Sulsky and Schreyer, 
1996; Nairn and Guilkey, 2015; Yu et al., 2024c) by recalculating material point volume, surface areas, and gradients in cylindrical 
coordinates. Despite numerical challenges near 𝑟 = 0, the zero-flux boundary condition at the core center ensured stable simulations 
with a uniform mesh. The initial and boundary conditions, along with material parameters, are provided in Tables  1 and 2.

Fig.  6 illustrates the spatiotemporal evolution of gas pressure (𝑝𝑔), temperature (𝑇 ), hydrate saturation (𝑆ℎ), and gas saturation 
(𝑆𝑔) at five critical time frames. During the initial reaction stage (𝑡 = 10 min), the reduction in gas pressure propagates from the left 
outlet boundary, triggering hydrate dissociation and localized cooling due to endothermic reactions. Over time (e.g., at 𝑡 = 1 h), the 
temperature gradient between the outlet (maintained by the warm air bath) and the inner core (axisymmetric boundary) becomes 
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Fig. 5. The model setup for Masuda’s sandstone core hydrate dissociation experiment. Three temperature sensors are uniformly positioned at 
surface points T1, T2, and T3 along the length of the sandstone core. Additionally, a pressure sensor is located at point P0, centered on the 
sealed end of the core.

Table 2
Material parameters used in MPM simulation for Masuda’s benchmark.
 Parameters Solid, 𝑠 Hydrate, ℎ Water, 𝑤 Gas, 𝑔  
 Initial density, 𝜌𝜋 : kg∕m3 2600 900 1000 –  
 Specific heat capacity, 𝑐𝜋 : J/(kg ◦C) 800 2010 4200 2100  
 Thermal conductivity, 𝜅𝜋 : W/(m ◦C) 8.8 0.393 0.556 0.0335  
 Viscosity, 𝜇𝜋 : Pa s – – 1 × 10−3 7 × 10−6 
 Thermal expansivity, 𝛽𝜋 : 1/◦C 1.5 × 10−5 1.5 × 10−5 4 × 10−4 –  
 Molar mass, 𝑀𝜋 : kg/mol – 0.124 0.018 0.016  
 Gas constant, 𝑅 – – – 8.314  
 
Kinetic hydrate dissociation rate, 𝑅𝑟

𝐾0 = 36,000 mol∕(m2 Pa s),
 𝛥𝐸 = 78,151 J/mol, 𝐴𝑔𝑒𝑜 = 7.5 × 105/m,
 𝐴1 = 1.15, 𝐴2 = 49.3185, 𝐴3 = 9459
 Effective saturation, 𝑆𝑒 𝑝0 = 1 × 104 Pa, 𝑚 = 0.5, 𝑆𝑤𝑟 = 0.2, 𝑆𝑔𝑟 = 0.3
 Heat source, 𝛥𝐻 = 𝐶0 + 𝐶1𝑇 : J/kg 𝐶0 = 446,120 J/kg, 𝐶1 = 132.638 J/(kg ◦C)
 Absolute permeability 𝑘𝑎: m2 𝑘0 = 9.67 × 10−14 m2, 𝑘ℎ = 0.01, 𝑆ℎ𝑐 = 1 × 10−4

 Relative permeability, 𝑘𝑟𝜋 𝑛𝑤 = 0.82, 𝑛𝑔 = 2.11

more pronounced, reflecting the dynamics of heat transfer. By 𝑡 = 4 h, complete hydrate dissociation leads to the stabilization of 𝑝𝑔
and 𝑇 , while 𝑆𝑔 continues to decrease gradually as gas drainage persists.

Fig.  7(a–b) compares the simulated temperature profiles at probes T1 (near the outlet) and T3 (at the far end) with experimental 
data (Masuda, 1999). The FVM simulation results by Hardwick and Mathias (2018) are also presented for comparison. In their 
simulation, the capillary pressure is neglected; Godunov’s method is adopted to discretize the governing equations; and the relative 
permeability and the convective heat transfer coefficient are carefully calibrated to reconcile Masuda (1999)’s data set in its entirety. 
From Fig.  7(a–b), it can be observed that both probes exhibit an initial rapid cooling phase, followed by gradual reheating toward the 
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Fig. 6. Contours of (a) gas pressure 𝑝𝑔 , (b) temperature 𝑇 , (c) hydrate saturation 𝑆ℎ, and (d) gas saturation 𝑆𝑔 at the time instances of 10 min, 
1 h, 2 h, 3 h, and 4 h.

ambient temperature (2.0 ◦C). The delayed thermal response at T3 is attributed to its greater distance from the hydrate dissociation 
front. The MPM simulation results closely align with the experimental measurements and are consistent with the FVM trends, 
validating the accuracy of the THC coupling in the proposed framework. Fig.  7(c–d) further validates the model by comparing 
far-end gas pressure and cumulative methane production. The gas volume (converted to standard conditions: 101.4 kPa, 15.56 ◦C, 
and standard methane gas density 𝜌𝑔, 𝑠𝑡𝑑 = 0.6789 kg∕m3) accounts for both outlet production and retained pore gas. The observed 
nonlinear pressure decline reflects permeability variations associated with hydrate dissociation. Minor deviations from the FVM 
results are likely due to the omission of gas-water phase pressure differences in Hardwick and Mathias (2018)’s FVM formulation. 
Overall, the MPM framework quantitatively and qualitatively reproduces key hydrate dissociation dynamics, demonstrating its 
robustness and efficacy in capturing coupled THC processes.

4.2. THMC validation: Extended Terzaghi problem

The BP2 benchmark from the international MHBS code comparison study (White et al., 2020) is utilized to validate the fully 
coupled THMC capabilities of the proposed MPM framework. This benchmark extends the Terzaghi 1D consolidation problem by 
incorporating methane hydrate kinetics to evaluate the bidirectional interactions among hydrate phase transitions, fluid flow, and 
mechanical deformation. The problem setup consists of a horizontally confined soil column (𝐿 = 1 m) with no gravitational effects, 
as depicted in Fig.  8(a). The initial conditions include: 𝑆𝑤0 = 0.6, 𝑆𝑔0 = 0.4, and 𝑆ℎ0 = 0, and 𝜙 = 0.15. The boundary conditions 
include (1) full fixation at the left end, (2) prescribed surcharge and free drainage at the right end, and (3) impermeable walls with 
roller supports on lateral boundaries. The column is thermally insulated, and mechanical loading follows a ramped compressive 
stress profile as shown in Fig.  8(b): linearly increasing at 0.01 MPa/s for 1000 s, then decreasing at the same rate over the next 
1000 s. Unlike the traditional Terzaghi consolidation problem, this problem introduces non-isothermal effects arising from hydrate 
phase transitions (formation/dissociation). The material properties assume a linear elastic stress–strain relationship, as summarized 
in Table  3. The computational domain is discretized into uniform 50 quadrilateral cells with four material points per cell. Two cases 
are analyzed:
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Fig. 7. Evolution of temperature at probe (a) T1 and (b) T3; (c) gas pressure at far-end point P0; and (d) gas volume, including the gas released 
from the outlet and the gas retained within the pore space of the core sandstone, at standard condition (101.4 kPa and 15.56 ◦C).

Table 3
Material parameters used in MPM simulation for extended Terzaghi’s benchmark.
 Parameters Solid, 𝑠 Hydrate, ℎ Water, 𝑤 Gas, 𝑔  
 Initial density, 𝜌𝜋 : kg∕m3 2600 900 1000 –  
 Specific heat capacity, 𝑐𝜋 : J/(kg ◦C) 800 2010 4200 2100  
 Thermal conductivity, 𝜅𝜋 : W/(m ◦C) 3 0.5 0.5 0.044  
 Viscosity, 𝜇𝜋 : Pa s – – 1 × 10−3 7 × 10−6 
 Thermal expansivity, 𝛽𝜋 : 1/◦C 0 0 0 –  
 Molar mass, 𝑀𝜋 : kg/mol – 0.124 0.018 0.016  
 Gas constant, 𝑅 – – – 8.314  
 Kinetic hydrate dissociation rate, 𝑅𝑟 𝐾𝑑 = 2.5 × 10−10 mol∕(m2 Pa s), 𝐴𝑔𝑒𝑜 = 1 × 106/m,
 𝐴1 = 1, 𝐴2 = 38.98, 𝐴3 = 8533.8
 Effective saturation, 𝑆𝑒 𝑝0 = 5 × 104 Pa, 𝑚 = 0.3, 𝑆𝑤𝑟 = 0.2, 𝑆𝑔𝑟 = 0.4
 Heat source, 𝛥𝐻 = 𝐶0 + 𝐶1𝑇 : J/kg 𝐶0 = 473,632 J/kg, 𝐶1 = 140.117 J/(kg K)
 Absolute permeability 𝑘𝑎: m2 𝑘0 = 1.53 × 10−15 m2, 𝑚 = 3
 Relative permeability, 𝑘𝑟𝜋 𝑛𝑤 = 4, 𝑛𝑔 = 2
 Elastic parameters, 𝐸, 𝜈 𝐸0 = 9 × 107 Pa, 𝐸ℎ = 2 × 109 Pa, 𝑎ℎ = 1, 𝑏ℎ = 1

• Case 1: Hydrate kinetics are disabled (𝐾𝑑 = 0), isolating poroelastic effects; and
• Case 2: Hydrate kinetics are active (𝐾𝑑 = 2.5 × 10−10 mol∕(m2 Pa s)), enabling full THMC coupling.

