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 A B S T R A C T

This paper presents a novel hybrid resolved–unresolved and heterogeneous-parallel coupling framework for 
simulating fluid–particle interactions with non-spherical particles of arbitrary geometries. The framework 
integrates Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) to dynamically assigns 
resolved (Immersed Boundary Method) and unresolved (drag force model) coupling schemes based on 
local particle-to-fluid length scale ratios. This approach optimizes computational efficiency while preserving 
accuracy, particularly in gap-graded and polydisperse systems. It features the following key innovations: (1) An 
advanced DEM solver enhanced by ray-tracing techniques, facilitating high-performance contact detection for 
arbitrary particle morphologies (e.g., CT-scanned grains); (2) A robust volumetric-weighted hybrid coupling 
method that ensures smooth and stable momentum exchange between fluid and particles; (3) A CPU–GPU 
heterogeneous coupling interface that supports asynchronous computation and data transfer, incorporating 
novel signed-distance fields and marker-based particle-shape-fluid mapping. The framework has been validated 
against analytical solutions and various experimental benchmarks, demonstrating its accuracy, robustness, and 
efficiency. It serves as a scalable and shape-aware tool for modeling multiphase systems across diverse fields, 
including large-scale and complex geomechanics, chemical engineering, and industrial processes.
 

1. Introduction

Complicated interactions between granular materials and fluids 
are prevalent in both natural phenomena and industrial processes. 
To investigate the mechanisms that govern particle–fluid mixtures, 
researchers have developed coupled frameworks that are applicable 
across various contexts, including deep-sea mining [1–3], seepage phe-
nomena [4–6], clogging issues [7–9], erosion challenges [10–14], and 
fluidized beds [15–17]. A prominent approach within these hybrid 
frameworks is Eulerian–Lagrangian coupling [18,19]. In this methodol-
ogy, the Eulerian component utilizes CFD to continuously capture the 
dynamic behavior of fluids, while the Lagrangian aspect, represented 
by DEM, is employed to simulate granular materials [20–24].

There are two prevailing CFD–DEM coupling schemes: particle-
resolved and particle-unresolved schemes [25]. The resolved scheme 
accounts for particle–fluid interactions at the discretized sub-surface 
of each particle [26], requiring an Eulerian mesh that is comparable 
to or smaller than the size of the particles. In contrast, the unresolved 
scheme treats these interactions empirically, focusing on the scale of the 
CFD decomposition (or mesh) [27]; thus, the fluid mesh is significantly 
larger than the particles, typically at least three times the particle 
diameter. Given the variance in length scale ratios between particles 
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and fluid cells, the dynamic corrections applied differ accordingly. For 
instance, the Immersed Boundary Method (IBM) [28–30] is utilized in 
the resolved regime [31–34]. Conversely, in the unresolved regime, a 
drag force model is commonly employed [35].

The shape of particles is fundamental to both coupling schemes [36].
Unlike spherical particles, non-spherical particles exhibit anisotropic 
rotation. Specifically, the alignment of their major and minor axes 
with the streamwise direction of the fluid produces markedly different 
interaction responses [37]. This anisotropic behavior has significant 
implications for the properties of multiphase mixtures, affecting aspects 
such as fabric anisotropy [38], packing porosity [39,40], and stress 
distributions [41]. Consequently, failing to adequately account for 
particle shape can lead to inaccurate or misleading results [42–46].

Substantial efforts have been dedicated to understanding the in-
fluence of particle shape on the coupling of CFD and DEM. Early 
models simplified non-spherical particles by approximating them as 
either spheres or clusters of spheres [47–49]. In the context of resolved 
coupling, where larger particle-to-fluid ratios highlight the signifi-
cance of shape effects, more advanced shape representations have 
emerged. These include super-ellipsoids, which allow for the inde-
pendent adjustment of elongation and angularity [50], as well as 
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Fig. 1. Determination of the SDF template for arbitrarily shaped particles, encoded from (a) the DEM shape to (b) the CFD solution domain. Note: The color 
gradient from blue to red represents increasing SDF values outward from the particle surface.
 

Fig. 2. Imposition of drag force between fluid and particles in the unresolved 
coupling scheme. Note that particle influence is interpolated to the fluid based 
on the volumetric fraction distribution, weighted by the magenta markers in 
neighboring cells.

arbitrary shape methodologies like the Mesh-based Overlapping Arbi-
trary Lagrangian–Eulerian (MOALE) approach [25,51], Signed-Distance 
Fields (SDF) [52], the Large-Interface Model (LIM) [53], and Image-
based PARticles (IPAR) [54]. In the unresolved coupling regime, where 
particles are smaller than the fluid-cell scale, research has focused 
on enhancing drag force models. This includes the development of 
non-spherical drag force correlations [55] and higher-order drag force 
interpolation techniques, such as semi-resolved methods [56–58].

Despite recent advancements, the application of CFD–DEM in engi-
neering contexts continues to present significant challenges. A primary 
concern is the substantial computational overhead associated with 
accurately capturing variations in particle-size distributions (PSDs) and 
shapes. Fully resolved approaches impose stringent mesh-size require-
ments due to the presence of numerous fine and highly distorted grains. 
While adaptive mesh refinement techniques, as discussed in [59], 
can alleviate some of these computational challenges, they introduce 
new considerations regarding regridding frequency, refinement lev-
els, and selection of refinement methods. Conversely, fully unresolved 
2 
Fig. 3. Imposition of immersed boundary force between fluid and particles 
in the resolved coupling scheme, and the force is weighted by the particle’s 
occupied volume within each cell.

approaches enhance computational efficiency but may compromise fi-
delity, particularly in scenarios where near-particle-field hydrodynam-
ics and particle shape effects are critical. Moreover, when addressing 
various classes of particle shapes, the calibration of drag laws for each 
case becomes impractical, thereby limiting the generalizability of the 
approach.

To tackle these challenges, we propose a hybrid resolved–unresolved
strategy. This framework adaptively categorizes each particle into 
either the resolved or unresolved coupling based on its particle-to-
fluid length-scale ratio. The resolved branch utilizes an arbitrary-shape 
DEM model to accurately capture the effects of particle shape with 
greater fidelity. In contrast, the unresolved branch employs drag-
force models augmented with higher-order interpolation techniques, 
enhancing the balance between accuracy and computational efficiency. 
Both branches operate within a collaborative CPU–GPU architecture: 
the CFD solver is executed on CPUs, while DEM tasks, such as arbitrary-
shape contact detection, shape encoding from DEM to CFD, and the 
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transfer of state updates from CFD back to DEM, are processed on 
massively parallel GPUs. This design not only distributes memory 
across devices but also significantly improves scalability, making it 
suitable for engineering-scale applications of hybrid CFD–DEM systems.

The structure of this paper is organized as follows: Section 2 pro-
vides an overview of both unresolved and resolved CFD–DEM coupling 
approaches, accompanied by a description of our arbitrary-shape DEM 
model. In Section 3, we detail the methodology underpinning the 
proposed hybrid unresolved–resolved CFD–DEM coupling framework. 
Section 4 presents benchmark results for the three coupling solvers. 
Subsequently, Section 5 includes two numerical examples of fluid-
driven clogging, demonstrating how the hybrid framework effectively 
harnesses the strengths of both resolved and unresolved methods within 
a gap-graded multiphase system. Finally, Section 6 concludes with a 
summary of the key findings.

2. General CFD-DEM coupling

This section outlines the governing equations and specific imple-
mentations of the CFD and DEM solvers, highlighting the characteristics 
of both unresolved and resolved coupling strategies used in this study. 
It provides detailed information on the encoding of particle shapes 
from the DEM model to the CFD framework, the computation of hy-
drodynamic forces from CFD to DEM, and the corresponding numerical 
iteration strategies employed.

2.1. Ray-Tracing DEM

Our previously proposed framework, Ray-Tracing DEM (RTDEM) [60
accommodates a diverse array of particle shape models, spanning 
from mathematically defined geometries such as spheres, ellipsoids, 
and super-ellipsoids to arbitrary forms exemplified by the sand grain 
illustrated in Fig.  1(a). The sand grain geometry utilized throughout 
this study exhibits a sphericity of 0.914, an aspect ratio of 1.37, 
and a mean surface curvature of 0.024. Since subsequent benchmarks 
and examples involving arbitrary shapes consistently reference this 
geometry, we refrain from repeating these descriptors in the ensuing 
sections.

Central to the RTDEM framework is a Ray-Tracing-Based contact 
algorithm specifically designed for arbitrary shapes. This method har-
nesses the processing power of NVIDIA GPUs equipped with RT cores 
and systematically organizes each particle’s geometry into a struc-
tured hierarchy comprising volumes, faces, edges, and vertices. Ray 
queries navigate this hierarchy to swiftly identify potential contact 
pairs through intersection tests with geometric primitives. The combi-
nation of hardware-accelerated traversal and intersection, along with 
various software optimizations, results in significant efficiency im-
provements compared to traditional CPU-based DEM implementations 
(e.g., IPAR representations).

Figs.  1(a) and (b) illustrate the formation of a hierarchical structure 
for a sand grain in RTDEM and its corresponding SDF, respectively. This 
SDF facilitates the representation of arbitrary particle shapes, bridging 
the gap between DEM and CFD, as discussed in [61]. Each distinct 
shape possesses a unique SDF template, which is initialized only once 
at the first time step and remains constant throughout the simulation. 
When a particle undergoes rotation or scaling, an affine transformation 
is applied to the initial SDF template, enabling rapid querying of the 
updated SDF without the need to recalculate the entire SDF.

2.2. Unresolved CFD-DEM coupling

The unresolved coupling between CFD and DEM requires a dynam-
ics adjustment governed by a drag force law. This law quantifies the 
resistance encountered by particles as they traverse a fluid. In conjunc-
tion with additional forces, such as pressure gradient, viscous force, 
3 
and buoyancy, these elements culminate in the governing equations of 
DEM: 

𝑚𝑖
𝑑𝑼 𝑝

𝑖
𝑑𝑡

=
𝑛𝑐𝑖
∑

𝑗=1
𝑭 𝑐

𝑖𝑗 + 𝑭 𝑓
𝑖 + 𝑭 𝑔

𝑖 , (1a)

𝐼𝑖
𝑑𝝎𝑝

𝑖
𝑑𝑡

=
𝑛𝑐𝑖
∑

𝑗=1
𝑴 𝑐

𝑖𝑗 , (1b)

𝑭 𝑓
𝑖 = 𝑭 𝑝

𝑖 + 𝑭 𝑣
𝑖 + 𝑭 𝑑

𝑖 + 𝑭 𝑏𝑢𝑜
𝑖 . (1c)

where 𝑼 𝑝
𝑖  and 𝝎

𝑝
𝑖  denote the translational and rotational velocities of 

particle 𝑖, respectively. The terms 𝑭 𝑐
𝑖𝑗 and 𝑴 𝑐

𝑖𝑗 represent the contact 
force and torque arising from the interaction between DEM contact 
pairs of particles 𝑖 and 𝑗. The net force exerted by the fluid on solid 
particle 𝑖 is captured by 𝑭 𝑓

𝑖 , which may encompass the pressure gradi-
ent 𝑭 𝑝

𝑖 , viscous force 𝑭 𝑣
𝑖 , drag force 𝑭 𝑑

𝑖 , and buoyancy 𝑭 𝑏𝑢𝑜
𝑖 . Moreover, 

𝑭 𝑔
𝑖  indicates the gravitational force acting on particle 𝑖. The variables 𝑚𝑖

and 𝐼𝑖 signify the mass and moment of inertia of particle 𝑖, respectively.
We assume isothermal and incompressible flow in our CFD anal-

ysis, utilizing a volume-averaged approach to facilitate coupling with 
the DEM. Consequently, the continuity equation for the fluid–particle 
two-phase system is expressed as follows: 
𝜕(𝜖𝜌)
𝜕𝑡

+ ∇ ⋅ (𝜖𝜌𝑼𝑓 ) = 0. (2)

where 𝑼𝑓  represents the average intrinsic velocity of the fluid within 
the cell, 𝜖 denotes the volume fraction of the fluid in the cell, and 𝜌 is 
the fluid density.

