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Adaptive mesh refinement (AMR) is essential for accurately resolving interfacial dynamics in resolved coupled
computational fluid dynamics-discrete element method (CFD-DEM) and two-phase CFD simulations. However,
traditional methods struggle with logical complexity and memory inefficiency when applied to unstructured
grids on GPU architectures. This paper presents a novel GPU-accelerated AMR algorithm that eliminates CPU-
GPU data transfers and minimizes grid manipulation overhead through a compressed data format and
topology-aware reuse strategies. By reconstructing mesh topology entirely on the GPU and retaining parent-mesh
indexing, our method reduces AMR-related computational overhead to less than 25% of the total simulation time
while ensuring full compatibility with unstructured granular domains. A CUDA-centric implementation, vali-
dated across five benchmarks and two powder-based additive manufacturing applications, demonstrates that our
framework achieves accuracy comparable to uniformly refined grids with 50% lower computational effort.
Furthermore, it exhibits near-linear throughput performance with increasing problem size and achieves over 20
x speedup in large-scale laser powder bed fusion simulations when integrated with GPU-accelerated CFD-DEM
solvers. The scalability of the algorithm is further highlighted through hexahedral mesh case studies, with
extensibility to general unstructured grids via sub-mesh templating. These advancements enable high-fidelity,
GPU-native simulations of complex fluid-particle systems, effectively bridging the gap between adaptive reso-
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lution and large-scale parallelism in complex two-phase resolved CFD-DEM simulations.

1. Introduction

The growing complexity of fluid-particle interaction problems in
engineering applications, such as laser additive manufacturing [1],
sediment transport [2], pharmaceutical processing [3], and multiphase
reactor design [4], has intensified the demand for high-fidelity simula-
tions of coupled computational fluid dynamics and discrete element
method (CFD-DEM). While such simulations offer unparalleled insights
into multiphysics phenomena, their computational cost remains pro-
hibitive, particularly when resolving dynamically evolving interfaces or
granular assemblies. Graphics processing units (GPUs), with their
massively parallel architecture and high memory bandwidth, have
emerged as a transformative tool for accelerating scientific computing,
enabling order-of-magnitude speedups over traditional CPU-based ap-
proaches [5]. However, harnessing GPU potential for mesh-based
methods like the finite volume method (FVM), the backbone of indus-
trial CFD software such as OpenFOAM and Ansys Fluent, remains
challenging, especially when adaptive mesh refinement (AMR) is
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required for efficiency [6].

Particle-based techniques, such as Smoothed Particle Hydrody-
namics (SPH) [7-9] and the Lattice Boltzmann Method (LBM) [10,11],
have readily capitalized on GPU parallelism due to their naturally
decoupled computations, where particles or lattice nodes operate
independently [10-14]. Similarly, Discrete Element Method (DEM)
[15-17] and Material Point Method (MPM) [18,19] have achieved sig-
nificant GPU-driven performance gains by exploiting localized particle
interactions. In contrast, the reliance of FVM on unstructured mesh
connectivity introduces inherent dependencies between cells and faces,
complicating parallelization. Specifically, there are three major chal-
lenges hindering GPU-accelerated FVM framework: (1) Architectural
misalignment: Traditional CPU-based domain decomposition strategies
fail to exploit modern GPUs’ thousands of CUDA cores [20,21],
demanding ground-up algorithmic redesign for fine-grained parallelism.
(2) Unstructured grid complexity: Widely used in industrial CFD, un-
structured grids introduce intricate cell-face-node dependencies that
degrade thread independence during equation discretization [22], in
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Fig. 1. Schematic illustration of the cell-based GPU parallel algorithm (A) and the CPU parallel algorithm (B). (A) Each GPU thread is responsible for the
computational tasks of one mesh cell for the cell-based GPU parallel algorithm. (B) The domain is divided into multiple parts according to the utilized number of CPU
threads. The highlighted elements are utilized for communications between threads. Note that, Ti means the thread #i of the CPU or GPU.
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Fig. 2. Schematic illustration of the cell/particle-based GPU parallel algorithm (A) and the face-based GPU parallel algorithm (B). Note that the boxes in the figure

represent data lists rather than mesh elements.

sharp contrast to the highly decoupled computations typically achieved
by particle-based methods on structured grids [23,24]. (3) Lack of
Auxiliary GPU algorithms: Critical tools like AMR, dynamic meshes, and
overlapping grids, which form the cornerstone of efficient CFD [22,25],
remain underdeveloped for GPUs, forcing trade-offs between adapt-
ability and performance.

Recent advances partially address these issues. FVM solvers with
structured grids [23,26] may leverage GPU parallelism but encounter
difficulties in geometrically complex domains. For unstructured grids,
modular GPU acceleration of linear solvers (e.g., via NVIDIA’s AMGXx)
[20] and vertex-centered Navier-Stokes solver [27-29] show great
promise, yet these efforts either assume static grids [30] or offload
adaption to CPUs [22,25], incurring limitations on scalability and
adaptability and data-transfer overhead. Meanwhile, AMR imple-
mentations for GPUs remain confined to structured grids or 2D domains
[31-33], relying on octree-based hierarchy algorithms [34-36] that
introduce excessive logical processing and branching inefficient for GPU
warps.

This paper proposes a GPU-native AMR framework for unstructured
hexahedral grids that eliminates CPU intervention and octree-derived
bottlenecks, featured by key innovations including: (1) A compressed
format that significantly reduces memory footprint compared to con-
ventional unstructured grid storage to enable efficient topology updates
without global reindexing, (2) parent-mesh anchoring that localizes
refinement operations to minimize thread divergence and remarkably
cut logical overhead versus octree-based methods, and (3) dynamic
variable remapping that retains simulation state continuity entirely on
the GPU to avoid CPU-GPU transfers responsible for expensive runtime
in hybrid approaches. The method is rigorously validated against five
benchmark cases, including 3D dam breaks and particle sedimentation,
and further demonstrated in two powder-based additive manufacturing

processes: binder jetting and laser powder bed fusion. In addition, we
extend the algorithm to unstructured tetrahedral grids and provide one
illustrative example to demonstrate its generalizability beyond hex-
ahedral grids. These examples confirm the accuracy, efficiency, and
robustness of the proposed method in complex engineering applications.
By extending hexahedral sub-mesh templates to general unstructured
topologies, we further demonstrate a path toward GPU-accelerated AMR
for industrial-grade CFD-DEM.

The paper is structured as follows: Section 2 details the GPU-
optimized AMR methodology, contrasting CPU/GPU parallelism and
presenting the CFD-DEM-AMR integration. Section 3 validates the
framework across multiphase and granular flow benchmarks, quanti-
fying the accuracy and speedups of the framework. Section 4 discusses
broader implications for high-performance CFD and outlines future
extensions.

2. Methodology
2.1. Parallel algorithms for GPU-accelerated CFD

CPUs and GPUs have distinct architectures [37] suited for different
tasks: CPUs usually have a few powerful cores for sequential processing
and complex control, while GPUs feature thousands of simpler cores
optimized for parallel tasks like matrix computations or rendering. This
makes GPUs ideal for high-throughput workloads, such as large-scale
scientific simulations like CFD [37,38], where solving equations over
large grids benefits from massive parallelism, enabling faster and more
scalable computations. Parallel programming on CPUs and GPUs relies
on distinct platforms. For CPUs, OpenMP and MPI enable
multi-threading and task scheduling, simplifying parallel application
development. For GPUs, CUDA (NVIDIA-specific) and OpenCL
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(cross-platform) are the dominant frameworks. CUDA provides opti-
mized libraries like cuBLAS, cuSPARSE, and Thrust for scientific
computing, while OpenCL offers broader hardware support but requires
more manual tuning.

Compared to CPU-based parallel algorithms, GPU parallel algorithms
demonstrate significant advantages in terms of parallel efficiency [27,
39] and mesh postprocessing. Specifically, GPU parallel algorithms
excel in handling large-scale CFD problems due to their ability to
execute thousands of threads simultaneously without being constrained
by an optimal thread count [37], unlike CPU-based algorithms, which
face diminishing returns beyond a certain number of threads due to
inter-core communication. On mesh postprocessing, GPU parallel algo-
rithms simplify the process by performing computations globally at the
level of mesh cells and faces (Fig. 1A), automatically assigning tasks to
available threads without requiring subdomain partitioning. This
approach avoids the use of ghost cells, which are necessary in CPU-based
domain decomposition algorithms (Fig. 1B) to manage data exchange
across subdomain boundaries [40]. This automatic task assignment
minimizes workload imbalance and eliminates efficiency losses while
making processing significantly less complex, even for intricate do-
mains. This work focuses on developing parallel algorithms for
GPU-accelerated CFD and CFD-DEM framework, in conjunction with the
adaptive mesh refinement algorithm.

We propose two foundational GPU-parallel algorithms for finite
volume method (FVM) computations on unstructured grids: a cell-based
and a face-based strategy, as illustrated in Fig. 2. In Fig. 1A and Fig. 2A,
the cell-based approach assigns each GPU thread to a unique control
volume (cell or particle), allowing it to independently access and update
local data. This thread-level parallelism is particularly effective for
localized FVM operations, such as source term evaluations and explicit
time integration of cell-centered quantities. Moreover, this pattern is
directly applicable to the discrete element method (DEM), where each
thread independently updates the motion and interaction forces of a
single particle, facilitating efficient DEM coupling.

Fig. 2B presents the face-based parallel strategy, in which each GPU
thread is assigned to a unique mesh face and is responsible for compu-
tations such as numerical flux evaluation or gradient reconstruction.
Compared to the cell-based approach, the face-based strategy is more
complex and involves two distinct scenarios. The first is analogous to the
cell-based strategy, where each thread performs operations directly on
data associated with the face itself. The second, and more involved case,
requires the thread to access and update data associated with the cells
adjacent to the face. Owing to the unstructured nature of the mesh, each
face stores information about its neighboring control volumes
(commonly referred to as the owner and neighbor cells), thereby
enabling efficient access to surrounding cell values needed for opera-
tions such as interpolation or face-to-cell flux contribution. This added
layer of complexity necessitates the use of atomic operations to ensure
data consistency, as multiple threads may concurrently access and up-
date the same cell-level quantities through different adjacent faces,
leading to potential race conditions in the absence of proper
synchronization.

These two parallelization strategies constitute the core computa-
tional framework for GPU-accelerated multiphysics simulations on un-
structured meshes. By leveraging thread-level locality and efficient
memory access, they enable scalable, high-performance computation for
coupled CFD-DEM simulations involving complex particle-fluid in-
teractions. Compared to traditional CPU-based parallelization, this GPU-
based approach offers a fundamentally different paradigm. Even with
high-end GPUs such as the RTX 5090, which features 21,760 CUDA
cores, the number of threads remains significantly smaller than the
millions of control volumes typically found in large-scale CFD simula-
tions. This imbalance ensures high occupancy and throughput, allowing
the GPU to be fully utilized. In contrast, CPU-based methods rely on
domain decomposition, where each processor core is assigned a large
subdomain (Fig. 1B). This process entails nontrivial overheads,
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including mesh partitioning, ghost-cell setup, and intensive inter-core
communication, all of which can become significant bottlenecks in
scaling. By eliminating the need for such decomposition and enabling
fine-grained parallelism, the proposed GPU framework offers enhanced
efficiency and scalability for multiphysics simulations on unstructured
grids.

2.2. A GPU-accelerated two-phase resolved CFD-DEM framework

In this study, a fully resolved coupled CFD-DEM approach based on
the Immersed Boundary (IB) method is employed to simulate the
interaction between fluid and particles. Within this framework, accurate
two-way fluid-particle coupling is achieved using a single background
Eulerian mesh for the fluid, in which particles are embedded. To resolve
the flow around individual particles and capture detailed interaction
forces, the mesh size must be significantly smaller than the particle
diameter. Although no universally applicable threshold exists, studies
have suggested that a ratio (defined as mesh size divided by particle
diameter) on the order of 1/8 [41] or 1/10 [42] is required. This reso-
lution enables accurate estimation of the full spectrum of particle-fluid
interaction forces, including drag, lift, and buoyancy, following the
method proposed by Lai et al. [43], leading to improved predictions of
the overall flow behavior. However, the high grid resolution results in a
substantial increase in computational cost, making AMR a critical
technique for enhancing computational efficiency. This section presents
the numerical algorithm underlying the resolved CFD-DEM approach.

2.2.1. Momentum equation of CFD

Building upon the Navier-Stokes equation, the following momentum
equation is formulated to account for various physical phenomena, such
as surface tension and fluid- particle interaction forces, as represented
on the right-hand side of the equation.