This comparative analysis isolates the role of hydrate phase transitions in consolidation dynamics, providing a rigorous validation 
of the framework’s ability to resolve complex multiphysics interactions.

For Case 1 (hydrate kinetics disabled), the problem reduces to a modified Terzaghi consolidation problem incorporating gas 
compressibility and weak thermal coupling. Fig.  9 presents a comparison of the simulated pore pressure at 𝑥 = 0.6 m and surface 
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Fig. 8. (a) Geometry, initial and boundary conditions of the extended Terzaghi consolidation problem, and (b) the loading function.

Fig. 9. Case 1 (hydrate kinetics disabled): evolution of (a) pore pressure at 𝑥 = 0.6 m and (b) surface displacement (positive = rightward).

displacement with reference results from participating codes in White et al. (2020). Key observations include: (1) pore pressure 
rises from 3.25 MPa to approximately 8 MPa during the loading stage (0–1000 s), and subsequently decreases to its initial value 
during the unloading stage (1000–2000 s); (2) surface displacement shows consolidation (compression) during loading, followed 
by rebound during unloading; and (3) all codes, except GEOMAR, demonstrate nonlinear evolution of pressure and displacement, 
which can be attributed to capillary suction effects. Slight variations in peak values are observed across the different codes, likely 
due to differences in constitutive models and parameter assumptions. Nevertheless, the MPM results align qualitatively with the 
established trends, confirming the efficacy of its poroelastic coupling implementation.

In Case 2 (hydrate kinetics enabled), hydrate formation and dissociation are driven by the buildup of excess pore pressure 
during loading. When the pore pressure (𝑝) exceeds the hydrate equilibrium pressure (𝑝𝑒, equaling 3.6 MPa at 4.0 ◦C), hydrate 
formation is initiated. Conversely, when 𝑝 < 𝑝𝑒, hydrate dissociation occurs. Fig.  10 shows the evolution of pore pressure, hydrate 
saturation, temperature at 𝑥 = 0.6 m, and surface displacement. The following dynamic behaviors are observed. (1) During the 
loading stage (𝑡 = 0−1000 s): when 𝑝 < 𝑝𝑒 (approximately 𝑡 < 100 s), the trends in pore pressure and displacement closely resemble 
those in Case 1; no hydrate formation occurs (𝑆ℎ = 0), and the temperature remains constant at 4 ◦C; when 𝑝 > 𝑝𝑒 (𝑡 > 100
s), hydrate formation is initiated; this process dampen the rate of pore pressure increase as gas and water are consumed to form 
hydrate; simultaneously, exothermic reactions associated with hydrate formation cause a localized rise in temperature. (2) During 
19 



J. Yu et al. Journal of the Mechanics and Physics of Solids 206 (2026) 106368 
Fig. 10. Case 2 (hydrate kinetics enabled): evolution of (a) pore pressure, (c) hydrate saturation, (d) temperature at 𝑥 = 0.6 m, and (b) surface 
displacement.

the Unloading stage (𝑡 = 1000−2000 s): dissipation of excess pore pressure triggers hydrate dissociation; as a result, temperature 
and displacement recover gradually to their initial states. It is worth noting that hydrate formation enhances the stiffness of the soil 
matrix, resulting in reduced peak displacement during loading compared to Case 1.

Fig.  11 illustrates minimal spatial variation in pore pressure, temperature, and hydrate saturation during loading (e.g., 𝑡 = 500
and 1000 s), underscoring the strong interdependence among these coupled fields. Quantitative comparisons in Fig.  10 reveal similar 
trends and magnitudes between the predictions of the coupled MPM framework and the reference codes. Notably, the MPM results 
exhibit particularly good agreement with the predictions from the UCB model. This is potentially attributed to the use of the same 
hydrate kinetic reaction model as employed in the UCB study, whereas other reference codes adopt alternative kinetic models, as 
evidenced by differences in the initiation time of hydrate dissociation. These findings confirm that the developed MPM framework 
effectively resolves the complex coupling of hydrate phase transition, fluid flow, heat transfer, and mechanical deformation. Minor 
deviations observed between the MPM and other predictions are likely due to inherent differences in the constitutive models and 
numerical schemes employed by each code.

5. Modeling coupled phase transition and large deformation in MHBS

This section presents two numerical examples to investigate the bidirectional coupling between hydrate dissociation and large 
deformation in MHBS. The first example simulates the biaxial compression test on MHBS columns, aiming to demonstrate how shear 
deformation initiates hydrate dissociation and affects the subsequent THMC responses. The second example simulates progressive 
failures in hydrate-bearing slopes, aiming to explore how the hydrate dissociation process triggers slope instability and influences 
the landslide dynamics.

5.1. Biaxial compression test on MHBS specimen

The biaxial compression test serves as a widely adopted numerical example for investigating localized responses in granular 
materials (Sun, 2015; Na and Sun, 2017; Liang and Zhao, 2019; Zhao et al., 2020). In this study, the test is applied to an MHBS 
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Fig. 11. Case 2: contour results for pore pressure (𝑝), temperature (𝑇 ), hydrate saturation (𝑆ℎ), and axial displacement (𝑢𝑥) at the time instances 
of (a) 500 s and (b) 1000 s.

Fig. 12. Model setup for the biaxial compression test on an MHBS column.

sample with dimensions of 4 m × 2 m. Rough, rigid plates are attached to the top and bottom boundaries, with their movement 
constrained in the 𝑥-direction. The top plate is subjected to a rapid downward loading at a constant velocity of 𝑣𝑦 = 0.1 m∕s, while 
the bottom plate remains fixed. To minimize stress oscillations during loading, the velocity is linearly ramped from zero to the 
prescribed magnitude within the first 0.1 s (Liang and Zhao, 2019). Due to geometric symmetry, only the right half of the domain 
is modeled. The left symmetric boundary is impermeable, adiabatic, and fixed in the horizontal direction. The model setup, along 
with the initial conditions, is illustrated in Fig.  12.

The material parameters follows Masuda’s example in Section 4.1, with the following modifications: Young’s modulus 𝐸 =
600 MPa, Poisson’s ratio 𝜈 = 0.33, intrinsic permeability 𝑘0 = 1 × 10−14 m2, kinetic reaction rate 𝐾0 = 3.6 × 105 mol∕(m2 Pa s), and 
strength parameters 𝑐𝑚𝑎𝑥 = 1000 kPa, 𝑐𝑚𝑖𝑛 = 𝑐𝑟𝑒𝑠 = 100 kPa, 𝜑𝑚𝑎𝑥 = 45◦, 𝜑𝑟𝑒𝑠 = 30◦, 𝜓𝑚𝑎𝑥 = 15◦, 𝜓𝑚𝑖𝑛 = 5◦, and 𝜂𝑠 = 𝜂ℎ = 5. The 
elastic and strength parameters utilized are chosen from experimental data on hydrate samples documented in the literature (Soga 
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Fig. 13. Global stress–strain relationships from biaxial compression tests on MHBS samples.

et al., 2006; Waite et al., 2009). The computational domain is discretized into quadrilateral cells of 0.05 m size, with four material 
points in each cell. The time step size is set as 5 × 10−5 s. The simulation is terminated when the global axial strain (𝜀𝑦𝑦) reaches 
15%. Three cases are analyzed:

• Case A: Hydrate dissociation enabled;
• Case B: Hydrate dissociation disabled (𝐾0 = 0);
• Case C: Hydrate dissociation enabled, and plastic heat generation included.