The momentum conservation equation for the incompressible two-
phase equation reads: 
𝜕(𝜖𝜌𝑼𝑓 )

𝜕𝑡
+ ∇ ⋅ (𝜖𝜌𝑼𝑓𝑼𝑓 ) = −𝜖∇𝑝 + ∇ ⋅ (𝜖𝜇∇𝑼𝑓 ) − 𝑭 𝑑 + 𝜖𝜌𝒈. (3)

where 𝑝 represents the pressure within the fluid cell, 𝜇 denotes the 
dynamic viscosity of fluid, 𝑭 𝑑 indicates the drag force resulting from 
fluid–particle interactions, and 𝒈 represents the gravitational accelera-
tion.

The imposition of drag force is illustrated in Fig.  2. For further 
details, please refer to Appendix  A.

2.3. Resolved CFD-DEM coupling

The dynamic correction within the resolved CFD–DEM coupling 
is achieved through the Immersed-Boundary force (IB force), denoted 
as 𝑭 𝐼𝐵 , which is implemented using the Immersed Boundary Method 
(IBM). The governing equation for the CFD component is expressed as 
follows: 

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑼𝑓 ) = 0, (4a)

𝜕(𝜌𝑼𝑓 )
𝜕𝑡

+ ∇ ⋅ (𝜌𝑼𝑓𝑼𝑓 ) = −∇𝑝 + ∇ ⋅ (𝜇∇𝑼𝑓 ) + 𝜌𝒈 + 𝑭 𝐼𝐵 . (4b)

The governing equations for the DEM are formulated as follows: 

𝑚𝑖
𝑑𝑼 𝑝

𝑖
𝑑𝑡

=
𝑛𝑐𝑖
∑

𝑗=1
𝑭 𝑐

𝑖𝑗 +
𝑛𝑐𝑒𝑙𝑙𝑖
∑

𝑗=1
𝑭 𝐼𝐵

𝑖𝑗 + 𝑭 𝑔
𝑖 + 𝑭 𝑏𝑢𝑜

𝑖 , (5a)

𝐼𝑖
𝑑𝝎𝑝

𝑖
𝑑𝑡

=
𝑛𝑐𝑖
∑

𝑗=1
𝑴 𝑐

𝑖𝑗 +
𝑛𝑐𝑒𝑙𝑙𝑖
∑

𝑗=1
𝑻 𝐼𝐵
𝑖𝑗 , (5b)

𝑻 𝐼𝐵
𝑖𝑗 = ( ⃖⃖⃗𝒓𝑐 − ⃖⃖⃗𝒓𝑝) × 𝑭 𝐼𝐵

𝑖𝑗 . (5c)

where 𝑭 𝐼𝐵
𝑖𝑗  and 𝑻 𝐼𝐵

𝑖𝑗  denote the force and torque exerted on particle 𝑖 by 
the 𝑗th cell’s IB force through the IBM. The vectors ⃖⃖⃗𝒓𝑐 and ⃖⃖⃗𝒓𝑝 represent 
the position of cell 𝑗 and particle 𝑖, respectively. And 𝑭 𝑏𝑢𝑜

𝑖  signifies the 
buoyant force acting on particle 𝑖.

Fig.  3 illustrates the generation of the force 𝑭 𝐼𝐵 and the torque 𝑻 𝐼𝐵 . 
The shape domain of Particle O is represented by the green region, 
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Fig. 4. A hybrid approach integrating both resolved and unresolved components: coarse particles (1, 2) are mapped to fluid cells B and D, while fine particles 
(3, 4) are mapped to cells C and D. Note that particle sizes are normalized relative to the neighboring cell size.
Fig. 5. Calculation of void fraction for arbitrarily shaped particles in resolved coupling, and the classification of a cell as inside or outside the particle is determined 
by (a) the averaged SDF values from its (b) vertices.
which may not conform to the geometry of the surrounding structured 
cells. As a result, the relative positions of the cells with respect to 
the particle can be categorized as fully immersed cells (Cell A) and 
partially immersed cells (Cell B). Considering the translational velocity 
of Particle O as 𝒗𝑝 and its rotational velocity as 𝝎𝑝, the effective velocity 
projection from the particle to the cells, denoted as 𝒗′𝑐 , is defined by 
the equation: 𝒗′𝑐 = 𝒗𝑝 + ( ⃖⃖⃗𝒓𝑐 − ⃖⃖⃖⃗𝒓𝑂) × 𝝎𝑝. For partially immersed cells, the 
projected velocity requires an additional correction based on the fluid 
volume fraction 𝜖𝑓 , and is expressed as: 𝒗′𝑐 = (1 − 𝜖𝑓 )𝑼𝑓

𝑐 + 𝜖𝑓𝒗′𝑐 , where 
𝑼𝑓

𝑐  denotes the fluid velocity within the cell.
The IB force is described by Eq. (6). For additional details, please 

consult Appendix  B. 

𝑭 𝐼𝐵 =
𝒗′𝑐 − 𝑼 𝑐

𝐴
. (6)

where 𝐴 represents the coefficient matrix from Eq. (4).
4 
3. Hybrid resolved-unresolved CFD-DEM coupling

This section delineates the governing equations and implementation 
details of the hybrid CFD–DEM coupling framework proposed in this 
study. It elaborates on the mapping strategy between particles and fluid 
cells, describes the adaptive predictor–corrector iteration workflow, 
and discusses the parallel techniques implemented within a CPU–GPU 
topology.

3.1. Hybrid coupling scheme

The ratio of particle size to fluid cell size is a pivotal determinant 
in selecting between unresolved and resolved coupling schemes in 
conventional research. Prior investigations suggest that resolved cou-
pling schemes are advantageous when the particle-to-cell ratio exceeds 
approximately 5. Conversely, unresolved schemes are more applica-
ble when this ratio falls below roughly 0.3 to 0.4. For intermediate 
scenarios, a semi-unresolved approach is typically recommended [63]. 
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Fig. 6. Types of intersection volumes between an arbitrarily shaped particle and a CFD cell, classified using the marching cubes algorithm.
Fig. 7. Flowchart of the proposed hybrid framework: (a) CFD executed on the CPU (green box) and DEM executed on the GPU (red box), connected via (b) 
the CFD–DEM PIMPLE workflow.
However, when dealing with gap-graded features or continuous distri-
butions with significantly wide size ranges, either purely unresolved 
or resolved schemes can become impractical, as the balance between 
computational accuracy and overhead is compromised. Our proposed 
5 
hybrid coupling method effectively addresses this challenge by adap-
tively assigning the appropriate coupling mode for each particle based 
on its local size in relation to neighboring cells. This adaptive approach 
renders it suitable for various particle size distribution configurations, 
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Fig. 8. Topology of data transfer between CFD and DEM: (a) CPU MPI 
configuration, (b) CPU mapping to GPU, (c) GPU memory layout, and (d) 
memory and computational scheduler.

whether monodisperse or gap-graded.
A representative scenario illustrating the selection of a particle-wise 

coupling scheme is shown in Fig.  4. Three distinct particle-to-cell size 
ratios are presented: coarse particles (1 and 2) with a size ratio of 
6:1, medium-sized particles (3) with a 1:1 ratio, and fine particles (4) 
with a 0.35:1 ratio. Our hybrid solver detects these characteristics and 
assigns a pure resolved scheme for coarse particles, a pure unresolved 
scheme for fine particles, and a resolved–unresolved blending mode for 
medium-sized particles. As a result, neighboring fluid cells are classified 
into four categories: pure resolved cells (B), pure unresolved cells (C), 
hybrid cells (D), and pure fluid cells (A). Each type of fluid cell is 
associated with a specific volumetric index to facilitate particle–fluid 
dynamics correction: 𝜖𝑐𝑜𝑎𝑟𝑠𝑒 for coarse particles, 𝜖𝑓𝑖𝑛𝑒 for fine particles, 
and 𝜖𝑓  for pure fluid.

It is essential to recognize that specific assumptions govern the 
behavior of blending mode cells (D):

• The blending cell domain is engineered to achieve a uniform 
integration of the mechanical properties of coarse particles, fine 
particles, and fluids, despite the potential for a non-uniform dis-
tribution of their actual positions.

• The blending cell initially corrects the fluid dynamics by em-
ploying the immersed boundary method for coarse particles, as 
described by the following equation: 

𝑼 𝑐𝑜𝑛𝑣 =
(

𝑼 𝑝𝜖𝑐𝑜𝑎𝑟𝑠𝑒 + 𝑼𝑓 𝜖𝑓
)

. (7)

where 𝑼 𝑝 represents the coarse particle velocity projected onto 
the local cell, and 𝑼𝑓  denotes the local fluid velocity.

• The dynamics correction of the blending cell is subsequently 
refined through a staggered update procedure that integrates the 
immersed boundary solver with the drag force model, ultimately 
iterating towards an equilibrium state.
6 
Based on the assumptions outlined above, the momentum equations 
for the resolved–unresolved-blending cells can be expressed as follows: 

𝜕[(1 − 𝜖𝑓𝑖𝑛𝑒)𝜌𝑼𝑓 ]
𝜕𝑡

+ ∇ ⋅ [(1 − 𝜖𝑓𝑖𝑛𝑒)𝜌𝑼𝑓𝑼𝑓 ] − ∇ ⋅ [(1 − 𝜖𝑓𝑖𝑛𝑒)𝜇∇𝑼𝑓 ]

= −(1 − 𝜖𝑓𝑖𝑛𝑒)∇𝑝 + 𝑭 𝑑 + 𝑭 𝐼𝐵 .
(8)

where the primary unknowns include the superficial fluid velocity, 𝑼𝑓 , 
which can take on intermediate values of 𝑼∗

𝑓  and 𝑼∗∗
𝑓 , in addition to 

the fluid pressure, 𝑝. These primary unknowns will be adjusted by both 
the drag force, denoted as 𝑭 𝑑 , and the IB force, represented as 𝑭 𝐼𝐵 .

The initial velocity intermediate, denoted as 𝑼∗
𝑓 , is derived from 

the momentum equation, and subsequently contributes iteratively to 
the correction of the drag force. In hybrid coupling, the drag force not 
only depends on the velocities of the fine particles and the fluid but 
is also considerably influenced by the velocity of the coarse particles, 
weighted by the factor 𝜖𝑐𝑜𝑎𝑟𝑠𝑒∕(𝜖𝑓 + 𝜖𝑐𝑜𝑎𝑟𝑠𝑒). Thus, the generalized for-
mulation of the drag force model, denoted by the function 𝑭 , can be 
expressed as follows: 

𝑭 𝑑 = 𝑭 {
𝜖𝑐𝑜𝑎𝑟𝑠𝑒

𝜖𝑓 + 𝜖𝑐𝑜𝑎𝑟𝑠𝑒
,𝑼 𝐼𝐵 ,𝑼∗

𝑓 ,
𝑁𝑝
∑

𝑖
𝑼 𝑝2

𝑖 𝜔𝑖,𝑝𝑐2}. (9)

When the drag force is updated, its value will be utilized to inform 
the second intermediate fluid velocity (𝑼∗∗

𝑓 ) update in the subsequent 
solution of the Poisson equation. To ensure an accurate distribution of 
the drag force among the fine particles, we introduce weights 𝜔𝑖,𝑝𝑐2, 
which represent the volume occupation ratio of each cell within an 
individual fine particle.