%(pu) +V-(pu®u) =-Vp+pg+ V-(u-(Vu)) + c6|Va, |n + f, + f1,
(@)

where p, u and p represent the density, velocity, and pressure of fluid,
respectively. p is defined as p = pq+ pgh, where pq is the dynamic
pressure, g is the magnitude of gravitational acceleration g, and h is the
reference height [44]. ¢ represents the curvature of the fluid interface,
expressed as ¢ = — V-n. n is the unit normal vector at the interface,
calculated as n = Va; /|Vai|. o denotes the surface tension coefficient
and f, represents the interaction force between the fluid and particles,
and f; denotes the thermal dynamic forces.

The momentum equation (Eq. (1)) can be discretized based on the
FVM, as shown in Eq. (2). The Pressure Implicit with Splitting of Op-
erators (PISO) algorithm, a widely used pressure correction method for
coupling velocity and pressure in CFD simulations [45], is employed to
solve for velocity and pressure. The PISO algorithm involves a predictor
step, where the pressure from the latest timestep is utilized to compute
an intermediate velocity, followed by corrector steps that iteratively
update and refine the velocity and pressure fields to obtain the final
solution [46].

/1/ (un+1 _ un) + ZP@U?H _ Zﬂ(vu)?ﬂ'an

At
+ (co|lVarIn+f+fr — VD)V, (2)

where V is the cell volume, At is the time step of CFD, ¢ = (u;’-n)A is the

flux across the mesh face and A denotes the face area. uy and Vu; are the
velocity and the velocity gradient at the mesh face, and ny¢ is the face
normal.

For the interaction force in resolved CFD-DEM, two mainstream
approaches are commonly adopted. The first method employs an explicit
distributed processing strategy, where the interaction force is initially
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excluded from the momentum equation [47]. The fluid velocity and
pressure are then corrected based on particle velocities by solving an
additional approximate Poisson-like correction equation. This approach
offers higher numerical stability but requires the solution of an extra
correction equation. The second method incorporates the interaction
force implicitly within the momentum equation, solving it in a single
step [43,48]. Since it rigorously satisfies the velocity conditions at the
particle-fluid interface and is simpler to implement in code [43], the
second approach is adopted in this work and the interaction force f is
calculated based on the model proposed by Lai et al. [43].

f. :Z(<1 J%sp)u +%ep(vp +w,xT1) — u"“)Au, 3

where ¢, denotes the solid fraction, representing the volume fraction
occupied by particles within a given CFD cell. The solid fraction can be
computed using a signed distance function, with detailed computational
procedures provided in Ref. [43]. For the cell under observation, a solid
fraction e, =1 indicates that the cell is fully within a DEM particle,
while &, = 0 signifies that the cell is entirely outside the particle. y is a
smooth masking function, often associated with the hyperbolic tangent
function (tanh) [48,49]. In this study, ¥ = &,(1.0 + tanh(100(e, —
0.5))). ps and p represent the densities of the particle and fluid,
respectively, while v, and u denote their corresponding velocities. @,
represents the angular velocity and r represents the position vector
extending from the particle’s centroid to the center of the mesh cell. A,
represents the diagonal elements of the coefficient matrix formed after
the discretization of Eq. (2).

In this work, three physical phenomena are considered to calculate
the thermal dynamic force: Darcy’s effect, recoil pressure, and Mar-
angoni flow. These respectively represent the influence of solid-liquid
phase change, evaporation, and the variation of surface tension with
temperature.

(a1 — aw)’ T-T 2p
= -K~—= " oy LM \Y%
fr K. ) u + 0.54poexp T, | al\pl pzn
do
+— (VT — VT)) |V s 4
dT( (VD)) allpl + P, “)

where |V is an interface term used to convert a surface force per unit
area into a volumetric surface force [50,51]. p; and p, denote the den-
sities of the two phases. 2p/(p; +p,) represents a sharp surface force
used to diffuse the interphase region [52]. K, is the permeability coef-
ficient, and Cy is a constant (set to 1 x 107> in this study)) to avoid
division by zero. ay, is the volume fraction of molten metal, which can be

approximated by a Gaussian error function [53] as an = % |1 +

erf <—lers (T - —T‘ZTS>>

temperatures, respectively. pg is the atmospheric pressure and Ly is the
latent heat of vaporization. The term do/dT denotes the temperature
dependence of the surface tension coefficient. M is the molar mass, T is
the temperature, Ty, is the boiling temperature, and R is the universal gas
constant.

, where T; and T; are the liquidus and solidus

2.2.2. Multiphase consideration in CFD

The simulation of multiphase flow has commonly been addressed
through the Volume of Fluid (VOF) method, utilizing volume fractions ;
to characterize the presence of distinct phases within the domain.
Nevertheless, VOF tends to yield a diffused interphase between different
phases, necessitating a specialized and intricate approach to capture
sharp interfaces. In this study, the default scheme in OpenFOAM [54],
MULES, is utilized to sharpen the interface. MULES integrates a
compressive flux term into the advection equation to enhance the
interface resolution. The following continuity equation with a
compressive flux term (Eq. (5)) is utilized to solve the volume fraction
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field. The fluids are assumed to be incompressible, and their continuity
equation can be written as V-u = 0.

% + V-(aju) + V- (o (1 — a)u.) = 0, 5)
where u. = c[u|Va;/|Va;| is the compressed velocity and ¢ € [0, 1]is the
coefficient to control the compressed velocity. The compressive velocity
is an artificially augmented velocity field specifically designed to
counteract numerical diffusion at phase interfaces [55]. It acts as a
sharpening term applied to the relative velocity between phases,
enhancing interface resolution while maintaining boundedness through
flux limiting.

The discretization of Eq. (5) is shown in Eq. (6). The term (p:if sig-
nifies the cumulative volume fraction flux at the mesh face at time step
n, encompassing both the flux induced by the fluid velocity and the
compressed velocity. The core of the MULES algorithm lies in the
method used to update this flux term ¢ ;. Further details about the
MULES algorithm can be found in the literature [56].

o =a — ALY ony (6)

The equivalent density p and viscosity x over the entire CFD domain
could be updated:

p=aip, +asp, ;
{M:alﬂlJFaZ//‘z ' @

where the subscripts (1 and 2) denote two fluid phases, respectively.

2.2.3. Momentum equations of DEM

DEM is used to solve the linear and angular momentum equations
governing the motion of individual particles (Eq. (8)), which are derived
based on the Newton-Euler equations. Multiple interaction forces [57,
58], including the particle-particle collision force F,_,, the particle-wall
collision F,_,, and the fluid-particle interaction F¢ [43], have been
considered. The term @, x (I,w,) represents the gyroscopic torque
arising from the interaction between the inertia tensor distribution and
angular velocity. In the context of DEM, spherical particles are typically
assumed to be homogeneous and isotropic, with an inertia tensor I, =
I'I3, where I3 is the identity matrix and I is a scalar constant. As a result,
the gyroscopic term @, x (Lwp) = @, x (Iwp) = I(wp xwp) = 0 iden-
tically vanishes for spherical particles, and thus only contributes to
simulations involving non-spherical particles. The fluid-particle inter-
action F¢ consists of two components: one arising from the fluid pressure
gradient and viscous forces, and the other, associated with f, account-
ing for errors due to the averaging of fluid and solid velocities in
partially overlapped cells [43].

dv,
my— 2 = Fr + myg + S Fpt Y Fpu

do, =Y M+ Ym ®

L2+, x (Lw,)
7£P>fs)

Pdt

Fr = Z(&ep( — Vp + pupViug) + (

JETy P

where m;, denotes the mass of Particle p. M; and M; correspond to the
torque generated by the tangential force and the rolling friction torque,
respectively [59]. The subscript j denotes the cell index in CFD, Ty
represents a set of grid cells covered by Particle p, and V indicates the
cell volume. The interparticle contact behavior is modeled using the
classical Hertzian contact law in combination with Coulomb’s friction
law [60]. In this study, the particle-particle collisions are characterized
by a contact stiffness of 2 x 10° N /m, a friction coefficient of 0.5, a
restitution coefficient of 0.3, and a Poisson’s ratio of 0.35.

This work employs explicit schemes to discretize the governing Eq.
(8) into Eq. (9), facilitating the development of a particle-based parallel
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Fig. 3. A schematic illustration of the VOF-compatible ray tracing model.

algorithm compatible with GPU implementation, analogous to the cell-
or face-based parallel algorithm illustrated in Fig. 2.

v, = (Vp" + (Ff +myg+ Z F, , + Z Fp,w)nAt) /mp
o, = (wp" + (Ip’1 (ZM‘ + Z M, — @, X (Ipa)p)>)nAt> ®

where the superscript n denotes the n™ time step. At indicates the time
step of DEM.

2.2.4. Temperature equation of resolved CFD-DEM

In this study, a fictitious CFD domain consisting of pure fluid phases
and virtual DEM particles is constructed to resolve the high-resolution
thermal field for both fluids and particles in laser powder bed fusion
(LPBF). This approach, originally proposed in 2021 [1], has been vali-
dated through multiple benchmark cases [1,61]. It overcomes the lim-
itation of the homogeneous particle assumption in traditional DEM by
capturing rigorous intra-particle temperature gradients under laser
heating. Furthermore, once local melting occurs within a particle, the
DEM particle is replaced by CFD fluid to enable continued multiphase
thermal-fluid simulation. For the CFD fluid, the solid phase is modeled
as a highly viscous fluid, and the melting process is captured by a
temperature-dependent metal viscosity y,, as defined by the following
expressions.

1 4 _ In(Ty) +In(Ty)
lny, = 2erfc LDTJ T, (lnT 3

], o)+ 1o
(10)

where yg and y; are the viscosities at solidus temperature T; and liquidus
temperature Tj, and erfc denotes the complementary error function.

The thermal field is governed by the temperature equation (Eq. (11)),
which is derived from the principle of energy conservation. The seven
terms on the right-hand side of the equation represent the contributions
from laser heating, conduction, dissipation, fusion, convection, radia-
tion, and vaporization, respectively.

0
g (Cp;T) + V-(CppuT) = S + V-V(kT) + y(Vu +uV) : Vu

—L¢ {a% (prom) + V-(pTuam)}

2Cp
—h (T = Teef) |V _o=rr
< «)| al|C1/)1 + Cop, (11)
, 2Cp
oy (14 - rgef) N rovs Tczpz
pol M < T— Tb> . 2Cp,
—-0.82——————exp( LM Va
(22MRT)*5 P RTT, | 1‘clpl + Cap,

where L¢ is the latent heat of fusion, h. is the convective heat transfer
coefficient, T, is the reference temperature, and oy, is the Stefan-
Boltzmann constant. p;, C and k denote the effective density, heat ca-
pacity, and thermal conductivity, respectively, and are computed as
follows: pr = eppp+ (1- &) (a1py + azp,),
kr = epkp + (1 — &) (arky +azkz), and C = epppCo/pr + (1-

&p)(a1C1p; + a2Cap,)/pr. The subscripts p, 1, and 2 represent the
particle phase, first fluid phase, and second fluid phase, respectively.
a) = &p + a; denotes the effective volume fraction of metal during the
LPBF process, accounting for both the solid particle fraction and the
fluid phase metal fraction. S; represents the laser energy input, which is
calculated using a ray tracing model [61] specifically tailored for the
VOF method.

Fig. 3 illustrates the ray tracing model adopted in this study, which is
specifically designed to accommodate the diffuse interfaces generated
by the VOF method and accounts for multiple reflections and re-
fractions. The model involves two levels of energy discretization. First,
the continuous laser beam is discretized into a set of incident rays.
Second, at the interface between fluid phases, each incident ray is
further partitioned into sub-rays based on the local volume fraction,
distributing energy accordingly. These sub-rays are then individually
subjected to ray tracing operations, including reflection and refraction.
Fresnel reflection and refraction laws are employed to calculate multiple
reflections and refractions at the phase interfaces. It is assumed that the
incident angle 6; is equal to the reflection angle 6g, and the refraction
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Fig. 4. Flowchart of the full-process GPU accelerated coupled CFD-DEM framework.

angle Or satisfies Snell’s law: njsing; = nrsindr, where n; and ny are the
refractive indices of the two respective media.

The incident, reflected, and transmitted energies of each sub-ray are
calculated using Egs. (12)-(14) [62]. In particular, the laser absorption
coefficient fi, in Eq. (12) represents the second level of discretization,
which is determined based on the difference in the volume fraction « at
the fluid interface (Fig. 3). The remaining terms in Eq. (12) correspond
to the first level of discretization, where the continuous laser beam is
decomposed into incident rays according to the mesh resolution. Addi-
tionally, the model accounts for the attenuation of laser energy within
the metal phase, with the energy absorbed by each traversed cell
computed as described in Eq. (15). Detailed algorithmic procedures and
validation cases can be found in Ref. [61].