In both Case A and Case B, plastic heat generation is neglected by setting 𝜃 = 0. In Case C, the plastic work is assumed to be perfectly 
converted into heat by setting 𝜃 = 1. The mesh sensitivity test indicates that, while a finer mesh may result in thinner shear bands, 
the mesh currently adopted produces results comparable to those obtained with a finer mesh. Further details regarding the mesh 
sensitivity test can be found in Appendix  B.

Fig.  13 illustrates the global stress–strain relationships for the three cases. The global axial stress 𝜎𝑦𝑦 equals the normal reaction 
force acting on the top plate normalized by the contact area. The global volumetric strain is calculated as the total volume change 
of all material points divided by the initial volume of the column. We first take Case A as an example for discussion. In this 
case, 𝜎𝑦𝑦 initially increases at a diminishing rate until reaching a peak stress at an axial strain of approximately 𝜀𝑦𝑦 ≈ 5%, after 
which it gradually declines, indicating a softening behavior. The global volumetric strain shows an overall dilative response, with a 
minor contraction observed during the initial phase. These stress–strain characteristics align with the typical mechanical behavior 
of high-saturation MHBS samples as documented in the literature (Soga et al., 2006; Waite et al., 2009).

5.1.1. Shear dilation-induced hydrate dissociation
Fig.  14 shows the distribution of deviatoric strain 𝜀𝑑 , volumetric strain 𝜀𝑣, and porosity 𝜙 at the final loading stage (𝜀𝑦𝑦 = 15%). 

Notable strain localizations characterized by two intersecting shear bands (corresponding to the right segment of a cross-shaped 
shear band in a full-domain simulation) can be observed in the deviatoric strain contour. Within the shear band, significant volume 
expansion occurs due to shear dilation, resulting in increased porosity. Under undrained conditions, this volumetric dilation tendency 
can lead to a rapid buildup of negative excess pore pressure, which may subsequently trigger hydrate dissociation. These phenomena 
are successfully captured in our simulation and corroborated in laboratory triaxial tests by Yan et al. (2023).

Additionally, we observe that the inclination angle of the shear band with respect to the horizontal direction is approximately 51◦. 
This value is lower than the Coulomb’s angle (𝜃𝐶 = 45◦+𝜑∕2 = 60◦∼67.5◦), close to the Roscoe’s angle (𝜃𝑅 = 45◦+𝜓∕2 = 47.5◦∼52.5◦), 
and slightly lower than the Arthur’s angle (𝜃𝐴 = 45◦ + (𝜑+𝜓)∕4 = 53.75◦∼60.0◦). Many experimental and theoretical studies suggest 
that the shear band angles falling within the range between 𝜃𝐶 and 𝜃𝑅 are all reasonable. Readers may refer to Appendix  C for more 
discussion.

Fig.  15 further shows the distribution of excess pore pressure 𝑝 = (𝜒𝑤𝑝𝑤 + 𝜒𝑔𝑝𝑔) and hydrate saturation 𝑆ℎ for both Cases A 
and B at 𝜀𝑦𝑦 = 15%. Additionally, Fig.  16 further plots the local responses of deviatoric stress 𝑞, volumetric strain 𝜀𝑣, excess pore 
pressure, and hydrate saturation at point M - a point located at the center of the upper wing of the shear band. The contour of 
excess pore pressure reveals a significant pressure drop within the shear band, and concurrently, the hydration saturation contour 
shows a noticeable reduction in 𝑆ℎ, likely due to hydrate dissociation. Interestingly, in Case B – where hydrate dissociation is not 
considered – a reduction in 𝑆  is still observed within the shear band. This phenomenon occurs because hydrate saturation evolves 
ℎ
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Fig. 14. Simulation results for Case A: distributions of deviatoric strain 𝜀𝑑 , volumetric strain 𝜀𝑣, and porosity 𝜙 at a global axial strain of 15%.

Fig. 15. Comparison of simulation results for Case A and Case B: contours of (a) excess pore pressure and (b) hydrate saturation at 𝜀𝑦𝑦 = 15%.

not only through hydrate phase changes but also with variations in porosity 𝜙, as indicated by Eq. (20). Since Case B excludes 
hydrate phase changes, the observed decrease in 𝑆ℎ is entirely attributed to changes in porosity. In contrast, Case A demonstrates a 
much lower 𝑆ℎ than Case B, indicating the additional effect of hydrate dissociation on 𝑆ℎ reduction. To better quantify the extent 
of hydrate dissociation, the percentage of hydrate mass change, denoted as 𝛿𝑚ℎ, is utilized. It is defined as the hydrate mass change 
𝛥𝑚ℎ divided by the initial hydrate mass 𝑚ℎ0 at each material point. As shown in Fig.  16(d), 𝑆ℎ at point M in Case B decreases 
gradually, yet 𝛿𝑚ℎ remains zero, confirming the absence of hydrate dissociation. In contrast, Case A exhibits a clear reduction in 
𝛿𝑚ℎ, indicating active hydrate dissociation.

A detailed comparison of the local responses at point M between Case A and Case B reveals that: (1) Case A exhibits a lower 
peak stress and a more pronounced reduction in post-peak stress compared to Case B, underscoring the additional softening effect 
caused by hydrate dissociation; (2) the magnitude of negative excess pore pressure in Case A is lower than that in Case B, suggesting 
that gas and water production during dissociation mitigates the pressure drop. The global stress–strain behavior depicted in Fig.  13 
further corroborates observation (1). These findings emphasize that shear dilation in the MHBS system induces hydrate dissociation, 
which in turn causes mechanical degradation and affects other THMC responses.

It is worth noting that the stress and pressure fields presented in Fig.  16 exhibit slight temporal oscillations. These oscillations 
can be attributed to dynamic effects resulting from the rapid loading process. Additionally, while the adopted uGIMP shape function 
mitigates cross-cell noise to some extent, this issue may still persist when particles frequently cross cell boundaries during the biaxial 
compression. Nonetheless, the amplitudes of these oscillations remain within a controllable and acceptable range.

5.1.2. Shear heating-induced hydrate dissociation
Large shear deformation results in plastic heat generation, a process known as shear heating, which can lead to temperature rise 

within the shear band region (Kelemen and Hirth, 2007). Rapid shear can cause a sudden increase in temperature, which may prompt 
hydrate dissociation. Fig.  17 compares the distributions of temperature and percentage of hydrate mass change (𝛿𝑚 ) between Case 
ℎ
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Fig. 16. Comparison of simulation results for Case A and Case B: evolution of (a) deviatoric stress 𝑞, (b) volumetric strain 𝜀𝑣, (c) excess pore 
pressure 𝑝(= 𝜒𝑤𝑝𝑤 + 𝜒𝑔𝑝𝑔), and (d) hydrate saturation 𝑆ℎ and percentage of hydrate mass change 𝛿𝑚ℎ(= 𝛥𝑚ℎ∕𝑚ℎ0) at point M.

Fig. 17. Comparison of simulation results for Case A and Case C: contours of (a) temperature and (b) percentage of hydrate mass change (𝛿𝑚ℎ) 
at 𝜀𝑦𝑦 = 15%.

A and Case C at the final loading stage. Additionally, Fig.  18 presents the local responses at point M for both cases, including shear 
stress, excess pore pressure, 𝛿𝑚ℎ, and temperature.

Fig.  17(a) shows that, in Case A, where plastic heat generation is neglected, the temperature within the shear band decreases due 
to the endothermic process of hydrate dissociation. Conversely, when it is included in Case C, the contour result reveals a higher 
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Fig. 18. Comparison of simulation results for Case A and Case C: evolution of (a) deviatoric stress 𝑞, (b) excess pore pressure 𝑝, (c) percentage 
of hydrate mass change 𝛿𝑚ℎ, and (d) temperature at point M.

temperature in regions with large shear strain compared to those with relatively low shear strain. Fig.  18(d) further illustrates that 
at point M in Case C, the temperature rises first before decreasing, with overall values much higher than those observed in Case A. 
Moreover, Figs.  17(b) and 18(c) indicate that shear heating accelerates the hydrate dissociation process. Consequently, the excess 
pore pressure in Case C exhibits a slower recovery rate from its minimum value, as shown in Fig.  18(b), and a faster rate of post-peak 
stress softening, as shown in Fig.  18(a). These findings emphasize the crucial role of shear-induced plastic heat in promoting hydrate 
dissociation and influencing the subsequent hydraulic and mechanical responses.