Subsequently, the IB force (𝑭 𝐼𝐵) is calculated as the difference be-
tween the intermediate second fluid velocity (𝑼∗∗

𝑓 ) and the IB velocity 
(𝑼 𝐼𝐵), employing coarse particle weights against the cells denoted as 
𝜔𝑖,𝑝𝑐1: 

𝑭 𝐼𝐵 = 𝜌𝑉𝑐
(𝑼 𝐼𝐵 − 𝑼∗∗

𝑓 )

𝛥𝑡
, (10a)

𝑼 𝐼𝐵 =
𝜖𝑓𝑼∗∗

𝑓 +
∑𝑁𝑝

𝑖 𝜔𝑖,𝑝𝑐1𝑼
𝑝1
𝑖

𝜖𝑓 +
∑𝑁𝑝

𝑖 𝜔𝑖,𝑝𝑐1

. (10b)

Several physical properties, such as void fraction, velocity, and 
particle diameter, are essential for calculating both drag forces and 
IB forces. To interpolate these properties between the particle and 
cell sides, the weights 𝜔𝑖,𝑝𝑐1 and 𝜔𝑖,𝑝𝑐2 are also required, which are 
determined using either SDF sampling or marker sampling. A smooth 
interpolation from these weights to their corresponding physical prop-
erties is implemented in a manner similar to the semi-unresolved 
approach proposed by [56], as shown below: 

𝜖𝑐𝑜𝑎𝑟𝑠𝑒 =
𝑁
∑

𝑖
𝜔𝑖,𝑝𝑐1, (11a)

𝜖𝑓𝑖𝑛𝑒 =
𝑁
∑

𝑖
𝜔𝑖,𝑝𝑐2. (11b)

3.2. Cell–particle mapping: Discretization of the marching cubes SDF

Unresolved coupling utilizes a straightforward marker-based dis-
cretization of particles to determine the in/out state concerning the 
cells. However, when resolved coupling necessitates higher precision, 
especially in the presence of arbitrarily shaped particles, a SDF is 
employed to ascertain the in/out state relative to the particle. As 
illustrated in Fig.  5(b), if all four vertices of a cell possess negative 
SDF values, the entire cell is deemed to be within the particle domain. 
Conversely, if none of the vertices have negative SDF values, the cell is 
classified as completely outside the particle. In all other scenarios, the 
cell is categorized as partially intersecting with the particle.

Further insights, such as void fraction, can be derived from the 
discretization process depicted in the cells labeled A through E in Fig. 
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Fig. 9. Entry of a single particle into water: (a, b) illustrations of the experimental setup for simulations of Case I and Case II, and (c, d) the variation of settling 
velocity over time for both cases.
5(b). Specifically, cells A, B, and C exhibit trapezoidal intersections 
with the particle, cell D demonstrates a triangular intersection, while 
cell E shows only a minimal overlap. For each intersection type, the 
volume is analytically approximated by interpolating SDF values along 
the edges and vertices of the cells, employing a methodology akin to 
the marching cubes algorithm [64], as exemplified by the six states in 
Fig.  6. By systematically iterating over the SDF values at the edges 
and vertices, we can accurately determine the intersection volume, 
thereby calculating the void fraction between cells and particles (refer 
to Algorithm 1).
Algorithm 1: Register particle within cells of resolved condition.

Input: particle number 𝑁𝑝, particle position 𝑝, cell space 𝑑𝑥𝑦𝑧, 
particle volume 𝑣𝑜𝑙𝑝, cell volume 𝑣𝑜𝑙𝑐 , cell number in 
each dimension 𝑁𝑥𝑦𝑧, particle axis aligned bounding 
box 𝑏𝑜𝑥, if under resolved coupling 𝑖𝑠𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑

Output: particle index of cells 𝑝𝑖𝑑 , particle weights of cells 𝑝𝜔, 
void fraction of fluid on cell 𝜖𝑓

1 𝜖𝑓 = 1;
2 for 𝑖 ← 0 to 𝑁𝑝 do
3 𝑥𝑦𝑧 = (𝑝[𝑖] ± 0.5𝑏𝑜𝑥[𝑖])∕𝑑𝑥𝑦𝑧;
4 𝑐𝑒𝑙𝑙𝑖𝑑 = [𝑥𝑚𝑖𝑛 ∶ 𝑥𝑚𝑎𝑥] + [𝑦𝑚𝑖𝑛 ∶ 𝑦𝑚𝑎𝑥] ∗ 𝑁𝑥 + [𝑧𝑚𝑖𝑛 ∶ 𝑧𝑚𝑎𝑥] ∗

𝑁𝑥 ∗ 𝑁𝑦;
5 𝑝𝑖𝑑 [𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑒𝑙𝑙𝑖𝑑 );
6 𝑠𝑒𝑞𝑖𝑑 = [0 ∶ 𝑁𝑝);
7 𝑠𝑜𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒(𝑝𝑖𝑑 , 𝑠𝑒𝑞𝑖𝑑 );
8 𝑢𝑛𝑖𝑞𝑢𝑒𝑐𝑒𝑙𝑙 = 𝑟𝑚_𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑝𝑖𝑑 );
9 for 𝑖 ← 0 to 𝑢𝑛𝑖𝑞𝑢𝑒𝑐𝑒𝑙𝑙 .𝑠𝑖𝑧𝑒 do
10 𝑣𝑜𝑙 = 𝑆𝐷𝐹 (𝑝𝑖𝑑 [𝑖]);
11 𝜖𝑓 [𝑝𝑖𝑑 [𝑖]]− = 𝑣𝑜𝑙∕𝑣𝑜𝑙𝑐 [𝑝𝑖𝑑 [𝑖]];
7 
3.3. Cell–particle mapping: A many-to-one interpolation parallel technique

We present a novel many-cells-to-one-particle mapping strategy that 
effectively and consistently accelerates both resolved and unresolved 
schemes. In this methodology, particles function as executors to es-
tablish particle–cell mappings in parallel, tailored to their respective 
shapes and sizes. A significant challenge arises when multiple particles 
attempt to modify the same cell simultaneously, potentially leading 
to race conditions, as illustrated in Algorithm 2. To address this chal-
lenge, we implement a hierarchical broad-narrow particle–cell search 
strategy. During the broad phase, we construct an axis-aligned bound-
ing box (AABB) for each particle, enabling the efficient identification 
of potentially interacting cells. Only the candidate cells identified in 
this phase are then passed on to the narrow phase, where detailed 
exchanges of physical properties take place.

In both unresolved and resolved schemes, particles can be treated as 
either point-like or shape-aware entities. Their connections to cells are 
often multiplicative, as illustrated by particle A in Fig.  2 and particle 
O in Fig.  3. By employing the semi-resolved principles outlined by [56,
65], it becomes evident that the physical properties of particles A and 
O can be interpolated with greater accuracy through a volumetric-
weighted approach that connects them to their respective linking cells. 
This underscores the necessity of employing a many-cell-to-one-particle 
method in this section.

3.4. Flowchart of the PIMPLE iteration in the hybrid solver

Fig.  7(a) illustrates the individual components of the CFD (repre-
sented by the green box) and DEM (denoted by the red box) solvers. 
Meanwhile, Fig.  7(b) presents an overview of the organization of these 
components within the hybrid CFD–DEM PIMPLE workflow. Notable 
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Fig. 10. One-dimensional consolidation characterized by: (a) the initial simulation configuration, (b) the progression of pressure distribution along the vertical 
axis, and (c) the settlement of the uppermost particle as a function of the dimensionless time factor 𝑇𝑣.
differences from the traditional CFD PIMPLE methodology include 
the computation of the void fraction, determination of interpolation 
weights, adjustment of DEM dynamics, and data transfer processes, all 
highlighted in the yellow box.

At each timestep, the CFD–DEM PIMPLE algorithm initiates with 
the Pre-PIMPLE stage, during which the void fraction and interpolation 
weights linking the CFD and DEM are established. These interpolation 
weights are calculated using particle-marker decomposition for the 
unresolved scheme, an SDF-based marching-cube technique for the 
resolved scheme, or a combination of both in the case of hybrid 
coupling. Once determined, the weights, along with DEM velocities, 
are frozen and subsequently transmitted to the LOOP stage of the 
CFD–DEM PIMPLE.

The LOOP stage comprises three nested loops, designated A, B, and 
C, in order from outermost to innermost (see Fig.  7(b)). In Loop A, 
the algorithm updates the CFD–DEM interaction forces and predicts 
the fluid velocity, which then leads into Loop B. Within Loop B, the 
predicted fluid velocity undergoes iterative corrections to meet the 
continuity criterion, while pressure adjustments take place in Loop C. 
The updated fluid properties are subsequently utilized to recompute the 
8 
interaction forces, which are then applied to modify the velocities of 
the DEM particles. At the conclusion of Loop B, a convergence check 
is performed; if the criterion is met, the algorithm proceeds to the 
Post-PIMPLE stage, where the DEM variables are unfrozen and cor-
rected using the converged interaction forces, which are then advanced 
through the DEM solver via Newton integration. If the criterion is not 
satisfied, the algorithm returns to Loop A for further iterations.

This LOOP stage synthesizes both IB and drag forces into a co-
hesive representation of interaction forces, facilitating the integration 
of different force models or coupling strategies without necessitating 
changes to the overall CFD–DEM PIMPLE structure. Furthermore, one 
might ponder why the CFD–DEM PIMPLE updates the CFD mechanical 
properties directly, while DEM variables are subjected to a frozen-
unfrozen approach. This distinction arises from the observation that 
DEM dynamics typically progress over a more microscopic timescale 
than CFD. By freezing DEM variables during the inner PIMPLE itera-
tions, we mitigate small velocity fluctuations that could compromise 
the stability of the implicit CFD solver, which demands a stricter 
convergence criterion compared to that of DEM.
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Fig. 11. Ergun test: (a) simulation configurations, (b) spheres packing, (c) plates packing, and (d) mixture of spheres and plates.
Algorithm 2: Register particles within cells exhibiting unre-
solved conditions.