2P “2[(x = X(0)* + (y - Yi(t)®
a="f 5 exp [ - ]
E(Rg ; {% (zfzf)] )AL R+ {% (zfzf)]
12)
1141 ecosd))? &2 — 2ecosd) + 2c0s20; 13)
=5 \1+ (1 + ecosn)® | & + 2¢costy + 2cos6; ) I
_(1 1 /14 (1 —ecosy)® & — 2ecosby + 2c0s%0; (14)
ar = 2\1+(1+ gcos{-)l)z €2 + 2ecosf; + 2c0s26;

qc = (efﬂp _ e*}’(lp#»AL))qT (15)

Where P is the laser power, R, is the laser beam radius, and z is the z-
coordinate of the lens focus. The laser is assumed to irradiate vertically
along the z-axis. ) is the laser wavelength, and AL is the cell size. (x,y, z)
denotes the coordinates of the target cell and (Xi(t), Yi(t)) specifies the
laser scanning center on the x-y plane. ¢ is a material-dependent
parameter related to electrical conductivity [63,64]. y is the attenua-
tion coefficient governing laser energy decay during penetration [65],
and [, is the distance from the point of laser incidence to the target cell
along the ray path.

2.2.5. Full-process GPU parallel framework

Full-process GPU-accelerated CFD-DEM refers to executing all steps,
except for mesh reading and results export, entirely on the GPU. This
includes mesh postprocessing, equation discretization and assembly,
and linear system solving. This section focuses on presenting a basic
parallel framework without delving into the detailed algorithm imple-
mentation. It is important to note that in full-process GPU-accelerated
CFD-DEM, all computational modules are executed on the GPU. There-
fore, the implementation of adaptive mesh refinement algorithms must
also be fully GPU-based. Any data transfer between the CPU and GPU
during the adaptive mesh refinement process would significantly reduce
overall computational efficiency.

The computational modules of the full-process GPU-accelerated
CFD-DEM framework primarily consist of the following components:
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Fig. 5. Schematic representation of the mesh data structure: (A) face and cell indices; (B) owner and neighbor cell indices for selected interior faces; (C) owner cell
indices for selected boundary faces. For interior faces, the owner cell index is always smaller than the neighbor cell index. Boundary faces have no neighbor cell, as

each boundary face is adjacent to only one cell.

(1) Basic Mathematical Operations: Fundamental arithmetic opera-
tions such as addition, subtraction, multiplication, and division.

(2) Explicit Computations: Calculations including gradients, face
interpolation, divergence terms, and particle interaction forces.

(3) Equation Assembly: Construction of linear systems, incorporating
terms such as convective, diffusive, transient, and source terms.

For Components (1) and (2), parallel algorithms based on cells, faces,
or particles (Fig. 2) can be directly employed. For component (3), cell- or
face-based parallel algorithms must be utilized to assemble the coeffi-
cient matrix A and constant vector B of the linear equations (Ax = B),
depending on the chosen discretization scheme. To reduce GPU memory
usage, the matrix A is stored in the Compressed Sparse Row (CSR)
format [66], which is widely used in sparse linear algebra. For instance,
in a mesh with one million cells, the resulting sparse matrix contains
fewer than seven million nonzero double-precision entries, corre-
sponding to roughly 56 MB of memory. To clarify the distinction be-
tween the abstract mathematical formulation and the actual
implementation, we provide a theoretical comparison with a full matrix
representation. While not used in practice, such a representation would
require on the order of 10'? double-precision entries, approximately 8
terabytes of memory, rendering it computationally infeasible for
GPU-based simulations. This contrast underscores the necessity of
adopting sparse matrix storage formats such as CSR in large-scale sim-
ulations. Moreover, it is important to note that for face-based parallel
algorithms, atomic operations are necessary to prevent memory con-
flicts that could lead to incorrect results. In this study, the algebraic
multigrid solver (AMGx) library, developed by NVIDIA, is employed to
solve the linear equations.

2.2.6. Overall solution procedure

The fully GPU-accelerated resolved coupled CFD-DEM framework
proposed in this study has been implemented in the CFD-DEM software
TFluid (www.t-fluid.com), developed on the CUDA C+-+ platform. Both
the CFD and DEM solvers are executed entirely on the GPU, with all data
residing in the global memory. As a result, during coupling, the required
information, such as fluid velocity fields, particle positions, and veloc-
ities, can be directly accessed from the global memory without CPU-GPU
communication overhead. It is important to note that the coupling
procedure typically involves neighborhood search algorithms, including
both particle-particle and particle-cell proximity queries. In this work, a
classical spatial hashing technique is employed, wherein the

computational domain is divided into uniform cubic bins to facilitate
efficient neighbor searching. The algorithm’s core solution procedure is
outlined below, in conjunction with the flowchart depicted in Fig. 4:

(1) Initialization: Set the initial conditions for the CFD and DEM
domains, including mesh data, boundary conditions, initial con-
ditions, particle data. Transfer the input data from CPU memory
to GPU memory.

(2) Preprocess: Compute mesh-related information and particle-
specific data on the GPU using the cell-/face-/particle-based
parallel algorithm (Fig. 2), such as cell volumes, face normal
vectors, and particle volumes.

(3) DEM: Evaluate forces due to gravity, particle-fluid interaction
(Eq. (8)), and particle collisions. Update particle motion using the
explicit scheme (Eq. (9)).

(4) Multiphase model: Solve the multiphase model using the MULES
algorithm (Egs. (5) and (6)), updating the volume fraction field
for the two phases. Adjust the physical parameters in Eq. (7),
including density and viscosity, based on the updated volume
fraction field.

(5) PISO solver: Assemble the momentum equations (Eqs. (1) and
(2)) without the pressure term, and construct the pressure
equation. Solve the pressure equation using AmgX, then update
the pressure, flux, and velocity fields accordingly.

(6) Iteration: Return to Step (3) and repeat the simulation until the
final time step is reached.

This streamlined iteration ensures efficient simulation performance
entirely on the GPU, leveraging the framework’s full computational
potential.

2.3. A GPU-accelerated AMR algorithm

Three essential requirements must be satisfied for a GPU-accelerated
AMR algorithm to be practical and efficient: (1) The entire AMR algo-
rithm must be implemented exclusively on the GPU, completely avoid-
ing data transfer between the CPU and GPU; (2) The AMR algorithm
should exhibit scalability and not be restricted to specific mesh struc-
tures. For example, octree structures are generally limited to hexahedral
meshes; (3) The implemented AMR algorithm must be sufficiently effi-
cient, ensuring that its computational cost constitutes only a small
fraction of the total duration for one time step. By fulfilling these three
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requirements, the proposed algorithm ensures high efficiency and strong
scalability, making it suitable for integration into various CFD and CFD-
DEM algorithms.

The primary challenge involves refining the mesh, reconstructing its
topology, rebuilding data structures, and remapping data from the
original mesh to the updated mesh on the GPU. The following sections
present a comprehensive explanation of how the proposed algorithm
effectively addresses these challenges.

2.3.1. Unstructured mesh

Mesh storage structures are generally categorized into two types:
structured and unstructured meshes. Structured meshes allow for effi-
cient identification of neighboring cells, facilitating the assembly of
linear equation systems. However, their application is limited to
computational domains where the curved boundaries are not readily
amenable to alignment with a structured grid. Consequently, most
commercial and open-source software employs unstructured meshes,
which can accommodate arbitrary computational domains. For instance,
the widely used open-source software OpenFOAM employs a face-based
unstructured mesh structure. This structure represents the mesh topol-
ogy through three primary lists (Fig. 5): point coordinates (P), point
indices of faces (F), and boundary information (B), along with two lists
defining face relationships: the owner (O) and neighbor (N) cells of the
faces. This study employs the same unstructured mesh framework as
OpenFOAM to ensure broader applicability across diverse scenarios. As
the primary focus is on the adaptive mesh refinement algorithm, mesh
generation is not addressed in detail. It is assumed that the five previ-
ously mentioned lists are already provided.

The proposed AMR algorithm is primarily designed for unstructured
hexahedral grids. In addition to regular cuboid domains or those
composed of multiple adjoining cuboids, it can also be combined with
the cut-cell method [67,68] to accommodate computational domains
containing curved or inclined boundaries commonly encountered in
industrial or laboratory scenarios [69-71], such as cylindrical walls,
trapezoidal enclosures, or undulating terrain surfaces. In such cases, the

boundary region is represented by polyhedral cells formed by cutting the
base hexahedral grids, which are then seamlessly connected to the
interior hexahedral mesh. This results in a hybrid grid structure where
the interior retains hexahedral regularity while the boundary is repre-
sented by locally refined polyhedral cells. Consequently, structured
grids cannot be directly employed, and an unstructured representation
becomes necessary to preserve the geometric fidelity of the boundary.

It should be emphasized that, in the resolved CFD-DEM framework,
the particle diameter is typically at least 8-10 times [41,42] larger than
the local cell size. Therefore, the cut-cell boundaries only affect particles
located near the wall region, typically within a range below 10% of the
computational domain. Moreover, multiple levels of refinement [67,68]
can be applied prior to the cutting operation to further minimize the
influence of boundary cells on particle-wall interactions. Consequently,
under these conditions, the core focus of the AMR scheme can remain on
the dynamic adaptation of the internal hexahedral cells, largely inde-
pendent of the specific cell types at the boundary. Accordingly, both
rectangular and cylindrical computational domains are used in this
study to evaluate the core performance of the AMR scheme.

2.3.2. Mesh refinement

The AMR algorithm focuses on refining selected regions and recon-
structing the mesh topology to generate updated unstructured mesh
information, as described in the previous section. This chapter specif-
ically introduces the first part of the algorithm, which concentrates on
refining selected regions and consists of four key steps: (1) Copy the
initial mesh at t = 0 s as the parent mesh; (2) Establish criteria to identify
regions requiring mesh refinement; (3) Determine the mesh type within
the selected regions and the corresponding refined sub-mesh type; (4)
Construct cell- and face-based number lists to rebuild the counts of
points, faces, and cells; The following part will provide a detailed
explanation of these four steps.

(1) Parent mesh preparation
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Algorithm 1
Mapping of the refinement index.

Input: Refinement index for the parent mesh Iy, refinement index for the current
mesh I, cell number of the current mesh N¢;, and mapping array Inap.
Output: Refinement index for the parent mesh I,.

1 1st GPU kernel:

2 for i < N¢; do

3 Get the cell index j = Inap|i] in the parent mesh corresponding to cell index i in
the current mesh;

4 Calculate the refinement index of the parent mesh: I [Imap [i]} =

max{Io [Imap ], L[i] };

The initial mesh is saved as the parent mesh, serving as the foun-
dation for AMR processing at each subsequent time step. In each time
step, specific regions are selected for mesh refinement based on this
parent mesh. An alternative approach involves using the mesh from the
previous time step as the base, refining the mesh in selected regions or
removing previously refined mesh. While this method reduces the
number of mesh elements being processed, it requires handling both the
addition and removal of mesh elements and limits the ability to fully
leverage the GPU’s parallel processing capabilities. In contrast, using a
single parent mesh requires only the addition of mesh elements,
simplifying the logic and ensuring a uniform algorithm for every time
step. This approach is better suited for large-scale parallelism on GPUs.

Fig. 6 provides a schematic illustration of the point and face indexing
schemes for a single parent-cell, using both a regular hexahedral and a
tetrahedral element as examples. Specifically, point indexing follows the
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convention used in the VTK library [72] for voxel and tetrahedral ele-
ments. For face indexing, a mapping between point indices and face
indices is explicitly defined. Fig. 6A illustrates the point-to-face mapping
for a hexahedral element; for example, face f, is defined by the quad-
rilateral formed by points pg, p1, p2, and ps3, while face f; is formed by
points p4, ps, ps, and py. Fig. 6B shows the corresponding mapping for a
tetrahedral element; for instance, face f; is formed by points pg, p1, and
D2, and face f; is formed by points py, p1, and p3. With this mapping, the
local face index within a given cell can be determined by matching the
vertex indices of a face during face-based traversals. These indexing
conventions serve as the basis for subsequent mesh refinement
operations.

(2) Refinement index computation

Based on the current mesh, a refinement index I, is computed to
identify cells requiring refinement. This index is formulated as a Boolean
variable, with 1 indicating a cell marked for refinement and 0 indicating
no refinement needed. Common physical criteria for I; include the
gradient of the volume fraction in general two-phase flows or the
gradient of the solid fraction in CFD-DEM simulations. For the present
work, we adopt these criteria to enable the selective application of grid
refinement specifically around the particle-fluid and two-phase in-
terfaces. This targeted refinement is critical for achieving the accuracy
required in force computations.