5.2. Submarine landslides triggered by hydrate dissociation

Submarine landslides near continental shelves are widely reported to be closely related to hydrate dissociation (Hampton 
et al., 1996; Elger et al., 2018; Gales et al., 2023; Zhang et al., 2021; Jyothsna and Satyavani, 2024; Wan et al., 2016). Hydrate 
dissociation can be initiated by both natural and anthropogenic factors. Pressure reductions, resulting from sea level fluctuations 
such as tidal variations or glacial-interglacial cycles, as well as artificial depressurization, can destabilize hydrate-bearing sediments 
(Hampton et al., 1996; Gatter et al., 2021). Similarly, temperature increases due to submarine geothermal flow or oceanic warming 
can also alter hydrate stability conditions, leading to dissociation (Reagan and Moridis, 2007). These processes weaken hydrate-
cemented sediments, reducing their shear strength and creating weak layers prone to instability, potentially resulting in submarine 
landslides (Waite et al., 2009; Gatter et al., 2021).

In this section, we employ the coupled THMC MPM to simulate submarine landslides triggered by hydrate dissociation, focusing 
on the triggering mechanisms and the THMC responses within the system. Unlike previous approaches that impose artificially defined 
weakened zones (Buss et al., 2019), the presented model naturally simulates the weakening process induced by hydrate dissociation, 
offering a more physically realistic representation of triggering mechanisms.

We first simulate a small-scale hydrate-bearing slope (Section 5.2.1) to demonstrate the effectiveness of the proposed method in 
modeling dissociation-triggered submarine landslides. This is followed by two large-scale slope analyses (Sections 5.2.2 and 5.2.3) 
to investigate retrogressive failure patterns in submarine landslides. Additionally, we conduct comparative analyses to assess the 
impact of shear heating on landslide dynamics. In this example, the effect of hydrate saturation on soil stiffness is neglected. For 
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Fig. 19. Model setup for (a) the small-scale test, designed to simulate a single slide failure, and (b) the large-scale tests, aimed at examining 
retrogressive landslide failures.

simplicity, a section of the bottom of the slope was heated to initiate hydrate dissociation in all cases. It is important to note that the 
realistic thermal and pressure boundary conditions in natural scenarios are more complex, while the specified temperature boundary 
condition in this example is an idealized representation.

5.2.1. Scenario A: a small-scale benchmarking test
For the small-scale test, we consider a trapezoid hydrate-bearing slope with a height of 100 m, top and bottom lengths of 

150 m and 300 m, respectively, and a slope front angle of approximately 33.7◦, as illustrated in Fig.  19(a). To replicate typical 
submarine geological geometries with slope angles frequently ranging from 0◦ to 15◦ (Hampton et al., 1996), the entire soil body 
is globally inclined by 10◦. The initial conditions are specified as follows: 𝑇0 = 2.3 ◦C, 𝑝0 = 3.75 MPa, 𝑆ℎ0 = 0.4, 𝑆𝑤0 = 0.48, 
𝑆𝑔0 = 0.12, and 𝜙0 = 0.4. Boundary conditions include a fully fixed, impermeable base, a normally fixed left side, and a free 
slope-void interface. The material parameters are consistent with those used in Masuda’s cone hydrate dissociation example, with 
additional specifications: Young’s modulus 𝐸 = 200 MPa, Poisson’s ratio 𝜈 = 0.33, intrinsic permeability 𝑘0 = 1 × 10−14 m2, and 
kinetic reaction rate 𝐾0 = 3.6 × 104 mol∕(m2 Pa s). The strength parameters are given as follows: 𝑐max = 500 kPa, 𝑐min = 100 kPa, 
𝜑max = 35◦, 𝜑min = 25◦, 𝜓max = 10◦, 𝜓min = 5◦, and 𝜂𝑠 = 𝜂ℎ = 5. The gravitational acceleration is set to 𝑔 = 9.81 m∕s2. To minimize 
stress oscillations, gravity is linearly increased to the targeted value over the first 10 s. Hydrate dissociation is initiated by applying 
a constant temperature of 10 ◦C along the slope base within the range of 150–300 m. The simulation employs uniform quadrilateral 
cells (4 m × 4 m) for the background mesh, four material points per cell, and a time step size of 𝛥𝑡 = 5 × 10−2 s.

Global and local responses. Fig.  20 shows the contours of temperature, hydrate saturation, deviatoric strain, volumetric strain, 
and excess pore pressure at the initiation stage of slope slide (𝑡 = 25 s) and the final simulation state (𝑡 = 200 s). At 𝑡 = 25 s, basal 
heating of the slope triggers hydrate dissociation, leading to soil softening. Under gravitational loading, significant plastic strain 
accumulates at the slope base, resulting in the formation of a weakened layer and ultimately inducing a V-shaped shear band that 
spans from the slope base to the ground surface. The V-shaped shear band divides the slope into three distinct sections: the left 
trapezoid portion remains largely intact, while the upper wedge and the lower-right triangular part slide downward and rightward 
along the shear band. By 𝑡 = 200 s, the landslide has largely ceased. Within the V-shaped shear band, volumetric dilation, negative 
excess pore pressure, reduced hydrate saturation, and temperature variations are observed. These phenomena are consistent with 
those observed in the biaxial compression tests.

To further analyze the initiation of the landslide and the evolution of each physical field in the shear band, we examine two 
specific points: point A, located at the slope base (150–180 m range), and point B, situated in the middle of the left wing of the 
V-shaped shear band. Fig.  21 plots the evolution of several key variables at the two points, including temperature, volumetric strain, 
deviatoric strain, shear stress, excess pore pressure, hydrate saturation, and the rate of hydrate mass change (𝛿𝑚ℎ). At point A, the 
temperature rises immediately to approximately 6 ◦C (Fig.  21(a)), initiating rapid hydrate dissociation (Fig.  21(f)). This leads to a 
gradual accumulation of shear strain (Fig.  21(b)). However, the gas and water produced from dissociation cause a sharp increase 
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Fig. 20. Contours of key physical fields at the time instances of 25 s and 250 s: (a–b) temperature 𝑇 , (c–d) hydrate saturation 𝑆ℎ, (e–f) deviatoric 
strain 𝜀𝑑 , (g–h) volumetric strain 𝜀𝑣, and (i–j) excess pore pressure 𝑝.

in pore water pressure (Fig.  21(e)) and decrease in mean effective stress (Fig.  21(d)), accompanied by an increase in volumetric 
strain (Fig.  21(c)). At around 𝑡 = 20 s, the shear strain at point A begins to increase rapidly, corresponding to the formation of 
the V-shaped shear band, while changes in shear stress and pore water pressure become moderate. Meanwhile, at point B, shear 
strain and volumetric strain begin to increase, followed by a decrease in shear stress, indicative of softening (Fig.  21(d)). As a result, 
the pore pressure begins to decrease, and hydrate dissociation is initiated within the shear band. Before the temperature decrease 
caused by hydrate dissociation, there is a slight increase in temperature at point B caused by shear heating, which can be indicated 
from the temperature rise in the marked zone by dotted lines in Fig.  20(a). Additionally, at 𝑡 = 200 s, the physical quantities at both 
points still exhibit some slight changes, indicating that hydrate dissociation and slope sliding are still ongoing.