Input: particle number 𝑁𝑝, particle position 𝑝, cell space 𝑑𝑥𝑦𝑧, 
particle volume 𝑣𝑜𝑙𝑝, cell volume 𝑣𝑜𝑙𝑐 , cell number in 
each dimension 𝑁𝑥𝑦𝑧, particle axis aligned bounding box

Output: particle index of cells 𝑝𝑖𝑑 , void fraction of fluid on cell 
𝜖𝑓

1 𝜖𝑓 = 0;
2 for 𝑖 ← 0 to 𝑁𝑝 do
3 𝑥𝑦𝑧 = (𝑝[𝑖] ± 0.5𝑏𝑜𝑥[𝑖])∕𝑑𝑥𝑦𝑧;
4 𝑐𝑒𝑙𝑙𝑖𝑑 = [𝑥𝑚𝑖𝑛 ∶ 𝑥𝑚𝑎𝑥] + [𝑦𝑚𝑖𝑛 ∶ 𝑦𝑚𝑎𝑥] ∗ 𝑁𝑥 + [𝑧𝑚𝑖𝑛 ∶ 𝑧𝑚𝑎𝑥] ∗

𝑁𝑥 ∗ 𝑁𝑦;
5 for 𝑗 ← 0 to 𝑐𝑒𝑙𝑙𝑖𝑑 .𝑠𝑖𝑧𝑒 do
6 𝑝𝑖𝑑 [𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑒𝑙𝑙𝑖𝑑 [𝑗]);
7 𝑣𝑜𝑙 = 𝑀𝐴𝑅𝐾𝐸𝑅(𝑐𝑒𝑙𝑙𝑖𝑑 [𝑗]);
8 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑(𝜖𝑓 (𝑐𝑒𝑙𝑙𝑖𝑑 [𝑗]), 𝑣𝑜𝑙∕𝑣𝑜𝑙𝑐 [𝑐𝑒𝑙𝑙𝑖𝑑 [𝑗]]));

9 𝑅𝑒𝑑𝑢𝑐𝑒(𝜖𝑓 );
10 𝜖𝑓 = 1 − 𝜖𝑓 ;

3.5. CPU–GPU heterogeneous acceleration framework

The open-source CFD–DEM framework CFDEM® [66], which in-
tegrates the OpenFOAM CFD solver [67] with the LIGGGHTS DEM 
solver [68], has gained significant prominence in the fluid–particle 
interaction community. Despite the growing adoption of GPU tech-
nologies, exemplified by GPU-based CFD frameworks such as FUN3D-
GPU [69] and GPU-accelerated DEM implementations like GeoTaichi-
DEM [70], CPU-parallel frameworks remain the dominant approach for 
CFD–DEM coupling. This preference stems from fundamental architec-
tural trade-offs between CPUs and GPUs [71]: CPUs typically provide 
larger memory capacity but fewer parallel cores, whereas GPUs offer 
massive parallelism with comparatively limited memory resources.
9 
To harness the complementary advantages of CPUs and GPUs, this 
study introduces a heterogeneous computing framework for coupled 
CFD–DEM simulations that integrates our in-house RTDEM solver with 
OpenFOAM (v2312). The term heterogeneous denotes a strategic mem-
ory allocation where all CFD-related data, including mesh, velocity, and 
pressure fields, reside in CPU memory, while all DEM particle data are 
stored in GPU memory. During each coupling timestep, CFD and DEM 
computations execute sequentially on their respective processors (CPU 
and GPU) and are coordinated through a specialized coupling interface. 
This interface serves as a critical bridge, enabling bidirectional mapping 
of DEM particle shapes to the CFD framework while simultaneously 
transferring updated dynamics from CFD back to DEM.

Fig.  8 illustrates the bidirectional data transfer architecture between 
the CFD and DEM systems. In this configuration, four CPU processors 
are exclusively allocated to the CFD solver, while a single GPU han-
dles the DEM solver. The double-headed arrows represent data links 
connecting CFD memory to DEM memory via the memory bus, which 
operates using GPU Inter-Processor Communication (IPC) protocols un-
der the coordination of the CFD–DEM coupling scheduler. During each 
timestep iteration, the coupling scheduler evaluates which memory par-
titions are ready for computation and which require data fetching. For 
ready partitions (indicated by the void and blue circle of rank 0), the 
computational kernel is immediately invoked to advance the simula-
tion, executed by GPU processors in Block A. Simultaneously, for parti-
tions awaiting data (represented by solid circles corresponding to ranks 
1–3), the memory bus operates asynchronously with the computational 
kernel to transfer data between CPU and GPU. This approach effectively 
overlaps computation with data transfer, eliminating the need for 
global read-all/write-all operations that would otherwise cause compu-
tational idling, particularly in scenarios involving smaller data volumes.

4. Benchmark tests

This section presents a comprehensive evaluation of the three solver 
implementations developed in this study: unresolved, resolved, and 
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Fig. 12. Pressure drop in the Ergun test for: (a) spheres packing, (b) plates packing, (c) binary packing of spheres and plates, and (d) the evolution of porosity 
with respect to particle shape.
hybrid CFD–DEM approaches. All benchmark tests and illustrative ex-
amples presented throughout the manuscript were performed on a 
computational server equipped with an Intel Xeon Gold 6248R CPU and 
an NVIDIA RTX 4090 GPU, ensuring consistent hardware conditions for 
performance assessment.

4.1. Unresolved CFD-DEM

4.1.1. Settling of a single sphere
The settling behavior of a single sphere represents a fundamental 

validation case investigated under two distinct scenarios: Case I ex-
amines sphere settling entirely within water, while Case II analyzes 
sphere transition from air into water. Both scenarios employ drag and 
buoyancy force models for fluid–particle coupling. Analytical solutions 
for the critical settling velocities in these configurations have been 
established in previous studies [72,73]: 

𝑣𝑓1 =
2
9
(𝜌𝑝 − 𝜌𝑤)𝑔𝑅2

𝜇𝑤
[1 − exp(−

9𝜇𝑤𝑡
2𝜌𝑝𝑅2

)], (12a)

𝑣𝑓2 =
1
72

(𝜌𝑝 − 𝜌𝑤)𝑔𝑅2

𝜇𝑤
[1 − exp(−

4𝜇𝑤𝑡
27𝜌𝑝𝑅2

)]. (12b)

For the numerical simulations, spheres with radius 𝑅 = 0.5 mm are 
released from initial heights of 0.5 m and 0.74 m to represent Case I and 
Case II, respectively, as illustrated in Figs.  9(a, b). The computational 
domain consists of a water container measuring 0.1 m × 0.1 m × 1 m, 
discretized into 8 × 8 × 80 cells. In Case II, the water–air interface is 
10 
established at 𝑍 = 0.5 m by setting the volume fraction 𝛼 = 0 in all cells 
above this height. Boundary conditions include no-slip velocity on all 
walls except the ceiling, which maintains a pressure condition of 𝑝 = 0
Pa. The dynamic viscosities are specified as 𝜇𝑤 = 1×10−3 Pa s for water 
and 𝜇𝑎 = 1× 10−5 Pa s for air, while the densities are 𝜌𝑝 = 3, 000 kg∕m3

for particles, 𝜌𝑤 = 1, 000 kg∕m3 for water, and 𝜌𝑎 = 1 kg∕m3 for air. 
The simulation employs a timestep of 1 × 10−3 s over a total duration 
of 15 s.

Figs.  9(c, d) present the comparison between numerical predictions 
and analytical solutions. The results demonstrate excellent agreement, 
with the simulated settling velocities for both Case I and Case II closely 
matching the analytical values, thereby validating the accuracy of the 
unresolved coupling implementation.

4.1.2. Terzaghi’s one-dimensional consolidation
Terzaghi’s consolidation theory describes the dissipation of excess 

pore pressure in a one-dimensional porous medium under surcharge 
loading. According to the fundamental principles established by [74], 
this process is governed by: 
𝜕𝑝
𝜕𝑡

= 𝐶𝑣
𝜕2𝑝
𝜕𝑧2

. (13)

where 𝑝 represents the excess pore pressure, 𝑡 denotes time, and 𝑧
indicates the drainage direction (aligned with the vertical axis in this 
study). The coefficient of consolidation, 𝐶𝑣, is defined as: 

𝐶𝑣 =
𝑘𝑝 , (14a)
𝜌𝑓 𝑔𝑚𝑣
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Fig. 13. Entry of multiple spheres into water: (a) schematic diagram of the 
simulation, (b) final state of the two-phase mixture.

𝑇𝑣 =
𝐶𝑣𝑡
𝐻2

. (14b)

where 𝑘𝑝 represents the material permeability, 𝜌𝑓  denotes the fluid 
density, 𝑔 is gravitational acceleration, 𝑚𝑣 is the coefficient of volume 
change, 𝑇𝑣 is the dimensionless time factor, and 𝐻 is the height of the 
porous medium column.

Following the methodology proposed by [75], the permeability 𝑘𝑝
and coefficient of volume change 𝑚𝑣 are calculated as: 

𝑘𝑝 =
𝐷2𝜖𝑓 𝜌𝑓 𝑔

150𝜇𝑓 (1 − 𝜖𝑓 )2
, (15a)

𝑚𝑣 =
𝛥𝜖𝑣
𝛥𝜎𝑣

, (15b)

𝛥𝜖𝑣 = 𝛿
𝐻0

, (15c)

𝛥𝜎𝑣 = (1 − 𝜖𝑓 )(𝜌𝑝 − 𝜌𝑓 )𝑔
𝐻0
2

. (15d)

where 𝐷 is the particle diameter, 𝜖𝑓  is the fluid void fraction, 𝜌𝑝 and 𝜌𝑓
are the particle and fluid densities, respectively, and 𝜇𝑓  is the dynamic 
fluid viscosity. Moreover, 𝜖𝑣 represents the volumetric strain of the 
porous material, 𝛿 is the vertical displacement of the topmost particle, 
𝐻0 is the initial column height, and 𝜎𝑣 is the vertical stress increment.

For a specific column of porous media, as presented in Fig.  10(a), 
which is subjected to an initial surcharge 𝑝(𝑧, 0) = 𝑝0, the boundary 
conditions include zero pressure at the top 𝑝(0, 𝑡) = 0 and a zero 
pressure gradient at the bottom given by 𝜕𝑝𝜕𝑧

|

|

|𝑧=𝐻
= 0. The analytical 

pressure profile along the coordinate 𝑧 at a given time 𝑇𝑣 is expressed 
as follows: 

𝑝 =
∞
∑

𝑛=1

2𝑝0
𝑛𝜋

(1 − cos 𝑛𝜋) sin
( 𝑛𝜋𝑧

𝐻

)

exp
(

−
𝑛2𝜋2𝑇𝑣

4

)

. (16)

where 𝑛 denotes the summation index.
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The analytical solution for the consolidation settlement 𝑈𝑧 of the 
porous column, which corresponds to the displacement of the upper-
most particle, is expressed as: 

𝑈𝑧 = 1 − 8
𝜋2

2𝑛+1,𝑛→∞
∑

𝑚=1

1
𝑚2

exp
(

−
𝑚2𝜋2𝑇𝑣

4

)

. (17)

The numerical setup, illustrated in Fig.  10(a), consists of 100 
spheres with diameter 𝐷 = 1 mm arranged vertically and fully sub-
merged in fluid. The computational domain is discretized into 1 × 1 × 50
cells. Material properties include particle and fluid densities of 𝜌𝑝 =
2, 650 kg∕m3 and 𝜌𝑓 = 1, 000 kg∕m3, respectively. The linear-spring 
contact model employs normal and shear stiffnesses of 𝑘𝑛 = 𝑘𝑠 =
100 N∕m, while gravitational acceleration is set to 𝑔 = 9.8 m∕s2 and 
fluid dynamic viscosity to 𝜇𝑓 = 1 × 10−3 Pa s.

The simulation procedure allows particles to settle under gravity 
and buoyancy forces until hydrostatic equilibrium is achieved. Subse-
quently, a surcharge load of 𝑝0 = 100 Pa is applied to the topmost 
particle. Fig.  10(b) displays the temporal evolution of excess pore 
pressure profiles as a function of the dimensionless time factor 𝑇𝑣. The 
gray line and dots indicate the initial normalized excess pressure of 
𝑝̄0 = 1. The curves progressing from right to left represent the analytical 
solution, while the dots denote numerical predictions, showing strong 
agreement between analytical and numerical results except at 𝑇𝑣 = 0.06. 
Fig.  10(c) presents the settlement of the topmost particle versus 𝑇𝑣, 
again demonstrating close alignment with the analytical solution. The 
minor initial deviation in excess pore pressure stems from limited pre-
cision in marker-based void fraction calculation. Following surcharge 
application, particle-associated markers may cross cell boundaries, in-
troducing numerical discrepancies that would diminish with increased 
mesh resolution.