Under this criterion, cells entirely inside the particles are maintained
at a coarse level since the fluid velocity in these regions is prescribed by
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Fig. 7. Local index mapping for a hexahedral sub-mesh: (A) vertex indices, (B) sub-cell indices, (C) face indices on the parent mesh, and (D) face indices in the sub-
mesh. p, to p,, ¢;, and f; represent the initial point indices, cell index, and face index for the parent mesh.
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Fig. 8. Local index mapping for a tetrahedral sub-mesh: (A) vertex indices, (B) face indices in the sub-mesh, (C) face indices on the parent mesh, and (D) sub-cell
indices. p, to p, ¢;, and f; represent the initial point indices, cell index, and face index for the parent mesh.

Eq. (3) to match the particle velocity, and is thus independent of the CFD
solution, rendering further refinement unnecessary. Although the
refinement criterion could be extended to include particle interiors, the
strategy employed here focuses selectively on the interfaces to achieve
an optimal balance between numerical accuracy and computational
efficiency.

Next, the refinement index I; from the current mesh must be mapped
onto the parent mesh, denoted as I, to determine which cells of the
parent mesh require refinement. This mapping process involves a
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mapping array, Inap, of size N¢;, where Iap (i) = j indicates that cell i in
the current mesh corresponds to cell j in the parent mesh, and N¢; de-
notes the cell number of the current mesh. Using this mapping, the
refinement index for the parent mesh, Iy, can be updated as I [Imﬂp [i]} =
max{Io [Imapli]], It[i] }. Algorithm 1 presents the GPU kernel function
utilized in this process. For the initial state, Imap[i] = i. For the other time
steps, the computation of the mapping array In,p will be explained in the
next sections.
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Point index: Npy + Lp[i] + P;

P;: local index of vertex in Fig. 6

Cell index: Ngo + L.[i] + C;

C;: local index of cell in Fig. 6
L &
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P;:: local index of vertex in Fig. 6
—>  Cell index: Ngo + Lc[j] + G
Cj: local index of cell in Fig. 6
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Fig. 9. Schematic illustration of the global index computation for newly added mesh points, cells, and faces by traversing cells (A), interior faces (B), and boundary
faces (C). The traversal pattern corresponds to the two fundamental parallelization strategies introduced in Fig. 2.

(3) Sub-mesh structure

After identifying the parent mesh cells requiring refinement, their
cell types are determined, and corresponding sub-meshes are assigned.
For programming convenience, the sub-mesh structure for each cell type
can be predefined, including sub-cells and sub-faces. Specifically, the
sub-mesh must predefine the number and local indices of new points and
faces added to the parent mesh face, as well as the number and local
indices of new points, faces and cells within the parent mesh cell. This
facilitates subsequent face numbering and mesh renumbering.

Taking a hexahedron as an example, a classical refinement approach
is similar to an octree structure, where the cell is uniformly divided into
8 smaller hexahedra, as illustrated in Fig. 7. However, it is important to
note that this study does not adopt the octree structure. Instead, the
approach shown in Fig. 7 is used, which employs local point indices
(Fig. 7A), local cell indices (Fig. 7B), and local face indices (Fig. 7C and
D). The numbering of sub-cells and sub-faces in the proposed sub-mesh
framework must satisfy the following requirements to ensure
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algorithmic generality and efficient execution: (1) Maximally reuse in-
formation from the parent mesh to minimize the computational load
required at each time step; (2) Numbering scheme should be compatible
with mesh types, such as tetrahedral and hexahedral meshes.

Firstly, when defining local indices, we opt to reuse the initial mesh
indices, as illustrated by py to p7, ¢;, and f; in Fig. 7. The remaining local
indices are appended to the end of the mesh topology data, including the
owner array, neighbor array, point array, face array, and boundary face
array. This approach eliminates the need to reorder or update infor-
mation for cells that do not require refinement, allowing the original
data to be directly copied while updating only the information for
refined cells. Through this operation, the aforementioned requirement
(1) can be effectively satisfied.

Secondly, for vertices, faces, and cells that are not inherited from the
initial mesh indices, custom numbering rules are applied. For hexahe-
dral meshes, indices are assigned to the sub-mesh elements based on the
magnitude of the three-dimensional coordinates of vertices, face centers,
and cell centers, as illustrated in Fig. 7. Additionally, we further present
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Topology arrays:

AMR-induced additional
topological data

Fig. 10. Schematic illustration of the topology reconstruction process. The refined face and cell arrays are compressed representations of the original arrays,
designed to improve GPU parallel efficiency during the construction of topology arrays. Note that the amount of AMR-induced additional topological data shown in
the figure is for illustrative purposes only; the actual data depends on the specific refinement strategy and the variables involved. Details can be found in the

subsequent algorithm descriptions.

a feasible example of a tetrahedral sub-mesh, as illustrated in Fig. 8,
which includes the vertex indices, face indices, and sub-cell indices.
These indices are systematically assigned based on the ordering of the
four vertices of the parent tetrahedron. Specifically, given the set of
three vertex indices that define a face and the full set of four vertex
indices of the tetrahedron, the local indices of the sub-cells adjacent to
the corresponding sub-face can be efficiently identified. For example, if
the input face is defined by the vertex set {pi1, p2, p3}, the four sub-cells
adjacent to this face can be directly mapped to local indices 0, 1, 2, and
6. Furthermore, based on the vertex coordinates and geometric re-
lationships, important geometric information such as the centroids of
sub-cells and sub-faces can be rapidly determined. For other types of
meshes, a custom numbering scheme can be similarly adopted, ensuring
compliance with the aforementioned requirement (2). However, it is
important to note that the numbering scheme must satisfy the condition
that a refined sub-face index can be quickly mapped to its adjacent sub-
cell index. The significance of this requirement will be elaborated upon
in the following steps.

(4) Numbering list construction

Following the determination of refinement indices and sub-mesh
configurations, the cardinality of new geometric entities (vertices,
faces, and cells) can be systematically quantified. Taking the hexahedral
mesh used in this work as an example, a single first-level refined sub-
mesh results in an increase of 19 vertices and 7 cells. Additionally, the
newly generated faces are categorized into three groups based on their
location: on the inner face of the parent mesh (FI), on the boundary face
of the parent mesh (FB), and inside the sub-mesh (FC). For faces located
on the inner or boundary faces of the parent mesh, the face count in-
creases by 3, whereas for faces inside the sub-mesh, the face count in-
creases by 12. The construction process of the numbering lists of points
(Lp), cells (L), FI faces (Lg), FB faces (Lgg), and FC faces (Lrc) can be
found in Algorithm Al.

The total number of point (Np), cell (N¢), inner face (Ny), boundary
face (NpF) for the refined mesh can also be obtained by the sum of the
numbering lists of Lp, L¢, Lir, Lpr, Lrc, and initial number of point (Npo),
cell (Nco), inner face (Nir), boundary face (Nggo) for the original mesh.
Drawing inspiration from CSR format efficiency, we implement inclu-
sive scan operations to dynamically update indexing structures. This
optimization enables efficient index mapping between parent mesh sub-
domains and their refined counterparts during subsequent computa-
tional phases.
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Our parallel processing framework employs a dual traversal strategy
aligned with fundamental GPU parallelism paradigms illustrated in
Fig. 2. By systematically traversing mesh cells, interior faces, and
boundary faces, we efficiently compute global indices for all refined
mesh entities through coordinated utilization of three critical compo-
nents: the parent mesh’s original entity counts, dynamically updated
numbering lists from current refinement operations, and local-to-global
mapping schematics depicted in Fig. 7. This integrated approach ensures
deterministic index resolution for newly generated geometric entities
while rigorously preserving topological relationships inherited from the
parent mesh. The computational efficacy of this methodology is visually
demonstrated in Fig. 9, where the derived global indices maintain both
geometric consistency and hierarchical connectivity across refinement
levels. The traversal mechanism inherently aligns with GPU-optimized
memory access patterns, enabling concurrent processing of mesh en-
tities without compromising data dependency constraints.

2.3.3. Topology reconstruction

The objective of this step is to reconstruct the five key arrays that
define the topology of unstructured meshes, as described in Section
2.3.1. A schematic overview of the topology reconstruction process is
presented in Fig. 10. Prior to this reconstruction, three auxiliary arrays
are introduced to store the indices of all cells (RC), interior faces (RIF),
and boundary faces (RBF) that require refinement. Their respective sizes
are NLc/19, NLg /3, and NLgg /3, where NLc, NLg, and NLgs denote the
total number of cells, interior faces, and boundary faces before refine-
ment. These refinement arrays explicitly identify the mesh entities that
must be updated following adaptive refinement. The construction pro-
cess of these refinement arrays is detailed in Algorithm A2 in the
Appendix.

This design is critical for maintaining high parallel efficiency on
NVIDIA GPUs, where 32 threads typically form a warp that executes the
same instruction simultaneously. By eliminating the conditional
branching illustrated in Fig. 9, which would otherwise arise from
checking whether each entity requires refinement, our pre-filtering ar-
rays ensure warp-level coherence. Without these pre-filtering arrays, the
presence of only a few cells or faces requiring refinement within a warp
would lead to significant thread divergence and reduced computational
throughput.

Subsequent sections will present a systematic reconstruction meth-
odology for these core topological arrays, comprising point coordinates,
face connectivity, owner-neighbor associations, and boundary defini-
tions. The reconstruction process fundamentally relies on the global
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Fig. 11. Schematic illustration of three typical scenarios for an inner face in a hexahedral parent mesh: (A) Neither the owner cell nor the neighbor cell is refined; (B)
Only the owner cell is refined; (C) Both the owner cell and the neighbor cell are refined.
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Fig. 12. Schematic illustration of three typical scenarios for an inner face in a tetrahedral parent mesh: (A) Neither the owner cell nor the neighbor cell is refined; (B)
Only the owner cell is refined; (C) Both the owner cell and the neighbor cell are refined.

index construction framework demonstrated in Fig. 9, which enables
efficient cross-reference between pre-refinement and post-refinement
topological relationships through deterministic mapping operations.

(1) Point array

The list of newly added points is appended to the original point array.
These new points correspond to the midpoints of edges and faces, as well
as the centroids of cells in the original mesh, and their coordinates can
be readily computed from the coordinates of the original mesh points.
Given the total number of points in the parent mesh Npy and the local
numbering list Lp, obtained via an inclusive scan, the global indices of
the newly added points can be systematically determined (Fig. 9). The
coordinate construction process follows the local numbering convention
illustrated in Fig. 7A and is implemented according to the procedure
detailed in Algorithm A3 in the Appendix. It is worth noting that the
resulting point array may contain duplicate entries, corresponding to
geometrically identical points shared across neighboring mesh elements.
These redundant points can be removed using established geometric
filtering algorithms. However, such duplicates do not interfere with the
correctness of subsequent numerical computations, and their removal is
not strictly necessary for the method to function correctly.

(2) Face array and boundary array

The reconstruction of the boundary array is relatively
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straightforward, as the boundary condition type for each newly added
boundary face must remain consistent with that of the corresponding
parent face in the original mesh. In reconstructing the face array, the
newly introduced faces are categorized into three groups to assign their
global face indices: (1) faces that coincide with the interior faces of the
parent cell (FI), (2) faces corresponding to the parent’s boundary faces
(FB), and (3) internal faces formed entirely within the refined sub-cell
mesh (FC).

The face indices in the refined mesh are composed of two parts: the
number of pre-existing faces in the parent mesh and the local indices of
the newly added faces, as defined by the corresponding numbering lists.
For the first category, global indices are determined using the total
number of interior faces in the parent mesh and the numbering list Lg;.
For the second category, the global indices are computed by considering
the sum of the original interior faces and the first set of added faces,
referencing the boundary face numbering list Lgc. For the third category,
indices are assigned by incorporating all previous face counts and using
the sub-mesh face numbering list Lr;. With the global indices of newly
added points and faces established, and by referring to the local face and
point numbering illustrated in Fig. 7, the face and boundary arrays can
be reconstructed (Fig. 9). The full procedure is described in Algorithms
A4 and A5 in the Appendix.

(3) Owner array and neighbor array

To reconstruct the owner and neighbor arrays, we reuse the global
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}

Construct the sub-mesh structure
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Time =t

!