Evolution of kinetic energy. Fig.  22 illustrates the evolution of kinetic energy of the slope, 𝐸𝑘, during the slide process. The 
kinetic energy reflects the dynamic characteristics of the mass movement of the slope, which is calculated as the sum of phase-specific 
contributions from the mass and velocity of solid, water, and gas phases, expressed as, 

𝐸𝑘 =
𝑁𝑝
∑

𝑝=0
𝐸𝑘𝑝 =

1
2

𝑁𝑝
∑

𝑝=0

(

(𝑚𝑠𝑝 + 𝑚ℎ𝑝)‖𝒗𝑠𝑝‖2 + 𝑚𝑤𝑝‖𝒗𝑤𝑝‖2 + 𝑚𝑔𝑝‖𝒗𝑔𝑝‖2
)

, (82)

where 𝑁𝑝 is the total number of material points. The contribution of particle rotation to kinetic energy is neglected.
At approximately 𝑡 = 13 s, the kinetic energy 𝐸𝑘 increases sharply and reaches a significant peak at around 𝑡 = 25 s. At this point, 

the V-shaped sliding surface has formed, triggering the rapid development of the landslide. By approximately 32 s, 𝐸𝑘 decreases to 
nearly zero, indicating that the sliding has nearly ceased. Shortly thereafter, 𝐸𝑘 rises sharply again, reaching a second peak at 𝑡 = 38
s, followed by another drop to near zero. Subsequently, 𝐸𝑘 rises once more, attaining a third peak at 50 s. After this phase, the sliding 
largely ceases, but by 𝑡 = 100 s, the fourth noticeable peak in 𝐸𝑘 occurs. The displacement fields at each peak, as presented in Fig.  22, 
show apparent variations in magnitude. However, no distinct new shear bands are observed. This pattern of kinetic energy evolution 
differs significantly from typical simulation results of common gravity-induced landslides. In gravity-driven landslides, a single slope 
slide or sliding surface generally yields one peak in kinetic energy. In contrast, retrogressive landslides often exhibit multiple 𝐸
𝑘
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Fig. 21. Local responses of key properties at points A and B: (a) temperature 𝑇 , (b) deviatoric strain 𝜀𝑑 , (c) volumetric strain 𝜀𝑣, (d) deviatoric 
stress 𝑞, (e) excess pore pressure 𝑝, and (f) hydrate saturation 𝑆ℎ and percentage of hydrate mass change 𝛿𝑚ℎ.

peaks, each corresponding to the formation of a new sliding surface, as demonstrated in prior simulations (Sang et al., 2024; Yu 
et al., 2024a). In this case, however, the sliding surface is formed only once, yet multiple 𝐸𝑘 peaks are observed. This behavior 
is likely attributed to the continuous dissociation of hydrate, which progressively softens the soil mass. The sustained softening 
leads to continuous creeping and sudden accelerations of the slope mass. These findings suggest that hydrate dissociation-triggered 
landslides may exhibit prolonged instability and reactivation over time.

5.2.2. Scenario B: retrogressive landslides in a steep high-strength sediment slope
The submarine landslides are often in retrogressive modes, which means a landslide event is composed of the progressive 

formation of several slide surfaces (Buss et al., 2019; Dey et al., 2016). To assess retrogressive failure dynamics related to hydrate 
dissociation, we further simulate a 1100-m-long slope, with a base angle of 10◦, as illustrated in Fig.  19(b). The slope is subject to 
a basal heating ranging from 150 m to 1100 m. The same material properties as the small-scale case are adopted.

Fig.  23 shows the contours of deviatoric strain at different landslide stages. Due to hydrate dissociation, strain accumulation 
at the slope’s base quickly extends to the uppermost part of the heated region by 𝑡 = 15 s. Merely 3 s later, multiple intersecting 
V-shaped shear bands emerge in the middle and lower sections of the slope. Notably, the soil masses both upstream and downstream 
of the shear bands remain largely intact. Simultaneously, strain accumulation occurs at the end of the heated region near the slope 
crest, with signs of extension toward the slope surface.

Over the next 30 s, the V-shaped shear bands rapidly propagate both upstream and downstream. This leads to the formation of 
a retrogressive slump complex upstream and lateral spreading failure downstream. Simultaneously, the V-shaped shear band near 
the slope crest fully develops, forming a pull-apart graben. The slope mass between the graben and the retrogressive slump complex 
remains largely intact, exhibiting a translational sliding motion. The retrogressive slump complex, lateral spread, translational slide, 
and pull-apart graben collectively represent typical failure patterns of retrogressive landslides.

By 𝑡 = 72 s, another secondary shear band emerges within the graben. At 𝑡 = 250 s, the landslide appears to have ceased 
progression; however, new plastic zones are observed in the soil downstream of the graben, suggesting that the landslide process 
might still be ongoing at a slower pace.

Fig.  24 illustrates the evolution of kinetic energy during the landslide process. Similar to the small-scale landslide, a prominent 
peak is observed, along with several secondary peaks. The first and second secondary peaks occur at 𝑡 = 45 s and 𝑡 = 72 s, respectively, 
corresponding to the formation of the graben at the slope crest and the development of a sub-shear band within the graben. However, 
the third and fourth secondary peaks cannot be directly associated with the emergence of shear bands. Instead, they are likely caused 
by the sudden acceleration of slope mass movement due to the continued dissociation of hydrates.

In the simulation discussed, we considered plastic heat generation by setting 𝜃 = 0.5. As a comparison, we also simulated the 
case without considering plastic heat (i.e., 𝜃 = 0). Fig.  25 compares the results of both cases at 𝑡 = 250 s. It is evident that, without 
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Fig. 22. Evolution of kinetic energy (𝐸𝑘) for the small-scale slope. The contour figures show the magnitude of displacement at each peak.

considering shear heating, the landslide travels a shorter distance and has a less significant lateral spread. Additionally, the sub-
shear band in the graben is not fully developed, resulting in less subsidence. The plastic zone downstream of the graben is also 
less pronounced, and the displacement of the translational sliding block is apparently smaller. This occurs because heating leads to 
additional dissociation of hydrates, accelerating the softening of the slope. To clearly demonstrate this, we compared the percentage 
of overall hydrate mass change within the slope for both cases, as presented in Fig.  26. It shows that, during the landslide’s rapid 
development stage, i.e., between 𝑡 = 13 and 35 s, hydrates dissociate quickly, and the dissociation rate for 𝜃 = 0.5 case is noticeably 
higher than the 𝜃 = 0 case. Their gap continues to widen after the major landslide period. These observations suggest that neglecting 
the effect of shear heating might underestimate the extent of hydrate dissociation and the landslide scale.

5.2.3. Scenario C: retrogressive landslides in a gentle low-strength sediment slope
When hydrates are present in sensitive clay sediments, their dissociation can lead to more significant softening of the sediments, 

which can trigger more severe retrogressive landslides even if the slope angle is gentle (Laberg and Camerlenghi, 2008; Mountjoy 
et al., 2014). Building on Case B, we reduce the slope base angle to 3 degrees while keeping other dimensions unchanged. 
Additionally, we lower the strength parameters to: 𝑐𝑚𝑎𝑥 = 250 kPa, 𝑐𝑚𝑖𝑛 = 50 kPa, 𝜑𝑚𝑎𝑥 = 25◦, 𝜑𝑚𝑖𝑛 = 5◦, and reduced the initial 
hydrate saturation 𝑆ℎ0 to 0.25 with 𝑆𝑤0 = 0.6 and 𝑆𝑔0 = 0.15. All other parameters remain the same. We simulated both cases with 
and without considering plastic heat generation. For the former case, we set 𝜃 = 0.5.

Fig.  27 shows the changes in shear strain, illustrating the entire progression of the retrogressive landslide. At 𝑡 = 17 s, the first 
shear band forms near the front of the slope. By 𝑡 = 30 s, the second and third V-shaped shear bands appear simultaneously at the 
top and middle of the slope, respectively, creating two grabens. At 𝑡 = 41 s, additional sub-shear bands develop within the grabens. 
Between 𝑡 = 56 and 60 s, the fourth and fifth V-shaped shear bands form almost at the same time. By 𝑡 = 77 s, the final shear 
band appears downstream of the slope, and by 𝑡 = 250 s, the landslide has largely come to a halt, with a runout distance of 600 
m. The shear failure patterns exhibit spatial variability across the slope, which can be explained as follows. The basal softening 
due to hydrate dissociation causes the downstream portion of the slope to move rapidly toward the free side, while the upstream 
portion remains laterally constrained. This differential movement results in the formation of tensile grabens in the central part of 
the slope, which, in turn, leads to the development of conjugate shear bands exhibiting a characteristic ‘‘V’’ shape (i.e., the 2nd, 
3rd, 4th, and 5th shear bands). In contrast, near the slope toe, the absence of lateral constraint on the right side promotes shear 
failure predominantly in the left-inclined direction (i.e., the 1st and 6th shear bands). The formation of multiple grabens and horsts, 
as marked in Fig.  27, is a characteristic of such kind of retrogressive landslide. Furthermore, the inclination angles of the shear 
bands with respect to the horizontal direction range from 47◦ to 51◦, closely aligning with the Roscoe angle (𝜃𝑅 = 47.5◦∼50◦) and 
the Arthur angle (𝜃𝐴 = 47.5◦∼53.75◦). The slight deviations at different locations can be attributed to the progressive softening of 
the material within the shear bands and the rotation of the principal stress.