4.1.3. Ergun test
To evaluate the performance of non-spherical unresolved CFD–DEM 

coupling, we compare our numerical results with experimental Ergun 
tests from [76]. The simulation parameters replicate the experimental 
configuration in a cubic vessel measuring 0.11 m × 0.11 m × 0.41 m, 
as shown in Fig.  11. Initially, particles settle under gravity to form a 
packing with height 0.1 m, achieving hydrostatic equilibrium. Subse-
quently, a gradually increasing velocity boundary condition is applied 
at the bottom wall, reaching a critical velocity of 2.4 m∕s over 8 s. This 
progressive acceleration fluidizes the particle bed, establishing a stable 
pressure gradient throughout the vessel. Boundary conditions include 
no-slip walls on the sides and zero pressure at the top. The investigation 
examines two particle geometries: spheres with radius 0.36 cm and 
plates with dimensions 0.98 cm × 0.9 cm × 0.22 cm. Three packing 
configurations are considered: pure spheres, pure plates, and a binary 
mixture, all subjected to drag, pressure gradient, and viscous forces.

Following the experimental protocol, pressure measurements are 
recorded between elevations 𝑍 = 0 m and 𝑍 = 0.3 m. Material 
properties include particle density 𝜌𝑝 = 672 kg∕m3 and air density 
𝜌𝑎 = 1.168 kg∕m3, with air dynamic viscosity 𝜇𝑎 = 1.832 × 10−5 Pa s. 
The linear and shear contact stiffnesses are set to 𝑘𝑛 = 3×104 N∕m and 
𝑘𝑠 = 1 × 104 N∕m, respectively. The simulation utilizes a timestep of 
1 × 10−4 s over a total duration of 8 s.

Figs.  12(a–c) compare pressure drop evolution between numerical 
predictions (black lines) and experimental measurements (red dots). 
Both datasets demonstrate a consistent increasing trend that eventually 
stabilizes. Non-spherical particle cases exhibit more pronounced fluctu-
ations, attributed to rotational motions induced by their asymmetric 
geometry. These shape effects also influence porosity evolution, as 
depicted in Fig.  12(d). Following the established relationship between 
flow direction and particle orientation [36], plate-shaped particles 
experience stronger fluid-induced forces, resulting in elevated particle 
beds and reduced porosities. In the binary mixture configuration, where 
plates segregate above spheres, the void space evolution within the 



H. Chen et al. International Journal of Mechanical Sciences 309 (2026) 110992 
Fig. 14. Snapshots of the entry and settling of multiple spheres.
Fig. 15. The comparison between unresolved numerical and analytical results, 
as defined at steady state, focuses on water level, total volume, and particle 
volumetric fraction.

spherical region is further modified by the overlying plate particles, 
yielding lower overall porosity compared to the pure-sphere case.

The computational demands of non-spherical DEM contact detection 
and particle shape encoding in CFD are substantial. Our implemen-
tation achieved a total simulation time of 2.4 h, corresponding to 
0.11 s per timestep using 8 CPU cores and 1 GPU. By comparison, 
an equivalent simulation by Vollmari et al. [76] required several days 
using 20 CPU cores (Intel EM64T Xeon). This dramatic improvement 
12 
demonstrates the significant computational efficiency gains afforded by 
our unresolved coupling approach.

4.1.4. Settling of a sphere column
This test evaluates the robustness of volume conservation in multi-

sphere fluid systems [77]. Fig.  13(a) presents the simulation configu-
ration in the XOZ cross-section. The computational domain consists of 
a cubic container measuring 6 cm × 6 cm × 25 cm containing 8,000 
spherical particles with diameter 3 mm initially arranged in the upper 
region. The container is discretized into a grid of 12 × 12 × 50 cells, 
and it is divided into two distinct regions: the upper region, where air 
is present (𝑍 ⩾ 5 cm), and the lower portion, which is filled with water. 
Boundary conditions include no-slip velocity on all lateral and bottom 
walls, with zero pressure applied at the top.

Initially, particles fall freely under gravity. Upon water entry, they 
experience drag and buoyancy forces. Material properties include parti-
cle density 𝜌𝑝 = 2, 500 kg∕m3, air density 𝜌𝑎 = 1 kg∕m3, and fluid density 
𝜌𝑓 = 1, 000 kg∕m3. Dynamic viscosities are 𝜇𝑎 = 1×10−5 Pa s for air and 
𝜇𝑓 = 1 × 10−3 Pa s for fluid. Particle contact mechanics employ normal 
and shear stiffnesses of 𝑘𝑛 = 8 × 103 N∕m and 𝑘𝑠 = 2.4 × 103 N∕m, with 
a friction coefficient of 0.5. The CFD timestep is set to 2.5 × 10−4 s for 
a total simulation duration of 5 s, corresponding to 20,000 timesteps.

Fig.  14 depicts the particle water entry process over the time 
interval from 0.1 s to 0.4 s. Initially, the water level demonstrates 
considerable fluctuations, which eventually stabilize by 0.4 s. The final 
water level recorded at 8.1 cm aligns with the analytical predictions, 
which take into account the water displacement caused by the particle’s 
intrusion into the initial 5 cm of the water column.

To evaluate volume conservation and porosity within the water–
solid mixture, three metrics are monitored (Fig.  15): maximum water 
level, total water volume, and porosity fraction. Maximum water level 
is defined as the highest 𝑍 coordinate where volume fraction exceeds 
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Fig. 16. Entry of a single particle and its collision with a box at varying particle Reynolds numbers: (a) numerical simulation setup, and (b) variation in settling 
velocity of the particle.
Fig. 17.  Settling of the cylinder: (a) initial configuration, followed by snapshots of (b) Group I, (c) Group II, and (d) Group III. Note: The aspect ratio of the 
snapshots varies as a consequence of the scaling of the fluid domain.
0.99 (tolerance: ±0.01). Total water volume is computed by summing 
volumes of cells with volume fraction greater than 0.99. Porosity 
fraction represents the ratio of particle volume below the stable water 
level to the total stable volume. The convergence of all three metrics 
to their analytical solutions confirms the reliability of the unresolved 
two-phase CFD–DEM method for volume conservation.
13 
4.2. Resolved CFD-DEM

4.2.1. Settling of spheres
This validation case follows the experimental configurations of [78], 

illustrated in Fig.  16(a). A sphere with diameter 𝑑 = 0.015 m is centrally 
positioned within a rectangular box measuring 0.1 m × 0.1 m × 0.15 m. 
The computational domain is discretized into 80 × 80 × 120 cells. The 
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Fig. 18. Velocity of the cylinder as a function of time for (a) Groups I–III, (b) comparison of the drag coefficient obtained in this work with experimental data.
Fig. 19. The (a) numerical simulation setup and (b–e) fluid velocity field contour of DKT for two spheres.
particle density is 𝜌𝑝 = 1, 120 kg∕m3. To investigate various particle 
Reynolds numbers (𝑅𝑒𝑝, Eq. (18)), four test cases with different fluid 
densities (𝜌𝑓 ) and dynamic viscosities (𝜇𝑓 ) are established, as detailed 
in Table  1: 

𝑅𝑒𝑝 =
|𝒗𝑟𝑒𝑙|𝑑

𝜈
. (18)

where |𝒗𝑟𝑒𝑙| is the relative velocity magnitude between particle and 
fluid, 𝑑 is the particle diameter, and 𝜈 is the fluid kinematic viscosity.

The CFD simulation employs a timestep of 1 × 10−3 s and ter-
minates when particles reach the container base under the influence 
of IB force and buoyancy. Fig.  16(b) compares numerical predictions 
(markers) with experimental measurements (continuous lines). The 
numerical results show excellent agreement with experimental data 
during the settling phase. Minor discrepancies appear during final 
14 
Table 1
Fluid parameters for the settling-spheres example.
 No. 𝜌𝑓  (kg/m3) 𝜇𝑓  (Pa s) 𝑅𝑒𝑝  
 1 970 0.373 1.5  
 2 965 0.212 4.1  
 3 962 0.113 11.6 
 4 960 0.058 31.9 

settling when particles contact the container bottom, potentially due 
to limitations of the linear-spring DEM contact model in fully capturing 
particle–container interactions.

4.2.2. Settling of cylinders
This validation case replicates the experimental configuration of [79]
, 
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Fig. 20.  The settling velocities of leading and trailing spheres in DKT, along 
with experimental results from the work of [62].

Table 2
Numerical configurations of cylindrical settling.
 Group No. 𝜌𝑝 (kg/m3) 𝐷𝑝/𝐻𝑝 (mm) Fluid domain (mm) 𝑅𝑒𝑝  
 I 1,300 1/0.3 6 × 6 × 15 20  
 II 1,750 1/0.3 6 × 6 × 15 179 
 III 2,700 2/0.6 12 × 12 × 48 272 

as illustrated in Fig.  17(a). A cylinder is initially positioned near the 
fluid domain top, rotated 45◦ about the 𝑌 -axis, and settles under 
gravity, IB force, and buoyancy. Following the experimental method-
ology [79], three test groups are established by varying the fluid 
domain size and cylinder properties: diameter (𝐷𝑝), height (𝐻𝑝), and 
density (𝜌𝑝), as detailed in Table  2. The corresponding particle Reynolds 
numbers (𝑅𝑒𝑝) are calculated using Eq.  (18). Fluid properties include 
density 𝜌𝑓 = 1, 000 kg∕m3 and dynamic viscosity 𝜇𝑓 = 1 × 10−3 Pa s. 
The simulation employs a CFD timestep of 2 × 10−4 s.

Fig.  18(a) presents the fluid velocity magnitude fields (Figs.  17(b–
d)) as the cylinder approaches the bottom (10 units along the 𝑍-axis), 
along with the corresponding cylinder settling velocities for all three 
groups. The results demonstrate that fluid velocity initially increases, 
reaches a plateau, then drops to zero upon cylinder-bottom contact. 
Group I (lower density) exhibits minimal velocity fluctuations, while 
Group II (higher density) shows pronounced oscillations, indicating a 
more dynamic regime. Group III displays the most significant velocity 
oscillations compared to the relatively stable Group I behavior, sug-
gesting altered settling dynamics. Subsequently, the drag coefficient 
(𝐶𝑑) is calculated using Eq.  (19) and correlated with particle Reynolds 
number. Fig.  18(b) compares these results with experimental data [79], 
showing excellent agreement that validates the framework’s capability 
for non-spherical CFD–DEM coupling: 

𝐶𝑑 = 2
(𝜌𝑝 − 𝜌𝑓 )

𝜌𝑓

|𝒈|𝐻𝑝

|𝒗𝑝|
. (19)

where 𝜌𝑓  is the fluid density, 𝒈 is gravitational acceleration, and 𝐻𝑝 is 
the cylinder height.

4.2.3. Drafting–kissing–tumbling of two spheres
This section investigates the drafting–kissing–tumbling (DKT) phe-

nomenon in a two-sphere system. As shown in Fig.  19(a), spheres A 
and B are vertically aligned at initial heights of 0.5 m and 0.85 m 
from the top, respectively. Upon release, the spheres undergo sequential 
drafting, kissing, and tumbling phases, consistent with experimental 
observations [80].

The computational domain (0.01 m × 0.01 m × 0.04 m) is dis-
cretized into 50 × 50 × 200 cells. The spheres have diameter 𝐷 = 0.167
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cm and density 𝜌𝑝 = 1, 140 kg∕m3, while the fluid properties are 𝜌𝑓 =
1, 000 kg∕m3 and 𝜇𝑓 = 1 × 10−3 Pa s. The spheres experience IB force 
and buoyancy, with the simulation running for 0.7 s using a timestep 
of 1 × 10−3 s.