Calculate refinement index based on the custom criteria Algorithm 1

|

Construct numbering lists for cells, faces, and points Algorithm Al

Construct refinement arrays of the parent mesh Algorithm A2

b

Reconstruct mesh topology, including the arrays of points,
faces, owner cell, neighbor cell, and boundary

|

Post-process mesh information using mathematical operations

|

Remap variable fields from the previous refined mesh to the current one Algorithm A9

t=t+ At Xes t < Endtime

No l
End

Fig. 14. Workflow of the proposed GPU-accelerated AMR algorithm.

indices of the three categories of newly added faces defined in the pre- numbering lists and the local indexing schemes illustrated in Figs. 6 and
vious section. By iterating over the parent mesh faces marked for 7. These mappings shown in Fig. 9 enable the accurate reconstruction of
refinement, the global indices of the new faces, as well as their associ- the owner and neighbor arrays.

ated owner and neighbor cell indices, can be determined using the face For internal faces of the parent mesh, the post-refinement

14



T. Yu and J. Zhao

Computer Physics Communications 319 (2026) 109939

T
I I
fio i ¢ . k 4
1 ) ! P 7
1 1 7,
T . DY, 7
- -
T > T 9 1
7
M ! 27 \ ! e L flS 7/
b 1 - \ 1 -, M) [ 7
\ . . \ , \ i /
\ ,/ \ ] // \ ,/
\ h ’ \ \ ’ \ I v f
\ . , \
(| P \\ 1 S vl s/ 1
D Vo = vl p
AL AN A
. . /

N \| s \I‘/

Mo - T S— K mmm = D= — == = R M A 2
S 7 i
/ f‘) b fiz N . Yo
’ S~ ’ ~o
fs ’ S ’ s
. ~\ ”~ =

Fig. 15. Point, cell, and face indices for the minimal AMR case. Here, p;, ¢;, and f; denote the indices of points, cells, and faces, respectively.

connectivity between owner and neighbor cells falls into three typical
cases, as shown in Figs. 11 and 12: (1) neither the owner nor the
neighbor cell is refined; (2) only one of the two is refined; or (3) both are
refined. Each case is handled separately to preserve face-cell consis-
tency, with the detailed procedure presented in Appendix, Algorithm
A6.

For faces located entirely within sub-meshes, the owner and
neighbor cell indices are directly derived from the predefined
numbering schemes in Fig. 7. This step is outlined in Appendix, Algo-
rithm A7. For parent boundary faces, which only have an owner cell,
reconstruction depends solely on the refinement status of that cell. This
is effectively a simplified case of the internal face handling and is treated
accordingly, as described in Appendix, Algorithm A8.
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(4) Mesh postprocess

After reconstructing the mesh topology, post-processing of the mesh
information is required, including basic attributes such as face area, cell
volume, and face normal. These calculations involve straightforward
mathematical operations and can be efficiently performed using GPU
parallel algorithms based on faces or cells which are not detailed here.

2.3.4. Variable field remapping

After obtaining the newly refined mesh for the current time step, it is
necessary to map the variable fields from the previous time step’s mesh
to the updated mesh, including the pressure p, velocity u, and volume
fraction a. During this process, cells in the parent mesh may fall into one
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Fig. 16. Output of the minimal case demonstration code: (A) initial tetrahedral mesh; (B) refined mesh after applying AMR to the central tetrahedron. GitHub:

https://github.com/TFluid/GPU_AMR Tetrahedral.
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Fig. 17. Schematic diagram of five benchmark cases. (A) Benchmark I: 2D dam break; (B) Benchmark II: 3D dam break with obstacle [73]; (C) Benchmark III: settling
of spherical particle [74]; (D) Benchmark IV: Settling of ellipsoidal particle [75]. (E) Benchmark V: Drafting-kissing-tumbling of two particles [43].

of four categories (Fig. 13): (1) the cell remains unrefined in both the
previous and current time steps; (2) the cell was unrefined in the pre-
vious time step but becomes refined in the current time step; (3) the cell
was refined in the previous time step but becomes unrefined in the
current time step; (4) the cell remains refined in both the previous and
current time steps.

The first and fourth cases are straightforward, as the mesh connec-
tivity remains unchanged between time steps, allowing the solution
variables to be directly copied. The third case requires averaging the
values of all sub-cells to assign a representative value to the coarsened
parent cell. The second case involves distributing the values from a
previously unrefined parent cell to its newly created sub-cells.

Several interpolation strategies may be employed for this mapping
task, such as uniform mapping, linear interpolation, or higher-order
schemes. In this study, we adopt uniform mapping to preserve global
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conservation properties: each sub-cell inherits the same value as its
parent cell from the previous time step. In addition to value mapping,
index remapping is essential, since the global indices of cells occupying
the same physical location may differ between time steps. To maintain
consistency, we employ a parent-mesh-based indexing scheme that
provides a unified reference framework across time steps. As detailed in
the previous section, the refined mesh’s global indices are derived from
the parent mesh, supplemented by time-step-specific numbering lists for
localization. Our GPU-parallel remapping algorithm traverses the parent
mesh and utilizes the numbering lists (L{ and L’é”) to locate and map
corresponding parent and sub-cell indices. The complete remapping
procedure, encompassing both index and value transfer, is provided in
Algorithm A9 in the Appendix.
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Table 1
Mesh information of five benchmark cases.

Benchmark index Case index Grid type Mesh size Mesh number
Benchmark I Case 1 Uniform 10 mm 10,000
Case 2 AMR 5-10 mm 11,700
Case 3 Uniform 5 mm 40,000
Benchmark II Case 1 Uniform 4.5 mm 400,672
Case 2 AMR 2.25-4.5 mm 710,534
Case 3 Uniform 2.25 mm 3164,160
Benchmark IIT Case 1 Uniform 1.33 mm 675,000
Case 2 Uniform 1.00 mm 1600,000
Case 3 Uniform 0.833 mm 2822,400
Case 4 AMR 0.667-1.33 mm 686,424
Benchmark IV Case 1 Uniform 1.00 mm 1600,000
Case 2 Uniform 0.667 mm 5400,000
Case 3 Uniform 0.571 mm 8575,000
Case 4 AMR 0.5-1.0 mm 1610,332
Benchmark V Case 1 Uniform 0.2 mm 500,000
Case 2 AMR 0.1-0.2 mm 510,150
Case 3 Uniform 0.1 mm 4000,000

2.3.5. Overall AMR procedure

From Section 2.3.2-Section 2.3.4, a complete AMR algorithm fully
implemented with GPU parallelism has been developed. Unlike tradi-
tional octree-based approaches, this algorithm minimizes the logical
operations that GPUs handle less efficiently, with the most complex logic
involving only the classification of four categories. Moreover, the pro-
posed AMR framework is more versatile, requiring only the construction
of a sub-mesh framework. Additionally, we introduced compressed
refinement arrays similar to the CSR format to parallelize the refinement
of grids, effectively avoiding the waste of GPU thread resources. Fig. 14
summarizes the workflow of the proposed GPU-accelerated AMR
algorithm.

2.3.6. Minimal example and implementation of AMR for tetrahedral grids

To demonstrate the extensibility of the proposed AMR framework to
general unstructured meshes beyond hexahedral grids, we present a
simplified case based on a tetrahedral mesh. The simplified case consists
of 8 vertices, 5 tetrahedral elements, and 16 faces, as illustrated in
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Fig. 15. Sub-mesh templating is applied to adaptively refine a parent
tetrahedron using predefined subdivision patterns shown in Fig. 8. For
ease of understanding and reproducibility, the implementation of this
tetrahedral AMR case is made publicly available via GitHub.' As illus-
trated in Fig. 16, the demonstration code written in CUDA C++ per-
forms adaptive refinement on the central tetrahedron, showing the
transition from the initial mesh to the locally refined configuration. This
example serves as a proof of concept that the proposed AMR algorithm
can be extended to more general unstructured grids, laying the
groundwork for future applications to polyhedral or hybrid meshes.

Unlike hexahedral grids, tetrahedral elements offer greater flexibility
for representing complex geometries. Meanwhile, due to the relatively
fewer points and faces involved in a tetrahedral cell, we selected this
mesh structure for the demonstration code, which also facilitates
readers’ understanding of the algorithm. However, although the current
AMR framework is capable of performing adaptive refinement on
tetrahedral grids, generating high-quality refined meshes for tetrahedra,
particularly in complex geometries, remains a significant challenge and
warrants further investigation. Therefore, in the remainder of this study,
we adopt hexahedral meshes, which allow for more controllable
refinement quality and are more commonly used in resolved CFD-DEM
simulations.

3. Benchmark and validation

Five benchmark cases are designed to rigorously evaluate the per-
formance of the proposed GPU-accelerated AMR algorithm in coupled
simulations of two-phase resolved CFD and DEM involving both spher-
ical and non-spherical particles. Furthermore, two powder-based addi-
tive manufacturing processes, including the binder jetting and the laser
powder bed fusion, are employed to further validate the applicability
and robustness of the proposed method in complex engineering
scenarios.

1 https://github.com/TFluid/GPU_AMR Tetrahedral
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Fig. 19. (A and B) Volume fraction fields for Benchmark I (at 1.1 s) and Benchmark II (at 0.2 s), simulated using three grids, accompanied by their corresponding grid
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Fig. 20. Comparison of simulation results from this study (A), existing simulation results obtained by peridynamics [76] (B), and experimental results [73] (C) from
0.1 sto 0.4s.
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Point 3: the point above the left edge of the obstacle. (B) Comparison between experimental [73] and numerical results at the three points. Point 1 and Point 3 are
evaluated based on vertical height, while Point 2 is evaluated based on horizontal displacement.

3.1. Model setup of five benchmark cases

Five common benchmark cases shown in Fig. 17 are designed to
rigorously evaluate the performance of the proposed GPU-accelerated
AMR algorithm for coupled simulations of two-phase resolved CFD
and DEM with spherical/non-spherical particles. These cases include: (I)
a two-dimensional dam-break problem, serving as a baseline to validate
interfacial sharpness and mass conservation in multiphase flow; (II) a
three-dimensional dam-break scenario with an obstacle according to
[73], designed to assess geometric adaptivity and dynamic refinement in
complex domains; (III) the settling of a spherical particle [74], used to
quantify the accuracy of fluid—particle coupling and drag resolution;
(IV) the settling of an ellipsoidal particle [75], extending the validation
to non-spherical particles by incorporating torque and orientation ef-
fects; and (V) the drafting-kissing-tumbling (DKT) motion of two parti-
cles [43], used to validate both fluid-particle and particle-particle
interactions. Benchmarks I and II are employed to validate the
two-phase AMR CFD only, while the other three benchmarks are used to
validate CFD-DEM coupling.

Benchmarks I and II represent a similar dam-break problem con-
ducted with identical physical properties but with different computa-
tional domain sizes and obstacle presence (Fig. 17A and B). Both cases
adopt the following physical properties: the density and kinematic vis-
cosity of water are 1000 kg/m® and 10~°m?/s, respectively, while those
of air are 1 kg/m® and 1.48 x 10~>m?/s. To assess mesh sensitivity,
both cases are simulated using three types of computational grids: a
coarse uniform grid, a refined uniform grid, and an adaptively refined
grid based on the coarse mesh, as shown in Fig. 18A. The mesh resolu-
tions for Benchmark I are Ax =10 mm and 5 mm for the coarse and
refined grids, respectively, while Benchmark II uses finer resolutions of
Ax = 4.5 mm and 2.25 mm (Fig. 18B).

Benchmark III and Benchmark IV share identical computational
domain size (Fig. 17C and D) but differ in fluid properties and particle
shapes. In Benchmark III, the fluid has a density of 962 kg/m® and a
kinematic viscosity of 1.175 x 10~*m?/s. The diameter of the spherical
particle is 15 mm and the particle Reynolds number is 11.6. In Bench-
mark IV, the fluid density is 1120 kg/m? and the viscosity is 6.67 x
10~%m?/s. The ellipsoidal particle measures 13.37 mm along both the x-
and y-axes, and 5.37 mm along the z-axis. Both benchmarks are evalu-
ated using four mesh configurations: three uniform grids and one
adaptively refined grid (Fig. 18C and D). For Benchmark III, the uniform
grid resolutions are 1.33 mm (Case 1), 1.00 mm (Case 2), and 0.833 mm
(Case 3). These grid sizes correspond to approximately 11.3, 15.0, and
18.0 cells per particle diameter (15 mm), respectively. For Benchmark
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1V, the corresponding grid resolutions are 1.00 mm (Case 1), 0.667 mm
(Case 2), and 0.571 mm (Case 3). These values yield approximately 13.4,
20.0, and 23.4 grid cells per particle length in the x/y directions, and
5.4, 8.1, and 9.4 cells along the z-axis, respectively, for an ellipsoidal
particle with dimensions of 13.37 mm x 13.37 mm X 5.37 mm. This
level of spatial resolution ensures an accurate representation of both
spherical and ellipsoidal particle geometries, which is essential for
resolving fluid-particle interactions with high fidelity. In both cases, the
adaptive mesh is generated based on the coarsest uniform grid as the
parent. The finer mesh in Benchmark IV is due to the smaller thickness of
ellipsoidal particles compared to the spherical ones in Benchmark III,
requiring higher spatial resolution.

For Benchmark V, the two particles possess identical properties, each
with a density of 1140 kg/m?. Both particles are fully submerged in
water, with fluid properties identical to those used in Benchmark I. The
dimensions of computational domain and particles are shown in
Fig. 17E, and the mesh configuration of the adaptively refined grid is
presented in Fig. 18E. The spherical particle has a diameter of 16.7 mm.
The uniform refined grids are configured with resolutions of 0.1 mm and
0.2 mm, corresponding to particle-to-grid size ratios of 16.7 and 8.35,
respectively. Detailed mesh configurations for the five benchmark cases
are summarized in Table 1.