Fig.  28(a) shows the changes in kinetic energy (𝐸𝑘) during the landslide. It exhibits a very high single peak, even higher 
than the peak observed in the steeper slope in Section 5.2.2. We observe some rate changes in the curve, with notable inflection 
points likely related to the progressive failure in the retrogressive landslide. To analyze this further, we calculated the derivative 
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Fig. 23. Contours of deviatoric strain (𝜀𝑑) at different time instances for the large-scale slope simulation. The plastic heat generation is included 
in this test.

of kinetic energy in time: 𝑑𝐸𝑘∕𝑑𝑡, namely, the changing rate of kinetic energy (physically representing the power of the slope mass 
movement), denoted by 𝑃𝑘, as shown in Fig.  28(b). A positive 𝑃𝑘 indicates increasing kinetic energy, while a negative 𝑃𝑘 indicates 
the opposite. Changes in 𝑃𝑘 reflect the rate at which kinetic energy accumulates and dissipates, with periods of rapid increase or 
decrease corresponding to swift landslide development.

To delve deeper, we take the second derivative of kinetic energy in time: 𝑑𝑃𝑘∕𝑑𝑡 = 𝑑2𝐸𝑘∕𝑑𝑡2, denoted by 𝑅𝑘, as depicted in Fig. 
28(c). 𝑅𝑘 clearly shows several peaks and troughs. If comparing with Fig.  27, it is easy to find that each peak in 𝑅𝑘 corresponds to 
the formation of a (or a set of) shear band, while each trough indicates the end of one slope slide and the beginning of a new shear 
band’s development.

Based on this, we can divide the curve of 𝑅𝑘 into five distinct stages: (I) from 𝑡 = 12 to 22 s, corresponding to the first slope 
failure, with the shear band fully developed at 𝑡 = 17 s; (II) from 𝑡 = 22 to 50 s, covering the second and third twin slope failures, 
with a peak at 𝑡 = 30 s, and additional sub-peaks at 𝑡 = 35, 41, and 45 s related to sub-shear band formations within the grabens; 
(III) from 𝑡 = 50 to 66 s, representing the fourth and fifth twin slope failures, with peaks at 𝑡 = 56 and 60 s corresponding to the 
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Fig. 24. Evolution of kinetic energy (𝐸𝑘) for the large-scale slope.

formation of two V-shaped shear bands; (IV) from 𝑡 = 66 to 81 s, associated with the sixth shear band, peaking at 𝑡 = 77 s; (V) 
the final stage where no new shear bands form, marking the landslide’s transition into a creeping stage before halting. Thus, by 
examining the second derivative of kinetic energy over time, we can effectively segment each stage of retrogressive slope failure 
and clearly observe the dynamic process of acceleration and deceleration in each stage.

Fig.  29 shows the development of shear bands in the case with plastic heat generation considered. Compared to the case with 
𝜃 = 0, the key differences are: (1) during the second progressive failure stage, three V-shaped shear bands form simultaneously 
(𝑡 = 30 s); (2) also with four main landslide phases, this case ultimately brings about seven major shear bands, while the number for 
𝜃 = 0 case is six; (3) By the end of the landslide, the slope is more fragmented by the shear bands, and the final slope masses runout 
distance is greater; and (4) the kinetic energy displays a higher peak and a slower attenuation rate. The progressive development 
of each landslide, along with the sign of shear band formation, can also be identified from the evolution of 𝑅𝑘 (Fig.  30). Compared 
to the 𝜃 = 0 case, the main discrepancies in 𝑅𝑘 emerge after 𝑡 = 41 s, characterized by a delayed decreasing rate and a delayed 
appearance of the trough, indicating the long and enhanced impact of the second-stage triplet shear bands. These observations 
further emphasize the significant effect of shear heating on the hydrate dissociation-related landslide dynamics.

For illustrative purposes, we also present simulation results of other primary fields at 𝑡 = 100 s, as depicted in Fig.  31. It is 
easy to find the difference between the 𝜃 = 0 and 𝜃 = 0.5 cases in the temperature field and other fields within shear bands. As 
the underlying mechanisms driving these results have been thoroughly analyzed in earlier sections, we will not discuss them in 
detail here. Collectively, these cases demonstrate that the proposed framework is capable of effectively simulating the bidirectional 
coupling of hydrate phase transitions and large deformations, along with other critical THMC responses.

6. Conclusions and outlooks

This study presents a thermo-hydro-mechanical–chemical (THMC) coupled material point method (MPM) framework for 
modeling coupled hydrate phase transition and large deformation in methane hydrate-bearing sediments (MHBS), with particular 
emphasis on hydrate dissociation-triggered landslides. The mathematical model for MHBS is developed using mixture theory within 
a single-point multi-phase MPM framework. First, a six-field governing equation is formulated to comprehensively capture dynamic 
large-deformation characteristics. To close the system, constitutive relationships are introduced, including equations of state for each 
phase, soil–water retention curves, absolute/relative permeability models, the Kim–Bishnoi hydrate reaction kinetics model, and a 
skeleton deformation model. Specifically, a hydrate saturation-dependent strain-softening Mohr–Coulomb model is implemented to 
characterize mechanical strength reduction induced by hydrate dissociation and large strain accumulation. A hybrid explicit–implicit 
sequential MPM solution scheme is proposed, where drag force terms are treated implicitly to relax permeability-induced time step 
constraints. Additionally, source terms in mass and energy balance equations are implicitly estimated through a first-order Taylor 
expansion of primary variables.

The framework is validated through two benchmark problems: Masuda’s sandstone core hydrate dissociation experiment and 
an extended Terzaghi consolidation problem. Numerical results demonstrate the method’s capability to accurately reproduce key 
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Fig. 25. Effects of shear heating on (a) deviatoric strain (𝜀𝑑), (b) radial displacement (𝑢𝑥), and (c) normal displacement (𝑢𝑦). The contours show 
the simulation results at 𝑡 = 250 s. Here, 𝜃 = 0 represents the case where plastic heat generation is neglected, while 𝜃 = 0.5 represents the case 
where it is considered. The radial displacement refers to the component of the displacement field parallel to the basal plane, whereas the normal 
displacement refers to the component perpendicular to the basal plane.

THMC responses during both hydrate dissociation and formation processes. Subsequently, the method is applied to simulate the 
biaxial compression test on hydrate specimens. The simulation results indicate that: (a) shear-induced dilation generates negative 
pore water pressure, leading to hydrate dissociation; (b) hydrate dissociation further softens the sediments in shear bands, reducing 
the shear resistance of the specimen; (c) additionally, plastic heat generation due to rapid, large shear deformation accelerates 
hydrate dissociation and further softening of the sediments. This example demonstrates the proposed method’s ability to simulate 
the bidirectional couplings of large deformations and hydrate dissociation.

Finally, the proposed method is applied to simulate submarine landslides triggered by hydrate dissociation, including a small-
scale benchmark test and two large-scale retrogressive landslide tests. We demonstrate that: (a) basal softening and pore pressure 
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Fig. 26. The percentage of global hydrate mass change within the sediment slope during the progressive landslide: a comparison between the 
cases considering plastic heat generation (𝜃 = 0.5) and neglecting plastic heat generation (𝜃 = 0).

Fig. 27. Contours of deviatoric strain (𝜀𝑑) at different time instances for the gentle low-strength slope. The plastic heat generation is not included 
in this test.
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Fig. 28. Evolution of kinetic energy properties for Case B with 𝜃 = 0: (a) kinetic energy 𝐸𝑘, (b) first-order derivative of Kinetic energy: 
𝑃𝑘 = 𝑑𝐸𝑘∕𝑑𝑡, and (c) second-order derivative of kinetic energy: 𝑅𝑘 = 𝑑𝑃𝑘∕𝑑𝑡 = 𝑑2𝐸𝑘∕𝑑𝑡2.

increases due to hydrate dissociation collectively drive the landslide; (b) ongoing hydrate dissociation can cause sustained creep 
and reactivation of the landslide after major slope failure events; (c) the progressive formation of retrogressive landslides is closely 
related to the evolution of slope kinetic energies; (e) plastic heat generation intensifies landslide progression so that its effects should 
be appropriately considered in the simulation. The proposed method can effectively simulate different retrogressive failure modes. 
However, different failure patterns are dependent on multiple factors, including strength characteristics of MHBS (related to hydrate 
saturation, host sediment constituents, and its consolidation history), slope geometries, and environmental conditions. An accurate 
prediction should be based on careful control of model setups and parameter inputs.