Fig.  20 presents the velocity profiles of the leading particle (B) and 
trailing particle (A). The trailing particle accelerates more rapidly than 
the leading particle, exhibiting drafting behavior until approximately 
0.35 s. Subsequently, the system enters a kissing phase lasting until 
0.49 s, during which numerical results closely match experimental 
observations. The tumbling phase occurs from 0.49 s to 0.64 s in sim-
ulations, earlier than the experimental onset at 0.46 s. Post-tumbling 
velocities show excellent agreement between numerical and experimen-
tal results. The pre-tumbling velocity discrepancies may arise from the 
linear-spring contact model, which could introduce excessive damping 
and impede velocity rebound for both particles.

4.2.4. Settling of a granular column with arbitrarily-shaped particles
This test validates mass continuity in the coupling framework for 

arbitrarily shaped particles. As shown in Fig.  21(a), the cubic domain 
measures 2.6 m × 2.6 m × 2.6 m, with air occupying 𝑍 ⩾ 1 m 
and water filling the remaining volume. The computational grid uses 
100 × 100 × 100 cells. In the air region, 2,560 non-spherical particles 
are uniformly distributed in a 16 × 16 × 10 arrangement. Material 
properties match those in Section 4.1.4, except for the STL particle 
equivalent diameter of 0.1 m. Complete particle submersion raises the 
water level by approximately 0.198 m, as indicated by the blue plate 
in Fig.  21(b).

The simulation uses CFD and DEM timesteps of 1×10−4 s and 1×10−5
s, respectively, for a total duration of 0.5 s. During the first 0.25 s, 
particles undergo multiple phases: water surface contact, IB force and 
buoyancy effects, subsequent impacts, energy dissipation, and eventual 
stabilization into a static regime, as illustrated in Figs.  21(c–f).

Fig.  22 presents the maximum water level, total water–particle 
system volume, and porosity evolution. Unlike the unresolved case (Fig. 
15), the resolved approach shows initial increase followed by decrease 
in water level and total volume, eventually stabilizing with minimal 
fluctuations. The numerical results align closely with three analytical 
benchmarks: expected water level for fully merged particles, total fluid 
and particle volumes, and terminal particle volume fraction below the 
initial water level. These results demonstrate the effectiveness of volu-
metric particle representation for complex geometries in CFD, enabled 
by the marching-cube-like algorithm for volume fraction calculation.

We benchmark our framework against OpenHFDIB [81], a CPU-
parallel arbitrary-shape resolved CFD–DEM implementation. Our CFD 
domain contains  1 million cells versus OpenHFDIB’s  3 million cells, 
while our DEM case uses 2,560 STL particles compared to OpenHFDIB’s 
3,000 particles. OpenHFDIB reports 8.7–17.3 s per timestep on 32 and 
8 CPU cores (AMD EPYC 7551), respectively. Our framework achieves 
3.2 s per timestep using 8 CPU cores with one GPU. The normalized 
performance of our solver approximates OpenHFDIB on 32 CPU cores, 
demonstrating the potential to offload CFD–DEM coupling workload to 
GPU and alleviate CPU bottlenecks in core-limited systems.

4.3. Hybrid CFD-DEM: Turbulent flow over a rough bed

The final benchmark validates hybrid CFD–DEM coupling for turbu-
lent flow over a rough bed in an open-channel configuration. Following 
the experimental setup of Grass et al. [82], as shown in Fig.  23, the 
reference length is 𝑑 = 1 cm. The computational domain measures 
6𝑑 × 4𝑑 × 1𝑑, discretized into 240 × 160 × 40 CFD cells. A total of 
6,635 spheres with diameter 𝐷𝑝 = 0.001 m are randomly packed at the 
domain base under gravity and buoyancy forces.

Boundary conditions include slip at the top surface, no-slip at the 
bottom, and periodic conditions on lateral walls for CFD. For DEM, 
the top and lateral walls are non-periodic, with periodicity only along 
channel side walls. Particle and fluid densities are 2,650 kg/m3 and 
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Fig. 21. Entry of STL-encoding non-spherical particles into water: (a–b) the initial and final states, and (c–f) snapshots of the particles falling into the water.
1,000 kg/m3, respectively. Flow is driven by body force 𝑏𝑥 = 𝑈2
𝜏 ∕𝑑

with friction velocity 𝑈𝜏 = 0.03 m∕s. The roughness Reynolds number 
𝑘+𝑠 = 79 (Eq. (20)) maintains fully developed rough flow near the 
laminar–turbulence transition threshold (approximately 70), following 
Ligrani and Moffat [83]. 

𝑘+𝑠 =
𝑘𝑠𝑈𝜏
𝜈

(20a)

𝑘𝑠 = 𝛽𝑑 (20b)

where 𝑘𝑠 is particle-equivalent roughness and 𝜈 = 1 × 10−6 m2/s 
is fluid kinematic viscosity. Following Singh et al. [84], 𝛽 = 0.242
16 
links particle roughness to reference channel length under identical 
numerical settings.

To evaluate the hybrid solver’s applicability to turbulent flows, 
particles are randomly assigned resolved (blue) and unresolved (red) 
modes, as shown in Fig.  23(a). The particle-to-cell size ratio of ap-
proximately 4∶1 requires specialized handling for unresolved particles. 
High-resolution decomposition markers are defined specifically for un-
resolved particles, which can span up to four fluid cells per axis and 
potentially engulf entire cells. A minimum void fraction threshold of 
0.1 in unresolved regions mitigates abrupt variations and numerical 
oscillations.
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Fig. 22. Water level evolution and particle packing fraction of resolved-
coupling water entry of non-spherical particles.

This approach enables the hybrid solver to function as a semi-
unresolved/resolved coupling framework for monodisperse systems. 
CFD and DEM timesteps are 5 × 10−5 s and 5 × 10−7 s, respectively 
(100 DEM substeps per CFD step), for total simulated time of 3 s. 
Fig.  23(b) shows the velocity profile at 𝑌 = 2 cm slice, while Fig. 
23(c) presents X-direction-averaged normalized velocity. Results show 
good agreement with Grass et al. [82] experimental data. Residual 
deviations stem primarily from CFD modeling differences: Grass et al. 
used Large Eddy Simulation (LES), while our solver employs laminar 
Navier–Stokes approximation for turbulent effects. Given the transi-
tional roughness Reynolds number regime, partial under-resolution of 
Kolmogorov scales likely contributes to discrepancies, particularly in 
regions distant from the particle bed.

In conclusion, this benchmark demonstrates the hybrid CFD–DEM 
solver’s suitability for transitional laminar–turbulent flows, with ex-
tension to fully developed turbulent flows identified as an important 
direction for future research.

5. Examples: Fluid-driven clogging in granular materials

Fluid-driven clogging [85,86] is prevalent in natural and industrial 
systems. Unlike gravity-driven clogging, fluid-driven clogging involves 
complex particle–fluid interactions manifesting in two modes: super-
ficial and internal. Superficial clogging occurs when fine particles 
accumulate on coarse scaffold surfaces, forming a distinct interface 
between pore and fluid regions. Internal clogging involves fine particles 
trapped within the coarse material’s internal pore network, creating 
anisotropic flow heterogeneity. The latter requires particle-scale inter-
action analysis, favoring resolved coupling schemes, while superficial 
clogging is better suited to unresolved approaches.

This section demonstrates our hybrid CFD–DEM solver’s versatil-
ity for fluid-driven clogging challenges. We first simulate superficial 
clogging using the unresolved scheme to validate robustness with large 
populations of fine, irregular particles. Then, internal clogging is in-
vestigated using both fully resolved and hybrid approaches. These 
case studies illustrate how the hybrid framework achieves superior 
balance between computational accuracy and efficiency compared to 
pure resolved schemes.

5.1. Superficial clogging

As shown in Figs.  24(a, b), the simulation domain (0.06 m ×
0.06 m × 0.3 m) contains two particle groups: fine and coarse. Fine 
particles have diameters 𝐷 = 1 mm and 𝐷 = 0.6 mm, while coarse 
𝑓 𝑓
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Table 3
Numerical settings of particle shape, size and number.
 Particle shape (coarse/fine) Size ratio Coarse number Fine number 
 non-sphere/sphere 1:3 10,000 20,000  
 non-sphere/sphere 1:5 10,000 92,592  
 non-sphere/non-sphere 1:3 10,000 20,000  
 non-sphere/non-sphere 1:5 10,000 92,592  

particles have equivalent diameter 𝐷𝑐 = 3 mm, forming 1:3 and 1:5 size 
ratios. Initially, coarse particles are compacted at the domain bottom 
to 0.092 m height, while fine particles are randomly distributed in 
the upper region (𝑍 ∈ (0.1, 0.3) m). A pressure gradient (50 kPa top, 
0 kPa bottom) drives fine particle downward migration through the 
coarse layer. Four test groups are established by varying particle shapes 
between spherical and non-spherical forms (Table  3).

All particles have density 2,650 kg/m3. Fine particles use normal 
and tangential stiffnesses of 1,500 N/m and 750 N/m, while coarse 
particles employ 1 × 106 N/m and 5 × 105 N/m, respectively. Inter-
particle friction is 0.2 with damping of 0.3. The CFD mesh resolution 
is 15 × 15 × 76 cells. Water properties include density 1,000 kg/m3

and dynamic viscosity 1×10−3 Pa s. Timesteps are 1×10−5 s (CFD) and 
1 × 10−7 s (DEM). Simulation terminates when average particle kinetic 
energy falls below 10−7 J [87].

Cake formation development, characterized by accumulated fine 
particle ratio in the final cake, is shown in Figs.  24(c) and 25 versus 
normalized time (𝑡∕𝑡𝑚𝑎𝑥). Size ratio 1:3 groups show consistent cake 
formation regardless of particle shape, while 1:5 groups diverge with 
non-spherical specimens forming cakes earlier than spherical ones. 
Coarse base particles in 1:3 groups enhance clogging, accelerating cake 
formation. In 1:5 groups, fine particle penetration occurs alongside cake 
formation, delaying effects compared to 1:3 groups. Reduced interlock-
ing in spherical 1:5 groups enables greater fine particle penetration, 
causing the most significant cake formation delay.

The results depicted in Fig.  26 clearly illustrate the unique char-
acteristics of filter cake formation observed across the four sub-tests at 
their final states. Fine particles with a size ratio of 1:5 produced a broad 
distribution, spanning from the bottom to the top of the coarse particle 
packing. In contrast, fine particles with a 1:3 size ratio primarily formed 
filter cakes on the uppermost layer of the coarse particle domain, 
as evidenced by comparisons between the first and second rows and 
between the third and fourth rows.

Fig.  27 presents porosity and pressure variations along the 𝑍-
direction for all four test cases, with values surface-averaged at each 
height. From 𝑍 = 0 to 0.06 m, porosity trends collapse across size 
ratios, showing spheres pack more loosely than non-spherical particles 
at the domain base regardless of size. Beyond 0.06 m, porosity peaks 
at  0.07 m before declining at  0.08 m due to cross-sectional area 
variations in the averaging region. For 𝑍 ⩾ 0.08 m, a transition zone 
shows linear porosity increase toward unity, indicating granular-fluid 
convergence. Non-spherical samples overlap closely at both size ratios, 
while spherical samples diverge more, suggesting sphere size variation 
(1:3 vs 1:5) significantly affects cake formation blockage.