3.2. Benchmarking analyses
(1) Benchmarks I and II: dam break without and with barrier

Fig. 19A and B shows the volume fraction field of water and the
corresponding grid for Benchmark I at 1.1 s and Benchmark II at 0.2 s,
where the adaptive refinement is applied only to grids around the air-
water interface in the CFD simulations. Evidently, the coarse uniform
grid lacks the necessary resolution to resolve the detailed spatter effects.
Fig. 19C and D further presents the comparison of fluid contour profiles
for Benchmark I at 1.1 s and Benchmark II at 0.2 s. The maximum dif-
ferences in the air-water interface profiles between the adaptive refined
grid and the uniformly refined mesh are 0.0137 m for Benchmark I and
0.0023 m for Benchmark II, corresponding to 1.37% and 0.6% of the
computational domain size, respectively. It can be demonstrated that
the results obtained using AMR closely match those of the refined uni-
form grid case, providing a sharper air-water interface.

Fig. 20 further compares the obtained simulation results of Bench-
mark II with the existing simulation results obtained by peridynamics
[76] and experimental results [73] from 0.1 s to 0.4 s. The results show
that the outcomes obtained using the uniform refined grid in this study
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Fig. 22. Velocity magnitude and vector fields for the adaptive mesh cases of Benchmark III (A), Benchmark IV (B), and Benchmark V (C). Subfigure (D) shows a
close-up view of the locally refined region in Benchmark V (C), highlighting the adaptive refinement near the particles. White lines represent the mesh structure. The
denser lines around particles indicate locally refined regions due to adaptive mesh refinement.
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Fig. 23. Comparative analysis of simulation accuracy across Benchmarks III-V. (A-D) Comparison of simulation results for Benchmark III (A, B) and Benchmark IV (C,
D), including experimental data [74,75], prior simulations [74,75], results from three uniform grids (Cases 1-3), and an AMR grid (Case 4). Panels A and C show full
time histories, while B and D provide zoomed-in views for detailed comparison (0.25-1.5 s for B; 0.2-1.6 s for D). (E) Validation of Benchmark V (refined uniform
grid) against existing simulation results [43]; (F) Grid resolution study for Benchmark V using two uniform grids and one AMR grid.

are in high agreement with the experimental results and exhibit higher
accuracy compared to those obtained with peridynamics. Together with
Fig. 19, these comparisons verify the performance of the proposed AMR
approach by showing that it achieves results comparable to those ob-
tained with uniform refinement. Fig. 21 further presents a quantitative
comparison of the vertical height and horizontal displacement at three
selected points. The maximum deviation among these three points
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between the experimental and numerical results is approximately 9.9
mm, accounting for only 2.3% of the total domain height, which falls
within an acceptable error range. The root mean square error (RMSE)
obtained from the data in Fig. 21B is 3.93 mm, which corresponds to
approximately 0.91% of the domain height. This figure demonstrates the
accuracy of the two-phase CFD algorithm with full GPU parallelization
employed in this study.



T. Yu and J. Zhao

A
1.2
_ 0.981
£
o 09}
]
(5]
£
%
(=9
o 0.6
£
s 3,164,160 cells
E:
15 0.360
S .
5 03[ AMR: 0.075s
= 0.229
£
(=} 710,534 cells
400,672 cells
0 1 1 1
Case 1 Case 2 Case 3
Benchmark II
C
1.2
1.024
=
509
@
(%)
£
o
& 0.642
E 0.6 -
b=} 8,575,000 cells
=
s
E 5,400,000 cells 0.317
g 0.3 0.232 AMR: 0.083s
§ 1,610,332 cells
1,600,000 cells
0 ! 1 1 1
Case 1 Case 2 Case 3 Case 4
Benchmark IV

Computer Physics Communications 319 (2026) 109939

0.8

0.663

0.6 |-

0.410

2,822,400 cells

Computational time per time step [s]

0.252
1,600,000 cells
02k 0.187 AMR: 0.065s
675,000 cells 686,424 cells
0 ! (! ! !
Case 1 Case 2 Case 3 Case 4
Benchmark III
D
0.6
0.533

=

50451

]

[}

£

=

3

5 0.3

3 3

E

= 4,000,000 cells

=

=

2

s

2 015 0.122

E 0.090 AMR: 0.031s
o

500,000 cells 510,150 cells
O 1 1 1
Case 1 Case 2 Case 3
Benchmark V

Fig. 24. Averaged computational time per time step for Benchmarks II to V with various grids. Since the two-phase cases involve fewer computational cells,
simulations were performed on an RTX 3060 Ti GPU. In contrast, the coupled CFD-DEM cases require significantly more computational resources due to larger grid
sizes and thus were tested on an RTX 4070 Ti Super GPU. The detailed mesh configurations for the benchmark cases can be found in Table 1.

(2) Benchmarks III-V on particle-fluid coupling

This section presents a quantitative evaluation of simulation accu-
racy against experimental data for three standard benchmark cases
simulated using the coupled CFD-DEM approach. Fig. 22 visualizes the
velocity fields, near-particle velocity vectors, and mesh structures
(indicated by white lines) across all three Benchmarks. The results
demonstrate adaptive mesh refinement around the particles, with the
surrounding velocity field transitioning smoothly without introducing
discontinuities arising from mesh resolution variations. A notable
feature in Fig. 22C is the clear depiction of the classical drafting, kissing,
and tumbling (DKT) phenomena observed between two settling parti-
cles, further validating the model’s capability to resolve complex
particle-fluid interactions.

Fig. 23 (A and B) compares the simulation results of four grid reso-
lutions for Benchmark III with the experimental data reported in [74].
As the mesh is refined, the numerical results exhibit improved agree-
ment with the experimental observations, with Case 3 showing excellent
consistency. The simulation results for Case 4, which employs adaptive
mesh refinement (AMR), fall between those of Case 2 and Case 3. Fig. 23
(C and D) present a similar comparison for Benchmark IV, including
experimental data [75] and reference simulation results [43]. Evidently,
the present study achieves a closer match with the experimental mea-
surements than the reference simulations do. Compared to spherical
particles, the terminal velocity of non-spherical particles exhibits a
slightly larger deviation from the experimental results, but the error
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remains within approximately 6%, demonstrating that the proposed
algorithm maintains sufficient accuracy. This discrepancy may stem
from measurement uncertainties or slight geometric deviations in the
particle shape. Nonetheless, the possibility that further optimization of
the algorithm may be required cannot be entirely excluded. Addition-
ally, for the AMR grid (Case 4) and the fully refined grid (Case 3), the
errors in terminal velocity for Benchmark III and Benchmark IV are as
low as 0.8% and 0.77%, respectively, demonstrating excellent quanti-
tative agreement with the reference solutions.

Fig. 23 (E and F) further validates the accuracy of the simulation
results for the drafting-kissing-tumbling (DKT) behavior of two particles.
To facilitate quantitative comparison with the literature, the time of
particle contact is defined as the instant when the settling velocity
changes abruptly. Compared to the work of Lai et al. [43], the time of
particle contact differs by 3.3% (0.30 s vs. 0.31 s), and the velocity at
collision differs by 1.6% (0.07257 m/s vs. 0.07139 m/s), which are
within an acceptable range of numerical errors. The results obtained
using three different grid types indicate that the predicted collision time
and velocity are highly consistent, with errors within 1%. However, due
to the limited number of cells, the simulation using the coarse uniform
grid deviates significantly in the final particle separation state compared
to the results from the other two grids.

3.3. Numerical accuracy and computational performance

This section provides a comprehensive evaluation of the proposed
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Fig. 25. Benchmark II: (A) Computational time per time step at t = 0.3 s obtained using OpenFOAM, along with the corresponding GPU acceleration ratio relative to
the result shown in Fig. 24A; (B) Comparison of fluid contours between OpenFOAM and the present study, both using adaptive mesh refinement with identical
resolution; (C) Water volume fraction and corresponding mesh distribution at t = 0.4 s obtained from OpenFOAM and the present study. The simulations were

performed on an RTX 3060 Ti GPU and a single-core Intel i5-13600KF CPU.

GPU-accelerated AMR algorithm in terms of numerical accuracy and
computational efficiency. Discrepancies in numerical accuracy observed
between adaptively refined meshes and uniformly fine meshes are
attributed to three factors: (1) Refinement scope limitations: The current
AMR strategy focuses on refinement near fluid-fluid and particle-fluid
interfaces, but may overlook dynamically critical regions (e.g., high
velocity gradients). Future implementations could integrate refinement
criteria based on additional physical indicators to enhance solution fi-
delity. (2) Geometric errors at interfaces: Non-orthogonal cell geome-
tries at coarse-fine grid boundaries introduces residual numerical errors,
even with non-orthogonal correction schemes. (3) Interpolation scheme
constraints: First-order interpolation for field remapping adopted in
current implementation may reduce precision; future work may explore
higher-order interpolation methods to mitigate this limitation.

As for computational performance, Fig. 24 benchmarks the efficiency
of the AMR algorithm across varying problem complexities (Benchmarks
II-V). Benchmark I, omitted due to its small mesh size, served solely for
accuracy validation. In all four cases, the AMR approach consistently
reduces total computational time compared to uniformly refined grids
while maintaining comparable accuracy. Notably, the AMR module
accounts for only 21-26% of the computation time per time step, which
is significantly lower than the 35% typically required in CPU-based AMR
implementations [38]. This highlights the enhanced parallel efficiency
of our GPU-accelerated algorithm. Across different hardware configu-
rations (RTX 3060Ti and 4070Ti Super), the AMR algorithm also dem-
onstrates robust performance regardless of cell count or refinement
region size. Compared to refined uniform grids, AMR achieves equiva-
lent accuracy at 23-61% of the computational cost, corresponding to
speedup ratios of 1.63-4.37. These results confirm the method’s effi-
ciency and scalability, though the achievable acceleration depends
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heavily on the fraction of the domain requiring refinement.

To further validate the computational efficiency and accuracy of the
proposed GPU-AMR method, we reproduced Benchmark II using
OpenFOAM, one of the most widely adopted open-source CFD software
packages [77]. Based on the model setup shown in Fig. 17B, a simplified
modification of OpenFOAM’s standard test case “damBreakWithOb-
stacle” was performed to match the configuration of Benchmark II. For a
fair comparison, this OpenFOAM simulation was conducted using a
single core of an Intel i5-13600KF CPU, in order to avoid the load
imbalance issues typically introduced by AMR in multi-core
environments.

In addition, it is important to clarify why a pure-fluid benchmark was
selected for this comparison. The computational efficiency of resolved
CFD-DEM simulations is overwhelmingly dominated by the CFD part:
for instance, the grid resolution requirement (cell size < 1/10 of particle
diameter) [42] leads to approximately 1000 cells per particle volume,
and in a naturally packed bed of 200 particles, at least one million fluid
cells are required, which is two orders of magnitude more than the
number of particles. Moreover, since the CFD equations are solved
implicitly while the DEM is solved explicitly, the computational cost of
the DEM typically represents less than 5% of the total runtime. Since the
AMR framework primarily affects the number of fluid cells and thus the
CFD solver performance, while DEM calculations are mesh-independent,
focusing on the CFD part provides a clearer and fairer assessment of the
computational efficiency of the proposed AMR method.

Fig. 25A presents the averaged computational time per time step at
t = 0.3 s obtained using OpenFOAM, along with the GPU acceleration
ratio calculated with respect to Fig. 24A, defined as = tcpy/tgpu. As the
number of mesh cells increases, the acceleration ratio rises rapidly,
reaching approximately 51 times at 3.16 million cells. Notably, since
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computational domain dimensions and simulation results at 0 s, 0.02 s, and 0.04 s. (D) Velocity fields of the water droplet at 0.02 s and 0.04 s. The simulation results

are obtained with the AMR scheme.

this study focuses on the performance of the AMR algorithm, we further
analyzed the fraction of AMR-related runtime. In this benchmark, the
AMR procedure in OpenFOAM accounts for 29.3% of the total time per
step, which is about 41% higher than the 20.8% observed with our
proposed method, demonstrating the superior efficiency of the GPU-
AMR implementation.

Fig. 25B shows the comparison of fluid contours at four time in-
stances, using identical mesh resolution with AMR. The results indicate
an excellent match in the majority of the flow domain, with only minor
differences observed in the splash regions. The maximum deviation
between the fluid-gas interface contours from the two simulations is 9.2
mm, which corresponds to only 2.1% of the total domain height.
Fig. 25C further illustrates the water volume fraction and the corre-
sponding mesh distribution at t = 0.4 s obtained from both OpenFOAM
and the present study. Due to different refinement criteria, OpenFOAM
adopts a threshold of a€[0.001, 0.009], whereas our method
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uses |Va| > 0.001/Ax with Ax denoting local mesh size. As a result, the
adaptively refined region in our simulations tends to be slightly larger
than that in OpenFOAM. Taken together, these comparisons provide
strong evidence for the high accuracy and computational efficiency of
the proposed GPU-AMR algorithm.