In summary, these tests emphasize the importance of employing fully coupled multiphysical tools to analyze geological failures 
and hazards related to hydrate dissociation, as even minor changes or the omission of certain factors can significantly impact 
predictive outcomes. Despite the advancement of the proposed method, we should acknowledge that it does not yet account 
for several other important factors, such as the critical state behavior of MHBS, the effect of sand erosion, and the interaction 
of landslide mass movements with surrounding ocean waters, among others. Future research endeavors could be placed on: (a) 
advanced constitutive modeling, for example, using discrete element method (DEM) for multiscale analysis (Liang et al., 2023; Yu 
et al., 2024c; Xie et al., 2025); (b) integration of sand production models to address particulate migration during dissociation; (c) 
development of fully implicit THMC-MPM schemes for long-term simulations; and (d) coupling with fluid solvers (e.g., double-point 
multiphase MPM) to simulate landslide-generated wave propagation and tsunami dynamics.
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Fig. 29. Contours of deviatoric strain (𝜀𝑑) at different time instances for the gentle low-strength slope. The plastic heat generation is included 
with 𝜃 = 0.5.
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Appendix A. Effective stress update

We adopt the return-mapping method to update the effective stress, which consists of an elastic predictor step and a plastic 
corrector step. In the elastic predictor step, a trial stress is first calculated based on the elastic assumption, 

𝝈′𝑘+1
trial = 𝝈′𝑘 + D𝑒𝑠ℎ ∶ 𝛥𝜺 + (𝛥D𝑒𝑠ℎ)(D

𝑒
𝑠ℎ)

−1(𝝈′𝑘 − 𝝈′
0). (A.1)

Here, the superscripts 𝑘 + 1 and 𝑘 represent the next and the current time step, respectively.
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Fig. 30. Evolution of kinetic energy properties for Case B with 𝜃 = 0.5: (a) kinetic energy 𝐸𝑘, (b) first-order time derivative of Kinetic energy: 
𝑃𝑘 = 𝑑𝐸𝑘∕𝑑𝑡, and (c) second-order time derivative of kinetic energy: 𝑅𝑘 = 𝑑𝑃𝑘∕𝑑𝑡 = 𝑑2𝐸𝑘∕𝑑𝑡2.

If the trial stress does not satisfy the yield criterion 𝐹 (𝝈′) ≥ 0, the plastic corrector is required to return the trial stress back to 
the yield surface to ensure 𝐹 (𝝈′) = 0, 

𝝈′𝑘+1 = 𝝈′𝑘+1
trial − 𝛥𝝈

′
𝑝, (A.2)

where 𝛥𝝈′
𝑝 is the plastic corrected stress, calculated by, 

𝛥𝝈′
𝑝 = 𝛥𝜆D𝑒𝑠ℎ ∶ 𝜕𝑃

𝜕𝝈′ , (A.3)

where 𝛥𝜆 is the plastic multiplier and 𝑃  is the potential function.
The trial stress is iteratively adjusted to return back to the yield surface. During each iteration in the plastic corrector, 

𝝈′(𝑛+1) − 𝝈′(𝑛) = −𝛿𝝈′(𝑛)
𝑝 = −𝛿𝜆(𝑛)D𝑒𝑠ℎ ∶ 𝜕𝑃

𝜕𝝈′(𝑛)
, (A.4)

where 𝑛 is the iteration number. At each iteration, the yield function at the corrected stress state can be linearized as follows (Feng 
et al., 2024), 

𝐹
(

𝝈′(𝑛+1), 𝜀𝑝(𝑛+1)𝑑 , 𝑆ℎ
)

≈ 𝐹
(

𝝈′(𝑛), 𝜀𝑝(𝑛)𝑑 , 𝑆ℎ
)

+ 𝜕𝐹
𝜕𝝈′(𝑛)

∶
(

𝝈′(𝑛+1) − 𝝈′(𝑛))+

𝜕𝐹
𝜕𝜀𝑝𝑑

(

𝜀𝑝(𝑛+1)𝑑 − 𝜀𝑝(𝑛)𝑑

)

+ 𝜕𝐹
𝜕𝑆ℎ

(

𝑆ℎ − 𝑆ℎ
)

.
(A.5)

Since the hydrate saturation is calculated based on Eq. (80) and no iteration is required for its solution, the hydrate saturation 
remains constant in the plastic corrector step.
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Fig. 31. Simulation results of (a) temperature, (b) excess pore pressure, (c) hydrate mass, and (d) normal displacement to the base plane at 
𝑡 = 100 s.
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To fulfill the yield condition for the corrected stress state, i.e., 𝐹
(

𝝈′(𝑛+1), 𝜀𝑝(𝑛+1)𝑑 , 𝑆ℎ
)

= 0, and with Eq. (A.4), Eq. (A.5) can be 
rewritten as, 

𝑓
(

𝝈′(𝑛), 𝜀𝑝(𝑛)𝑑 , 𝑆ℎ
)

− 𝛿𝜆(𝑛)
(

𝜕𝐹
𝜕𝝈′(𝑛)

)𝑇
∶ D𝑒𝑠ℎ ∶ 𝜕𝑃

𝜕𝝈′(𝑛)
+ 𝜕𝐹
𝜕𝜀𝑝𝑑

𝛿𝜀𝑝(𝑛)𝑑 = 0. (A.6)

Then, the plastic multiplier for the iteration can be obtained as follows, 

𝛿𝜆(𝑛) = 𝐹 (𝑛)

(

𝜕𝐹
𝜕𝝈′(𝑛)

)𝑇
∶ D𝑒𝑠ℎ ∶ 𝜕𝑃

𝜕𝝈′(𝑛)
+

(

𝜕𝐹
𝜕𝜀𝑝𝑑

)

√

2
3

𝜕𝑃
𝜕𝝈′(𝑛)

∶ 𝜕𝑃
𝜕𝝈′(𝑛)

. (A.7)

A detailed solution procedure for the effective stress updating is given in algorithm 1.

Algorithm 1 Effective Stress Update Algorithm
Input: 𝛥𝜺, 𝛥𝝎, 𝑆ℎ, 𝜺𝑘𝑝 , 𝜀𝑝𝑘𝑑 , 𝝈′𝑘.
1: Step 1: Variables initialization
2: 𝑛 = 0, 𝝈′(0) = 𝝈′𝑘, 𝜺(0)𝑝 = 𝜺𝑘𝑝 , 𝜀𝑝(0)𝑑 = 𝜀𝑝𝑘𝑑 .

3: Step 2: Elastic predictor
4: D𝑒(0)𝑠ℎ  = D𝑒𝑠ℎ(𝑆ℎ), 𝛥D

𝑒(0)
𝑠ℎ = D𝑒(0)𝑠ℎ − D𝑒(𝑘)𝑠ℎ .

5: 𝝈′(1) = 𝝈′(0) + D𝑒(0)𝑠ℎ ∶ 𝛥𝜺 + 𝝈′(0) ⋅ 𝛥𝝎 − 𝛥𝝎 ⋅ 𝝈′(0) + (𝛥D𝑒(0)𝑠ℎ )(D𝑒(0)𝑠ℎ )−1(𝝈′(0) − 𝝈′
0).

6: 𝜺(1)𝑝 = 𝜺(0)𝑝 , 𝜀𝑝(1)𝑑 = 𝜀𝑝(0)𝑑 , 𝑛 = 𝑛 + 1.
7: if 𝑓 (𝝈′(1), 𝜀𝑝(1)𝑑 , 𝑆ℎ) ≤ 0 then
8:  Elastic state; Go to Output.
9: else
10:  Go to Step 3 (Plastic corrector).
11: end if

12: Step 3: Plastic corrector
13: while 𝑓 (𝝈′(𝑛), 𝜀𝑝(𝑛)𝑑 , 𝑆ℎ) > 𝜀tol and 𝑛 < 𝑛max do
14:  Compute plastic multiplier according to Eq. (A.7)
15:  Compute sub-increments in the iteration:

𝛿𝝈′(𝑛)
𝑝 = 𝛿𝜆(𝑛)D𝑒(0)𝑠ℎ ∶ 𝜕𝑃

𝜕𝝈′(𝑛)
, 𝛿𝜺(𝑛)𝑝 = (D𝑒(0)𝑠ℎ )−1 ∶ 𝛿𝝈′(𝑛)

𝑝 , 𝛿𝜀𝑝(𝑛)𝑑 =
√

2
3
𝛿𝒆(𝑛)𝑝 ∶ 𝛿𝒆(𝑛)𝑝 .