Pressure development contrasts with porosity patterns. In the lower 
domain, pressure shows size dependence (1:3 ratio > 1:5 ratio), while 
porosity exhibits shape dependence (spheres > non-spheres). Near the 
transition zone, trends shift: spherical pressure curves converge while 
non-spherical curves approach but do not merge, indicating transi-
tion from size- to shape-dependent behavior. During filtration, non-
spherical particles pack denser than spheres, enhancing interlocking 
and reducing porosity variations. However, particle orientation sig-
nificantly affects pressure distribution, creating larger pressure dif-
ferentials between spherical and non-spherical samples by simulation 
end.
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Fig. 23. Turbulent open-channel flow over a particle bed simulated in hybrid CFD–DEM mode: (a) channel geometry, (b) final fluid velocity field and particle 
configuration, and (c) normalized fluid velocity profile as a function of the normalized Z-coordinate.
 

Table 4
Basic parameters for the internal clogging simulation settings.
 Parameter Value  
 Particle density 𝜌𝑝, kg/m3 2,650  
 Elastic modulus 𝐸, Pa 1 × 109 
 Poisson’s ratio 𝜈, 0.3  
 Inter-particle coefficient of friction 𝜇𝑝 0.3  
 Fluid density 𝜌𝑓 , kg/m3 1,000  
 Fluid dynamic viscosity 𝜇𝑓 , Pa s 0.001  

5.2. Internal clogging

5.2.1. Basic model setup
Gap-graded material clogging in fluid flow is simulated using fully 

resolved or hybrid resolved–unresolved CFD–DEM approaches. Parti-
cles are randomly packed in a 3 cm × 3 cm × 5 cm cubic domain 
(Fig.  28(a)). After equilibrium, inlet velocity 𝑣0 = 0.1 m∕s is applied 
at the bottom wall with a sieve at 𝑍 = 4 cm to induce clogging. 
Upper walls maintain zero pressure. Two gap-size configurations are 
evaluated: coarse spheres with fine non-spherical particles (Fig.  28(a), 
termed ‘‘coarse sphere’’ group) and coarse non-spherical with fine non-
spherical particles (Fig.  28(b), termed ‘‘coarse non-sphere’’ group). 
Coarse particles have equivalent diameter 6 mm, fine particles 1.2 mm. 
Both coarse and fine non-spherical particles share identical geometry. 
Total particle counts are 130 coarse and 7,400 fine particles.

The simulation parameters are set in Table  4. The CFD and DEM 
simulations are executed with time steps of 5 × 10−5 s and 5 × 10−7 s, 
respectively, culminating in a total simulation duration of 2 s across 
40,000 CFD iterations.
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5.2.2. Fully resolved simulation
The CFD simulation domain is discretized into a grid of 74 × 74 × 118

cells, which guarantees that the dimension of the fine particles are 
sufficiently larger than the cells sizes, thereby satisfying the fully 
resolved conditions for both particle types.

Fig.  29 shows temporal evolution of the particle system. The top 
row displays coarse sphere/fine non-sphere behavior, while the bot-
tom row shows coarse non-sphere/fine non-sphere dynamics. Both 
configurations develop binary distributions, forming void-space sepa-
rators between upper and lower segments. Eventually, larger particles 
accumulate near the sieve, creating clogs. The non-spherical group ex-
hibits stronger clogging than the spherical group, evidenced by thicker 
granule layers passing through the sieve at 𝑡 = 2.0 s.

Fig.  30 shows fine particles beginning sieve passage at 0.25 s 
(spherical) and 0.35 s (non-spherical). The spherical group has steeper 
passage rate, achieving 32% throughput versus 16% for non-spherical. 
Fig.  31 (top row) presents averaged fine particle velocity (𝑣𝑝) profiles 
along 𝑍-direction, revealing sequential peaks and clogs: high-velocity 
inlet region (Peak A), stationary clog (Clog A), secondary flow surge 
(Peak B), second stationary clog (Clog B), and uniform post-sieve flow 
(Peak C).

Contrasting particle velocity trajectories, Fig.  31 (bottom row) 
shows pronounced pressure drops where particle movement is im-
peded, particularly at Clog B. This observation aligns with literature 
reports of similar pressure profiles [88]. Results were validated against 
the Ergun equation [89]: 
𝛥𝑝
𝐿

= 150
𝜇𝑓 |𝑼𝑓 |

𝐷2
𝑝

(1 − 𝜖)2

𝜖3
+ 1.75

𝜌𝑓 |𝑼𝑓 |
2

𝐷𝑝

(1 − 𝜖)
𝜖3

. (21)

where pressure gradient 𝛥𝑝∕𝐿 depends on fluid dynamic viscosity 𝜇𝑓 , 
superficial inlet velocity 𝑼𝑓 , fluid density 𝜌𝑓 , fluid volume fraction 𝜖, 
and particle diameter 𝐷 .
𝑝
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Fig. 24. The modeling of the superficial clogging tests includes: (a) particle generation, (b) the filter cake at the final stage, and (c) the growth of the cake as a 
function of normalized time (𝑡∕𝑡𝑚𝑎𝑥).
At each time instance, clogging regions are identified by pressure 
curve slope evaluation between zero-slope endpoints. Fluid volume 
fraction and volume-weighted average equivalent diameter of coarse–
fine mixtures are collected to calculate pressure gradients. Numerical 
pressure gradients (colored markers) are compared with Ergun equa-
tion predictions (black lines) in Fig.  31 inset, showing strong agreement 
for both spherical and non-spherical particle groups.

For spherical particles, pressure stabilizes below Clog B, while 
non-spherical particles show stabilization at and above Clog B. This 
discrepancy stems from interlocking behavior: irregular particles form 
more stable clog structures than spheres, enabling pressure stabilization 
above Clog B. Below Clog B, non-spherical particles lack established 
force chains and their anisotropic shapes impede pressure stabilization 
through fluid dynamics effects.

Fig.  32 shows fluid velocity snapshots in the XOZ-plane at 𝑌 =
1.5 cm. Both groups exhibit initial inlet-driven flow peak (A) at 0.1 
s. The sphere group shows separation, transient clogging (∼0.5 s), 
and eventual clog breakdown. The non-sphere group follows similar 
sequence but with longer clogging duration (∼1 s). Poor sphere inter-
locking enables rapid clog degradation into open channels, allowing 
fine particles through the sieve, shown by pressure increase in Fig. 
31(a). Stronger non-spherical interlocking delays pressure increase un-
til 1.5–2.0 s (yellow/green curves, 𝑍 = 0.035–0.040 m in Fig.  31(b)). 
Both groups indicate clog breakdown induces fluid squeezing, causing 
local velocity and pressure elevation.

Compared to Liu et al. [90] benchmark (0.5 million CFD cells, 2,144 
STL particles), our study uses 0.6 million CFD cells and 7,530 STL par-
ticles. Their computational time is 74.8 s/timestep on 32 Intel Xeon E5-
2680 v4 CPU cores, while our framework achieves 3.61 s/timestep us-
ing only 8 CPU cores with one GPU. This demonstrates substantial per-
formance improvement for practical resolved CFD–DEM simulations.
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5.2.3. Hybrid resolved-unresolved simulation
This section utilizes a grid of 22 × 22 × 40 cells, which is approxi-

mately 33 times coarser than the fully resolved simulation presented 
in Section 5.2.2. This coarse grid configuration allows for resolved 
coupling of coarse particles, while fine particles are modeled using an 
unresolved approach.

Fig.  33 compares particle passage and pressure evolution between 
resolved and hybrid simulations. Hybrid simulations show 100% par-
ticle passage plateau between 𝑍 = 0.04 m and 𝑍 = 0.05 m for both 
groups, indicating minimal sieve passage. A second plateau (𝑍 = 0.01
m to 𝑍 = 0.02 m) is more pronounced in hybrid simulations, suggesting 
stronger bimodal distribution than resolved cases.

Both simulations show decreasing particle passage over time, while 
pressure exhibits opposing trends, especially for non-spherical cases. 
Hybrid simulation shows substantial pressure increase versus mini-
mal increase in resolved simulation (Fig.  33(d)). As discussed in Sec-
tion 5.2.2, particle structure squeezing can lead to increased fluid 
pressure, as well as higher fluid velocity at the cross-section of the 
hybrid configuration, as shown in Fig.  34. It can be inferred that 
sparsely distributed flow channels persist within the clogging regions, 
indicating that hybrid coupling exhibits more pronounced squeezing 
effects at elevated velocities. Unlike fully open channels observed in re-
solved simulation, hybrid channels facilitate a more significant particle 
blockage effect.

Despite similar squeezing effects, normalizing converged pressure 
by plateau values (Figs.  33(c–d)) shows consistent trends across both 
scenarios. Averaged particle velocity along 𝑍-direction reveals simi-
lar two-peaked distributions in hybrid and resolved simulations, with 
peaks at nearly identical positions.
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Fig. 25. Snapshots of superficial clogging at different normalized time instants.
To evaluate accuracy–efficiency trade-offs, Figs.  35(a,b) show time-
averaged particle velocity (𝑣𝑝) and fluid pressure (𝑝) along 𝑍-direction. 
Hybrid (markers) and resolved (lines) simulations are compared. The 
hybrid method effectively captures particle velocity profiles with quan-
titative and qualitative agreement, particularly in peak positions and 
20 
plateaus. Normalized particle velocity differences (|𝑣𝑝|∕𝑣𝑝,𝑚𝑎𝑥) remain 
within 0.4 regardless of particle shape (Fig.  35(c)). Fluid pressure dif-
fers substantially: hybrid yields ∼3× greater pressure than resolved sim-
ulations (|𝑝|∕𝑝𝑚𝑎𝑥, Fig.  35(d)). Despite magnitude differences, hybrid 
pressure trends resemble resolved simulations. Normalized pressure 
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Fig. 26. Snapshot of the final states for the four sub-tests in superficial clogging: (a) size ratio 1:5 with spherical coarse particles; (b) size ratio 1:5 with 
non-spherical coarse particles; (c) size ratio 1:3 with spherical coarse particles; and (d) size ratio 1:3 with non-spherical coarse particle.
Fig. 27. The evolution of (a) porosity and (b) pressure as functions of height at the final state of the superficial clogging.
(𝑝̄ = 𝑝∕𝑝𝑚𝑎𝑥) and relative differences (|𝑝̄|) show consistent 0.1 range 
regardless of particle shape.

Remarks. The hybrid scheme improves fine particle–fluid interaction 
management through unresolved components and drag-force models 
that minimize shape effects. Despite simplification, it captures quanti-
tative and qualitative particle velocity characteristics, including peaks, 
clogging distribution, and squeezing effects. While showing better qual-
itative than quantitative pressure accuracy, it captures essential nor-
malized pressure trends. Precision reduction stems from drag-force 
model differences and grid-cell versus particle-scale interaction lengths 
21 
in unresolved schemes, weakening particle-to-fluid velocity constraints 
and causing pressure discrepancies. For gap-graded particle engineering 
applications, the hybrid solver offers favorable accuracy–efficiency bal-
ance: ∼33× mesh reduction and ∼30× performance improvement (3.61 
to 0.12 s/timestep).

6. Conclusions

We present a hybrid CFD–DEM framework with heterogeneous par-
allel computing for gap-graded fluid–particle interactions. The frame-
work adaptively integrates unresolved and resolved CFD–DEM solvers 
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Fig. 28. Simulation preparation for the internal clogging: (a) coarse spheres and fine non-spheres, and (b) coarse non-spheres and fine non-spheres.
-

, 

]. 
across the computational domain based on particle size distributions, 
effectively balancing computational accuracy and efficiency.