Performance profiling indicates that over 90% of the total compu-
tation time is consumed during the grid topology reconstruction phase,
which involves operations such as conditional branching, atomic addi-
tions, and inclusive scans-tasks that are inherently less efficient on GPU
architectures due to limited parallelism. Furthermore, several GPU-
specific optimization strategies, including memory coalescing and
shared memory utilization, have not yet been integrated into the current
implementation. As such, there remains substantial room for further
performance enhancement.

In terms of memory utilization, simulations using uniform grids
require an average of 2 GB of GPU memory per million cells. In contrast,
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Fig. 27. (A) Top view of particle distribution and its velocity field at 0.05 s and 0.1 s; (B) Distribution of water and particles with the corresponding velocity field at

0.05 s and 0.1 s. The simulation results are obtained with the AMR scheme.

the present AMR implementation consumes approximately 3.1 GB per
million cells, representing a 55% increase (1.1 GB additional memory
per million cells) compared to uniform grid simulations. The additional
memory consumption primarily arises from the need to store not only
the background mesh and the previous time-step mesh but also the
current refined mesh during grid information mapping. Furthermore,
variable field remapping operations necessitate retaining field variables,
such as velocity, pressure, volume fraction, and fluxes on the previous
mesh. Future work could mitigate this through dynamic memory man-
agement strategies to reduce the AMR memory footprint.

The goal of dynamic memory management strategies is to alleviate
pressure from temporary memory peaks, which often occur during key
operations such as AMR and linear system solves. For example, when
solving the linear systems using algebraic multigrid (AMG) methods, the
construction of multilevel coarse grids and temporary residual vectors
requires substantial memory allocation. Similarly, during AMR pro-
cedures, intermediate data structures are temporarily introduced to
support mesh adaptation and refinement operations. To address this,
manually manage memory allocation and deallocation for auxiliary
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mesh-related variables can decrease the peak memory usage. Specif-
ically, variables required only during the AMR generation phase are
explicitly released immediately after mesh construction, and memory is
reallocated only when needed prior to the next AMR operation. This
deliberate strategy of memory reuse and early deallocation helps reduce
the GPU’s peak memory load, thereby enabling larger-scale simulations
on limited-memory hardware. Future work may further improve
robustness and scalability by automating these strategies and inte-
grating more advanced memory management policies, such as memory
pooling or streaming techniques.

3.4. Limitations of the current AMR implementation

While the proposed AMR framework demonstrates substantial
computational advantages, several limitations remain that warrant
further development:

(1) High memory consumption: As discussed in the preceding sec-
tion, the current AMR implementation incurs significant GPU
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Fig. 28. Comparative study of simulation results using different grids at 0.02 s. (A) Half-section view of the particle and water distribution. (B) The grid structure and
fluid volume fraction field of the half section. (C) Distribution of particles and water. Left: Uniform coarse grid, Middle: Adaptive refined grid, Right: Uniform refined
grid. The red and blue colors represent a volume fraction of 1 and 0 for water, respectively.

memory overhead, with a usage of approximately 3.1 GB per
million cells. On a 32 GB NVIDIA RTX 5090 GPU, this restricts the
maximum feasible mesh size to roughly 10 million cells, thereby
limiting its applicability in large-scale simulations. Reducing
peak memory usage through more efficient memory management
strategies remains an urgent challenge.

Single-GPU restriction: At present, the AMR framework is
designed for single-GPU execution and does not yet support
multi-GPU parallelism. Although multi-GPU computing offers a
potential path to overcome memory constraints, achieving effi-
cient inter-GPU scalability and data distribution requires further
algorithmic innovations and communication optimization.

Mesh anisotropy and interface treatment: Under conditions of
extreme mesh anisotropy, additional care must be taken to
construct appropriate sub-mesh templates that minimize mesh
distortion and non-orthogonality in the refined regions.
Furthermore, at the interface between refined and unrefined re-
gions, the current method does not yet provide an effective
strategy to handle geometric discontinuities or non-orthogonal
faces, which may degrade numerical accuracy. Future efforts
should focus on robust interface treatments to address this issue.

(2

—

3

4. Illustrative simulations of complex additive manufacturing
processes

This section presents the application of our fully GPU-parallelized
two-phase CFD-DEM solver integrated with the proposed GPU-
optimized AMR technique to simulate two representative powder-
based additive manufacturing processes: binder jetting and laser pow-
der bed fusion (LPBF). The developed methodology demonstrates
apparent advantages for these applications due to several inherent
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characteristics of the and
requirements.

Specifically, the proposed method is particularly well suited to the
simulation demands of such processes for the following three reasons.
First, the complex powder-bed and two-phase flow interactions char-
acteristic of both binder jetting and LPBF processes demand substantial
computational resources. In this context, the additional computational
cost introduced by AMR is relatively minor, while the resulting im-
provements in efficiency are significant. Second, the simulation domains
associated with binder jetting and LPBF are typically geometrically
regular, enabling seamless integration of the orthogonal grid-based
AMR algorithm developed in this study. Third, the regions of physical
interest are often spatially localized, for instance, the binder-saturated
zones in binder jetting or the melt pool in LPBF, making localized
mesh refinement via AMR especially effective for capturing fine-scale
dynamics without incurring excessive computational cost.

physical processes computational

4.1. Binder jetting

Given the inherent complexity of fluid dynamics in binder jetting
processes, including non-Newtonian rheology and phase change phe-
nomena, the present study employs a simplified model to facilitate
development and evaluation of the AMR methodology. The jetting
process is modeled as a water droplet with a dropping velocity of 2 m/s
impinging on a 5.5 cm-thick bed of spherical particles (Fig. 26). The
particle bed comprises three distinct particle sizes, 4 mm, 4.5 mm, and 5
mm in radius, with a uniform density of 1200 kg/m?>. These particles are
distributed by number in proportions of 20% (4 mm), 40% (4.5 mm),
and 40% (5 mm), respectively, summing to 100% of the total particle
count. Fluid properties for both water and air maintain consistency with
previous benchmark cases. While simplified, this configuration
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Fig. 30. Schematic of the multiphase and multiphysics LPBF simulation setup, illustrating the half-domain configuration, computational mesh, laser and scanning

directions, and adaptive mesh refinement near the melt pool.

preserves the essential physics of binder jetting, including multiphase
flow dynamics, fluid-particle coupling, and interparticle interactions.
The framework remains fully extensible for incorporation of more so-
phisticated physical models in future investigations.

This case uses a cylindrical computational domain meshed with the
cut-cell method, where the interior comprises a uniform hexahedral
mesh while the boundary is resolved with polyhedral cells, as illustrated
in Fig. 26A. Within this configuration, the AMR scheme is applied
exclusively to the internal hexahedral cells. Three distinct grid
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configurations were evaluated: two uniform grids (1.67 mm and 0.83
mm cell sizes) and an adaptive grid with 1.67 mm parent cells. The
maximum and minimum particle diameters are approximately 12 and
9.6 times the size of the refined mesh, respectively.

Fig. 26C demonstrates the temporal evolution of droplet impact and
subsequent infiltration through the powder bed, while Fig. 26D reveals
the corresponding velocity field. The velocity distribution shows
maximum fluid velocities occurring within interparticle pores, a
consequence of constrained particle motion that forces fluid flow
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Fig. 31. Results simulated using the AMR scheme at 220 ps, 440 ps, and 660 ps: (A) melt pool and powder bed morphology; (B) central cross-section of the melt pool.
The experimental image [80] in the bottom-right corner shows the melt pool shape in a pure plate under similar conditions (200 W laser power, identical metal,

scanning speed, and spot size).

through interstitial pathways. Driven by the leading edge of the droplet,
particles are radially displaced outwards through particle-particle in-
teractions, reaching velocities up to 0.5 m/s, as shown in Fig. 27.
Simultaneously, particles directly beneath the droplet’s impact center
are driven downward, forming a distinct depression, evident in both
Fig. 27 and Fig. 28A. The resulting particle motion continuously mod-
ifies the pore geometry, which in turn governs the evolving water
penetration path. These high-fidelity, fully resolved CFD-DEM simula-
tions successfully capture the spatially varying particle dynamics during
droplet infiltration, providing critical mechanistic understanding for
process optimization.

Fig. 28A and Fig. 29A present half-section views of the particle and
water distribution at 0.02 s and 0.1 s, respectively. Correspondingly,
Fig. 28B and Fig. 29B display the underlying grid structure and fluid
volume fraction field, highlighting local mesh resolution and phase
distribution. The results demonstrate that both the AMR configuration
and the fine uniform grid yield equally sharp fluid interfaces and particle
boundaries, with only subtle local differences in the flow field, which are
highlighted by white arrows in Fig. 28B and Fig. 29B. The coarse uni-
form grid, in contrast, produces results that deviate substantially from
the refined and AMR cases. This discrepancy grows more pronounced
over time, as clearly shown in the particle and fluid distributions at 0.02
sand 0.1 s (Fig. 28C and Fig. 29C). The divergence is attributable to the
combined effects of grid resolution and the resulting differences in
simulated particle motion.

4.2. Laser powder bed fusion

Fig. 30 presents the computational domain configuration for the
LPBF simulation. The substrate measures 1000 pm (length) x 400 pm
(width) x 400 pm (height), with a 90 pm thick powder layer deposited
on top. The powder bed consists of particles with diameters of 30 pm, 40
pm, and 50 pm in a 3:4:3 ratio. To examine the influence of spatial
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resolution, we considered two uniform meshes with cell sizes of 4.17 pm
and 8.33 pm, as well as an adaptive mesh based on 8.33 pm parent cells.
In the refined regions, the particle diameters correspond to approxi-
mately 7.2-12 times the local grid spacing, ensuring adequate resolution
of particle-scale phenomena. The laser parameters include a power
output of 300 W, scanning velocity of 1 m/s, and spot size of 95 pm, with
multiple reflections occurring within the melt pool. The AMR imple-
mentation focuses on critical regions: the melt pool (where temperatures
exceed the liquidus point), particle boundaries, and fluid-fluid in-
terfaces. The material system comprises Ti-6Al-4 V alloy with argon
shielding gas, whose thermophysical properties are detailed in our
previous work [78].

Fig. 31 illustrates the temporal evolution of the LPBF process at three
characteristic time points. The left-to-right laser scanning initially melts
the powder layer before penetrating the substrate. Upon reaching the
evaporation temperature, recoil pressure creates a pronounced depres-
sion in the melt pool. During the initial phase, the confined heating zone
causes molten material accumulation on the laser’s trailing edge,
forming a distinct cavity. As the process stabilizes, this cavity evolves
into a characteristic sloped profile. Experimental validation (Fig. 31B)
using a pure titanium plate under comparable conditions (with adjusted
laser power) shows excellent agreement with our simulated melt pool
morphology. Additionally, the use of a resolved CFD-DEM scheme, even
with limited particle mobility in this case, is justified by the need for a
robust and extensible computational foundation. This strategy ensures
that the model can directly evolve to simulate more intense multiphase
interactions, notably the pronounced particle entrainment by high-
speed vapor streams anticipated in subsequent studies [79].

Fig. 32 compares melt pool morphologies at 450 ps using three mesh
configurations. The uniform coarse mesh produces significantly
different results due to insufficient resolution of particle geometry and
temperature gradients. Quantitative analysis (Fig. 32D, E) reveals
maximum contour deviations of 0.022 mm (5.5% of model width) aty =
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200 pm and 0.020 mm (5% of model width) at x = 800 pm between AMR
and refined uniform meshes. However, the core melt pool region shows
exceptional agreement, with deviations below 0.0044 mm (0.88% of
model width). Notably, the surface contour irregularities caused by
partial melting of particles at the melt pool periphery have been omitted
from analysis, as these artifacts primarily stem from limitations in the
particle replacement algorithm rather than physical phenomena.

To provide statistically robust validation, we calculated root mean
square errors (RMSE) from 50 uniformly sampled points along each
section. The resulting RMSE values of 0.0053 mm (1.3%) and 0.0033
mm (0.82%) for the y = 200 pm and x = 800 pm sections, respectively,
confirm the AMR method’s accuracy falls well within acceptable engi-
neering tolerances. These results substantiate the reliability of our GPU-
optimized AMR approach for complex multiphysics simulations.

4.3. Evaluation of computational performance

Fig. 33 summarizes the relationship between total number of cells
and average computation time per timestep for three mesh configura-
tions across both applications. The results demonstrate near-linear
throughput performance with increasing problem size, particularly in
the physically demanding LPBF case, confirming that the AMR algo-
rithm introduces negligible computational overhead relative to the
overall simulation cost while offering significant efficiency improve-
ments. As the computational domain grows with a fixed refined region
size, the benefits of efficiency gains by AMR scale multiplicatively,
progressively approaching the theoretical maximum eightfold speedup
achievable through single-level refinement.