16:  Update stress, plastic strain, and internal variables:
𝝈′(𝑛+1) = 𝝈′(𝑛) − 𝛿𝝈′(𝑛)

𝑝 , 𝜺(𝑛+1)𝑝 = 𝜺(𝑛)𝑝 + 𝛿𝜺(𝑛)𝑝 , 𝜀𝑝(𝑛+1)𝑑 = 𝜀𝑝(𝑛)𝑑 + 𝛿𝜀𝑝(𝑛)𝑑 .

17:  𝑛 = 𝑛 + 1
18: end while
Output: 𝝈′𝑘+1 = 𝝈′(𝑛), 𝜺𝑘+1𝑝 = 𝜺(𝑛)𝑝 , 𝜀𝑝(𝑘+1)𝑑 = 𝜀𝑝(𝑛)𝑑 .

Appendix B. Mesh sensitivity analysis

We conducted mesh sensitivity analyses for both the biaxial test and landslide simulation to investigate the influence of mesh 
size (ℎ𝑒) and the number of particles per cell (𝑝𝑝𝑐) on the simulation results.

For the biaxial test, we considered three different mesh sizes: ℎ𝑒 = 0.1 m, 0.067 m, and 0.05 m, with 4 particles per cell (𝑝𝑝𝑐 = 4) 
used for each mesh. Additionally, for the ℎ𝑒 = 0.067 m case, we also tested a configuration with 𝑝𝑝𝑐 = 9. The deviatoric strain profiles 
for these four test cases are presented in Fig.  B.32. The results show that, for the same 𝑝𝑝𝑐, finer meshes result in narrower shear 
band widths. Increasing the 𝑝𝑝𝑐 leads to a broader plastic region. However, in general, the shear band shape and inclination angle 
remain consistent across cases with varying mesh sizes and 𝑝𝑝𝑐. Fig.  B.33 further compares the evolution of axial stress and global 
volumetric strain with respect to axial strain. The stress–strain curves, including the peak stress, are largely consistent across all four 
test cases, with only minor differences observed in the post-peak softening phase. These small discrepancies are likely attributed 
to the influence of shear band width on hydrate dissociation within the shear band, which affects the degree of softening in the 
post-failure stage. Based on these observations, we have selected the ℎ𝑒 = 0.1 m, 𝑝𝑝𝑐 = 4 mesh for subsequent simulations, as it 
provides a reasonable balance between computational efficiency and result accuracy.

For the small-scale landslide case, mesh sensitivity was analyzed using ℎ𝑒 = 4 m, 3 m, 2 m, with 𝑝𝑝𝑐 = 4 by default. Additionally, 
for the ℎ𝑒 = 3 m mesh, a higher resolution of 𝑝𝑝𝑐 = 9 was tested. The results, as illustrated in Fig.  B.34, showed that finer meshes 
resulted in narrower shear band widths, while higher 𝑝𝑝𝑐 values led to the development of secondary shear bands. However, the 
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Fig. B.32. Mesh sensitivity analysis for the biaxial compression test: distribution of deviatoric strain at 𝜀𝑦𝑦 = 15%.

Fig. B.33. Mesh sensitivity analysis for the biaxial compression test: global stress–strain responses with different mesh size ℎ𝑒 and ppc.

overall location of the primary shear band remains consistent. For the large-scale landslide case, we tested Scenario A using ℎ𝑒 m 
and 3 m. The slope failure patterns, as shown in B.35, are generally consistent, but minor differences in the specific locations of 
the shear bands were observed. Overall, the simulation results demonstrate that mesh size has a greater influence on the results 
compared to the number of particles per cell. A mesh size of ℎ𝑒 = 4 m was found to provide reasonably accurate results.

Nevertheless, it should be noted that the MPM simulation of shear banding exhibits mesh dependency challenges, particularly for 
retrogressive landslides with multiple shear bands. Future studies could address this issue by incorporating non-local approaches, 
which are demonstrated to be capable of mitigating mesh dependency in shear band width and location (Acosta et al., 2024; Haeri 
and Skonieczny, 2022; Burghardt et al., 2012; de Vaucorbeil et al., 2022). Despite these limitations, the current simulation results 
do not affect the main conclusions of this study. 

Appendix C. Shear band orientation

Experimental evidence and theoretical analyses indicate that the shear band orientation 𝜃 falls normally to the bounds by two 
angles as follows (Vardoulakis, 1980; Vermeer, 1990; Oda and Kazama, 1998; Gao and Zhao, 2013), 

𝜃 ≤ 𝜃 ≤ 𝜃 , (C.1)
𝑅 𝐶
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Fig. B.34. Mesh sensitivity analysis for the small-scale landslide test: distribution of deviatoric strain at t = 100 s.

Fig. B.35. Mesh sensitivity analysis for the large-scale landslide test (𝜃 = 0): distribution of deviatoric strain at t = 250 s.

where the lower bound 𝜃𝑅 = 45◦ + 𝜓∕2 is the Roscoe angle and the upper bound 𝜃𝐶 = 45◦ + 𝜑∕2 is the Coulomb angle, and 𝜓
and 𝜑 are the dilation angle and friction angle, respectively. For the plane strain compression tests considered here, the physical 
significance of Roscoe’s angle (Roscoe, 1970) is that the shear band develops in the direction where the tensile strain increment is 
zero, allowing for stable deformation without stress discontinuity or abrupt softening (Vermeer, 1990). Coulomb’s angle essentially 
indicates that the shear band develops along the plane on which the maximum internal friction is mobilized, or where the material 
reaches its shear strength limit. Based on experimental observations, Arthur et al. (1977) proposed that the shear band orientation 
𝜃𝐴 = 45◦ + (𝜑 + 𝜓)∕4, which is between the Roscoe angle and Coulomb angle (denoted as Arthur angle). This relation was later 
derived by Vardoulakis (1980) based on the bifurcation theory.
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Fig. C.36. Deviatoric strain and approximate shear band orientation at different axial strains.

Fig. C.37. Deviatoric strain and approximate shear band orientation at different axial strains given that 𝜓 = 𝜑.

In the biaxial compression test presented in Section 5.1.1, we set 𝜑𝑚𝑎𝑥 = 45◦, 𝜑𝑟𝑒𝑠 = 30◦, 𝜓𝑚𝑎𝑥 = 15◦, 𝜓𝑚𝑖𝑛 = 5◦. Correspondingly, 
the three angles are calculated as follows,

𝜃𝐶 = 45◦ + 𝜑∕2 = 60◦∼67.5◦, (C.2)

𝜃𝑅 = 45◦ + 𝜓∕2 = 47.5◦∼52.5◦, (C.3)

𝜃𝐴 = 45◦ + (𝜑 + 𝜓)∕4 = 53.75◦∼60.0◦, (C.4)

in which the upper limit for each angle represents the peak strength state, and the bottom limit represents the residual strength 
state.

Fig.  C.36 shows the shear band inclination angle for the considered case at different loading states. With the increase in the axial 
strain, the shear band angle becomes slightly lower. This can be attributed to the strength softening at large strain. The compression 
of the specimen may also lead to the rotation of the shear band. The inclination angle is approximately 51◦∼54◦, rather close to 
the upper limit of 𝜃𝑅 and the bottom limit of 𝜃𝐴. Theoretically, if setting 𝜓 = 𝜑, we have 𝜃𝐶 = 𝜃𝑅 = 𝜃𝐴 and the shear band angle 
should fall in this range. To confirm this, we consider a virtual case by setting 𝜓𝑚𝑎𝑥 = 𝜑𝑚𝑎𝑥 = 45◦, 𝜓𝑚𝑖𝑛 = 𝜑𝑟𝑒𝑠 = 30◦ (in reality, 
the dilatancy of MHBS cannot be so large). As can be observed from Fig.  C.37, the shear band orientation is approximately 60◦ at 
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relatively small strain, equaling the bottom limit of the theoretical value. At large strain, the angle becomes a bit lower, which is 
potentially attributed to the boundary effect and the rotation of the shear band at large strain. Overall, our simulation can obtain 
reasonable shear band orientation at given parameters, indicating the reliability of the results. 

Data availability

Data will be made available on request.
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