The framework features a Ray-Tracing DEM solver optimized for 
arbitrary particle shapes in large populations through fine-granularity 
parallel algorithms. A GPU-accelerated interface tightly couples CFD 
and DEM solvers, enabling parallel particle geometry encoding from 
DEM to CFD and efficient hydrodynamic feedback from CFD to DEM. 
These components enhance scalability and robustness for large-scale 
complex particle–fluid interaction simulations, supporting dynamic
regimes up to the laminar–turbulence transition boundary.

The framework underwent rigorous validation against diverse ex-
perimental and analytical benchmarks, testing unresolved, resolved, 
and hybrid components for spherical and non-spherical particles. Demon
stration examples simulated superficial and internal clogging of gap-
graded granular materials using all three schemes, enabling compre-
hensive performance comparison. Results show particle shape signif-
icantly influences superficial clogging more than gap size ratio. For 
internal clogging, the hybrid solver effectively captures fluid squeez-
ing effects from particle clogging (similar to resolved solver) while 
achieving better balance between computational precision and resource 
overhead.
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Appendix A. The drag force in the unresolved CFD–DEM coupling

The drag force has been well characterized by the Di Felice model [35
Given a particle 𝑖 with equivalent diameter 𝐷𝑝, volume 𝑉𝑝, and velocity 
𝑼 𝑝, submerged in a fluid of density 𝜌𝑓 , kinematic viscosity of fluid 𝜈, 
local fluid velocity 𝑼𝑓 , and fluid volume fraction 𝜖𝑓 , the total drag 
force 𝑭 𝑑

𝑖  can be expressed as: 

𝑭 𝑑
𝑖 = 𝛽𝑖𝑉𝑝(𝑼𝑓 − 𝑼 𝑝). (A.1)

with 

𝛽𝑖 =
3
4
𝜌𝑓 |𝑼𝑓 − 𝑼 𝑝

|

𝐷𝑝
𝐶𝐷𝜖

(2−𝜒)
𝑓 , (A.2a)

𝐶𝐷 =

(

0.63 + 4.8
√

𝑅𝑒𝑝

)2

, (A.2b)

𝜒 = 3.7 − 0.65 exp
(

−
1.5 − log(𝑅𝑒𝑝)

2

)

, (A.2c)

𝑅𝑒𝑝 =
𝐷𝑝|𝑼𝑓 − 𝑼 𝑝

|𝜖𝑓
𝜈

. (A.2d)

where 𝐶𝐷 represents the drag coefficient, and 𝑅𝑒𝑝 denotes the volume-
averaged particle Reynolds number.

Since unresolved coupling allows a fluid cell to contain multiple 
particles, the calculation and application of drag force can be catego-
rized into two distinct approaches [91]. The first approach computes 
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Fig. 29. Simulation snapshots of the coarse sphere/fine non-sphere group (top row) and the coarse non-sphere/fine non-sphere group (bottom row) during the 
process of internal clogging.
the drag force at the cell level and subsequently distributes it among 
the individual particles in proportion to their volumetric representation 
within that cell. In contrast, the second approach calculates the drag 
force for each particle individually, followed by a weighted distribution 
to the cells. This study employs the second approach, as Zhou et al. [91] 
demonstrated that it enhances the robustness of CFD–DEM mechanical 
interactions, particularly when the ratio of particle size to cell size is 
variable. For instance, as illustrated in Fig.  2, when two particles, D 
and E, occupy the same cell, the total drag force on that cell can be 
expressed as 𝑭 𝑐 = −(𝒇 0+𝒇 1), since both particles are entirely contained 
within the cell. However, when a particle, such as particle A, spans 
multiple cells, a smooth decomposition of the drag force is necessary. 
This is accomplished using a marker-weighted interpolation scheme, 
as opposed to the SDF template used in the resolved counterpart. 
Assuming that particle A’s volume is decomposed into four markers, 
the left-top, left-bottom, and right-bottom cells would receive 0.25, 
23 
0.5, and 0.25 of the drag force, respectively. In practical applications, 
this marker strategy is primarily used for moderate particle-to-cell size 
ratios, where the number of markers is linearly adjusted according to 
the ratio.

Once the drag force (∑𝑖 𝑭
𝑑
𝑖 ) calculation on the DEM side is com-

plete, its transfer to the CFD side (𝑭 𝑑
𝑐 ) adheres to Newton’s third law, 

expressed in implicit form: 

𝑭 𝑑
𝑐 =

∑

𝑖 𝑭
𝑑
𝑖

𝑉𝑐 |𝑼𝑓
𝑐 − 𝑼 𝑝

𝑐 |
(𝑼𝑓

𝑐 − 𝑼 𝑝
𝑐 ). (A.3)

where 𝑉𝑐 denotes the volume of the fluid cell, 𝑼 𝑝
𝑐 represents the cell-

averaged particle velocity, and 𝑼𝑓
𝑐  corresponds to the velocity of the 

fluid cell. By integrating Eq. (A.3) into Eq. (3), the term 
∑

𝑖 𝑭
𝑑
𝑖

𝑉𝑐 |𝑼
𝑓
𝑐 −𝑼

𝑝
𝑐 |
𝑼 𝑝

𝑐

functions as a source term, while 
∑

𝑖 𝑭
𝑑
𝑖

𝑉𝑐 |𝑼
𝑓
𝑐 −𝑼

𝑝
𝑐 |
 contributes to the diagonal 

component of the coefficient matrix.
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Fig. 30. Percentage of particles number passing through the sieve for spheres group and non-sphere group in the internal clogging simulations.
Fig. 31. Evolution of average fine particle velocity (top row) and fluid pressure (bottom row) against the 𝑍-direction for varying time instants in the internal 
clogging.
Appendix B. The IB forces in the resolved CFD-DEM coupling

This study introduces a multi-step corrector aimed at improving 
the precise application of the IB force from CFD to DEM compo-
nents. This enhancement leverages the widely-used PIMPLE (Pressure 
IMplicit for Pressure-Linked Equations) scheme in CFD. The IB force 
scheme initiates with a momentum corrector, which is derived from the 
Navier–Stokes equation, as presented in Eq. (4b). This equation can be 
24 
reformulated as follows: 

𝑨𝑼∗
𝑓 = 𝑩, (B.1a)

𝑨 = 𝑨𝐷 +𝑨𝑁𝐷, (B.1b)

𝑩 = −∇𝑝 + 𝜌𝒈 + 𝑭 𝐼𝐵 . (B.1c)

where 𝑨 denotes the coefficient matrix derived from the convection 
term and viscous stress, and its diagonal and non-diagonal components 
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Fig. 32. Configuration of fluid velocity in conjunction with states of particle velocity in the internal clogging.

Fig. 33. Number of particles passing and pressure drop over time: (a,c) sphere group; (b,d) non-sphere group in the hybrid internal clogging simulations. 
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Fig. 34. Snapshots of fluid and particle velocities are presented under both resolved and hybrid coupling schemes for internal clogging: top row illustrates the 
sphere group, while the bottom row depicts the non-sphere group.
 

are identified by the subscripts 𝐷 and 𝑁𝐷, respectively; 𝑼∗
𝑓  signi-

fies the predicted fluid velocity obtained from the momentum equa-
tion; and 𝑩 encapsulates the contributions from the pressure gradient, 
gravitational force, and immersed force.

Further simplification allows us to modify Eq. (B.1b) by substituting 
certain unknowns in 𝑼∗

𝑓  with the known quantities in 𝑼𝑓 : 

𝑨𝐷𝑼∗
𝑓 +𝑨𝑁𝐷𝑼𝑓 = 𝑩, (B.2a)

𝑨𝐷𝑼∗
𝑓 = 𝑩 +𝑯 , (B.2b)

𝑼∗
𝑓 = 𝑩

𝑨𝐷
+ 𝑯

𝑨𝐷
, (B.2c)

𝑯 = −𝑨𝑁𝐷𝑼𝑓 . (B.2d)

where 𝑼𝑓  represents the fluid velocity from the previous timestep, 
while 𝑯 captures the contributions from the convection term and 
viscous stress in an explicit manner.

The continuity equation Eq. (4a) refines Eq. (B.2d) into the follow-
ing form: 

∇ ⋅ ∇
𝑝
𝑨𝐷

= ∇ ⋅
𝑯 + 𝜌𝒈
𝑨𝐷

+ ∇ ⋅
𝑭 ∗

𝐼𝐵
𝑨𝐷

, (B.3a)

𝑼∗∗
𝑓 =

𝑯 + 𝜌𝒈
𝑨𝐷

−
∇𝑝∗

𝑨𝐷
+

𝑭 ∗
𝐼𝐵

𝑨𝐷
. (B.3b)

where 𝑼∗∗
𝑓  denotes the fluid velocity corrected to satisfy the continuity 

criterion, 𝑝∗ represents the predicted pressure, and 𝑭 ∗
𝐼𝐵 indicates the 

updated IB force, which is based on the corrected velocities of both the 
fluid and the immersed particles.

PIMPLE iterations are designed to incorporate multiple loops, thereby
facilitating effective convergence. This procedure starts with the base 
particle velocity 𝑼 , which is derived from the previous step, and a 
𝑝

26 
pressure-corrected fluid velocity denoted as 𝑼∗∗
𝑓 . From these velocities, 

a predicted IB force 𝑭 ∗
𝐼𝐵 is calculated. Through successive iterations 

of the IB force correction, the unbalanced dynamics between the solid 
and fluid progressively converge towards a state of static equilibrium, 
expressed as follows: 

𝑭 ∗
𝐼𝐵 = 𝑭 𝐼𝐵 + 𝛽

(𝑼 𝑝 − 𝑼∗∗
𝑓 )

𝑨𝑫
, (B.4a)

𝑼∗
𝑝 = 𝑼 𝑝 −

𝑭 ∗
𝐼𝐵

𝑀𝑝
𝛥𝑡 − ⃖⃗𝒓 ×

⃖⃗𝒓 × 𝑭 ∗
𝐼𝐵

𝑰𝑝
𝛥𝑡. (B.4b)

where 𝑼∗
𝑝 represents the corrected particle velocity resulting from the 

immersed force, 𝑀𝑝 denotes the mass of the particle, ⃖⃗𝒓 is the position 
vector from the particle’s center of mass to the cell center, and 𝑰𝑝
corresponds to the moment of inertia of the particle. The updated 
particle velocity further influences a new immersed force through an 
accumulation and damping behavior, governed by a fractional factor 
𝛽 < 1. In scenarios where the fluid cell loses contact with the particles, 
the IB force is reset to zero, indicating that no corrections are necessary.

The final iteration of the PIMPLE algorithm provides a conclusive 
assessment of the IB force, which is used to rectify the interactions 
between the solid and fluid phases: 

𝑭 ∗∗
𝐼𝐵 =

⎧

⎪

⎨

⎪

⎩

(𝑼∗∗
𝑝 −𝑼∗∗∗

𝑓 )

𝑨𝑫
, 𝜖𝑓 < 1,

0, 𝜖𝑓 = 1.
(B.5)

where 𝑭 ∗∗
𝐼𝐵 represents the immersed force, while 𝑼∗∗

𝑝  and 𝑼∗∗∗
𝑓  denote 

the particle velocity and fluid velocity at the final stage of the PIMPLE 
iteration, respectively. The resultant IB force is designed to ensure 
adherence to the IB condition for both the preceding and current time 
steps.
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Fig. 35. The averaged values over all time instances for (a) particle velocity, (b) fluid pressure, and the differences between their hybrid and resolved simulation 
results, specifically for (c) particle velocity and (d) fluid pressure in relation to their maximum values. Note that the difference in normalized fluid pressure is 
also included in (d).
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