The performance advantages are exemplified by a benchmark LPBF
simulation involving approximately one million cells and ten thousand
computational steps. The previously employed open-source CFDEM
framework [81] with CPU-based AMR required two days to complete
this simulation using 36 cores of the Tianhe-II supercomputer [78]. In
striking contrast, our GPU-accelerated solver with GPU-optimized AMR
completed the identical simulation in merely two hours, achieving a
speedup factor exceeding twenty. For comprehensive details of the LPBF
algorithm implementation, readers are directed to our previous work
[1]. A more extensive quantitative comparison across varying problem
sizes and hardware configurations will be presented in future studies.

5. Conclusions and outlooks

This study presents a GPU-accelerated adaptive mesh refinement
(AMR) framework specifically optimized for unstructured hexahedral
grids, addressing critical bottlenecks in large-scale computational fluid
dynamics and discrete element method (CFD-DEM) simulations. By
leveraging a compressed data format and GPU-tailored data reuse stra-
tegies, the proposed algorithm significantly streamlines grid topology
management, reduces logical overhead, and minimizes memory reor-
ganization costs. Implemented on hexahedral meshes using CUDA, the
methodology demonstrates extensibility to unstructured tetrahedral
grids through sub-mesh templating, offering a pathway for broader
adoption in geometrically complex domains. Comprehensive validation
through five benchmark cases, including 2D/3D dam breaks and
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sedimentation of both spherical and non-spherical particles, demon-
strates that the proposed framework achieves significant computational
efficiency gains compared to uniformly refined grids while preserving
accurate interfacial resolution and force calculations. The method-
ology’s practical applicability has been further verified through suc-
cessful implementation in two complex powder-based additive
manufacturing scenarios.

These results collectively demonstrate the algorithm’s capability to
resolve complex multiphysics phenomena, such as dynamic fluid-
structure interactions, free-surface flow dynamics, and heterogeneous
particle-laden systems. As the computational domain scales while
maintaining a fixed refined region size, the overall computational effi-
ciency increases multiplicatively, approaching the theoretical limit of
eightfold speedup achievable through single-level refinement. When
integrated with GPU-accelerated CFD-DEM solvers, the proposed AMR
framework achieves over 20 x acceleration in large-scale LPBF simu-
lations, underscoring its transformative potential for industrial-scale,
high-fidelity multiphysics modeling.

Future research will focus on extending the framework to tetrahedral
and polyhedral meshes prevalent in biomedical and aerospace applica-
tions, while implementing multi-level refinement to better resolve
multiscale phenomena like turbulent boundary layers and granular
segregation. Computational performance will be enhanced through
asynchronous kernel execution and memory latency reduction, with
particular attention to optimizing GPU memory management via dy-
namic memory pooling and just-in-time allocation strategies to address
the current 1.1 GB/million-cell overhead. These improvements, coupled
with kernel-specific memory reuse schemes to mitigate the 55% memory
increase compared to uniform grids, will reduce the AMR module’s
runtime share from its current 25% of total computation while enabling
larger-scale simulations on memory-constrained systems. Such ad-
vancements will strengthen the algorithm’s viability for real-time
simulation and digital twin applications, ultimately bridging the gap
between high-fidelity modeling and practical engineering workflows.
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Appendix. Algorithms of the GPU-accelerated AMR

Algorithm Al
Construction of numbering lists.

Input: Refinement index for the parent mesh I, and total number of inner faces Njro, cells N¢o, and points Npo in the parent mesh.
Output: Numbering lists of points (Lp), cells (L¢), FI faces (Lg), FB faces (Lgg), and FC faces (Lrc).

1 1st GPU kernel:

2 for i < N¢o do

3 if Io[i] = 1 then

4 Leli] = 19; Leli] = 7; Lecli] = 12;

5 else:

6 Lpli] = 0; L¢[i] = 0; Lec[i] = 05

7 2nd GPU kernel:

8 for i < Nipg do

9 Get the owner cell index ID, and neighbor cell index ID, for inner face i;

10 if Ij[ID,] = 1 or IH[ID,] = 1 then

11 Lyli] =3;

12 else

13 Luli] = 0;

14 3rd GPU kernel:

15 for i < Nppo do

16 Get the owner cell index ID, for boundary face i

17 if I;[ID,] = 1 then

18 Lpgli] = 3;

19 else

20 Lesli] = 0;

21 Sum up the numbering lists using the reduce algorithm from the Thrust library:

22 NLp = ZLP: NLc = ZLC: NLpc = ZLFC, NLp = ZLFI; NLpp = ZLFB;

23 Update the total number of point (Np), cell (N¢), inner face (Njr), boundary face (Ngr) for the refined mesh:
24 Np = Npyo+ NLp, N¢c = N¢o + NL¢, Nip = Nigo + NLpc + NLpr, Ngr = Nppo + NLgg;
25 Update the numbering lists using the exclusive scan algorithm from the Thrust library:
26 Lofi) = >, o Lol Leli) = > 4 Lol Lrcli) = > § Lrclj] for 0 < i < Neo;

27 Lali] = Z,j Lalj] for 0 < i < Nipo;

28

) i1 .
Lygli] = Z;:o Lgglj] for 0 < i < Npro;

Note: Lp(0) = 0, L¢(0) = 0, Lc(0) = 0, L (0) = 0, and Lpp(0) = 0 after using the exclusive scan algorithm.

Algorithm A2
Construction of refinement arrays.

Input: Refinement index for the parent mesh I, and total number of inner faces Ny, cells N¢o, and points Npo in the parent mesh.
Output: Cell index (RC), interior face index (RIF), and boundary face index (RBF).

1 Define an initial value k = 0;

2 1st GPU kernel:

3 fori < N¢o do

4 if Io[i] = 1 then

5 Record the refinement array index: j = atomicAdd(k);

6 Record the cell index: RC[j] =i;

7 Initialize the value k = 0;

8 2nd GPU kernel:

9 for i < Ny do

10 Get the owner cell index ID, and neighbor cell index ID,, for inner face i;

11 if Io[IDo] = 1 or IH[ID,] = 1 then

12 Record the refinement array index: j = atomicAdd(k);

13 Record the interior face index: RIF[j] = i;

14 Initialize the value k = 0;

15 3rd GPU kernel:

16 for i < Nppy do

17 Get the owner cell index ID, for boundary face i;

18 if I[ID,] = 1 then

19 Record the refinement array index: j = atomicAdd(k);

20 Record the boundary face index: RBF[j| = i;
Algorithm A3

Reconstruction of the point array.

Input: Cell index RC, point coordinate P, numbering lists of points Lp, total number of points in the parent mesh Np, and total number of added cells after refinement NLc.
Output: Point coordinate P.

1 1st GPU kernel:
2 for i < NL; do
3 Get the cell index j = RC[i]

(continued on next page)
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Algorithm A3 (continued)

4 Get the coordinates of points from the parent mesh: P[0] to P[7]
5 Update the coordinates of the added vertices:

6 P[Npo + Lp[j]] =0.5 x (P[0]+ P[1));

7 P[Npo + Lp[j] +1] =0.5 x (P[0]+ P[2));

8 P|Npo + Lplj] + 2] =0.25 x (P[0]+ P[1]+ P[2] + P[3]);

9

10 ;ino + Lp[j] + 18] = 0.5 x (P[6]+ P[7]);

Note: For clarity, representative steps are emphasized, while redundant operations with similar structure are omitted.

Algorithm A4
Reconstruction of the inner face array.

Input: Inner face index RIF, face index f, numbering lists of FI face Ly, FC face Lgc, and point Lp, owner cell index ID,, neighbor cell index ID;, total number of inner faces Nir
and points Np in the parent mesh, and total number of added interior faces after refinement NLg.
Output: Face array F.

1 1st GPU kernel:

2 for i < NLp; do

3 Get the inner face index j = RIF[i];

4 Get the owner cell index ID, and neighbor cell index ID,, for inner face j;
5 Get one refined cell index ID: ID = ID,, for Iy [ID,] = 0 or ID = ID,, for Iy[ID,] = 1;
6 Get the indices of faces from the parent mesh: f[ID][0] to f[ID][5];

7 Define temporary number: N, = Npo + Lp[ID];

8 Update the face array:

9 if j = f[ID][0] then

10 Fljl = [po, Np, Np +2, Np +1];

11 F[Nwo + Lalj]] = [Np, p1, Np + 3, Np + 2];

12 FNmo + Lalj] + 1] = [Np + 1, N, + 2, N, + 4,p2];

13 F[Npo + Lafj] + 2] = [Np + 2, Np + 3, p3,Np + 4];

14

15 if j = f[ID][5] then

16 Flj] = [p2, Np + 4, Np + 12, N, +11];

17 FINpo + Laj]] = [Np + 4, p3, Np + 13, Np + 12];

18 F[Nwo + Lu[j] + 1] = [Np + 11, N + 12, Np + 18,p¢];

19 F[Npo + Lufj] + 2] = [Np + 12, Nj + 13, p7,Np + 18];

20  2nd GPU kernel:
21 fori < NLc do

22 Get the cell index j = RC[i];

23 Define temporary number: Nj; = Niro + NLpr + Lrcljl;
24 Define temporary number: N, = Npo + Lpl[jl;

25 Update the face array:

26 F[Nj] = [Ny, Np + 2,N, +9, N + 6];

27 F[Nyp +1] = [Ny + 2, Np +4, Np + 12, N, +9];
28 F[Njy +2] = [N, + 6, Np + 9,N, + 16, N, + 14];
29 F[Njp +3] = [Np +9, N, + 12,N;, + 18, N}, + 16];
30 F[Nyp +4] = [Np +1, N, + 2, N +9, N, +8];
31 F[Ny +5] = [Np + 2,N, + 3, N, + 10, N, +9];
32 F[Nj + 6] = [N, + 8, N, +9, N, + 16, N, + 15];
33 F[Nyp +7]) = [Np +9, Np + 10, N, + 17, N, + 16];
34 F[Njp +8] = [N, +5, N, +6, N, +9, N, +8];
35 F[Nyp +9] = [Np + 6, Np +7, N, + 10, N, +9];
36 F[Njy +10] = [N, +8, Np +9, Np + 12, Np + 11];
37 F[Njp +11] = [N, +9, N, + 10, N, + 13, N, + 12];

Note: For clarity, representative steps are emphasized, while redundant operations with similar structure are omitted.

Algorithm A5
Reconstruction of the face array and boundary array.

Input: Boundary face index RBF, face index f, numbering lists of FB face Lz and point Lp, owner cell index ID,, face array F, boundary array B, total number of points Npy and
boundary face Ngp in the parent mesh, and total number of added boundary faces NLgg after refinement.
Output: Face array F and boundary array B.
1st GPU kernel:
for i < Nppy do
Update the face array:
FINjp + i = F[i];
Update the boundary array:
B[N + i] = BIil;
2nd GPU kernel:
for i < NLpg do
Get the boundary face index j = RBF][il;
Get the owner cell index ID, for boundary face j;
Get the indices of faces from the parent mesh: f[ID,][0] to f[ID,][5];

OCoONOTUL~,WN =

b
= o

(continued on next page)
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Define temporary number: N, = N + Ngpo;
Update the boundary array:
B[Ngr + Leslf] = B[N +J];
B[Ngp + Lyplj] + 1] = B[N + jl;ss
B[Ngp + Lslj] + 2] = B[N +jl;
Update the face array:
if j = f[ID,][0] then
FINi +j] = {po, Npo + Lp[ID], Npo + Lp[ID] + 2, Npo + Lp[ID] + 1};
F[Ngs + Lys[f]] = {Npo + Lp[ID], p1, Npo + Lp[ID] + 3, Npo + Lp[ID] + 2};
F[Nge + Lglj] + 1] = {Npo + Lp[ID] + 1, Npo + Lp[ID] + 2, Npo + Lp[ID] + 4.p2};
F[Ngp + Lglj] + 2] = {Npo + Lp[ID] + 2, Npo + Lp[ID] + 3, p3,Npo + Lp[ID] + 4};

if j = f[ID,)[5] then
FINir + j] = {p2, Npo + Lp[ID] + 4, Npo + Lp[ID] + 12, Npo + Lp[ID] + 11};
F[Ngp + Lg[j]] = {Npo + Lp[ID] + 4, p3, Npo + Lp[ID] + 13, Npo + Lp[ID] + 12};
F[Ngp + Lzlj] + 1] = {Npo + Lp[ID] + 11, Npo + Lp[ID] + 12, Npo + Lp[ID] + 18,pe};
F[Ngp + Lglj] + 2] = {Npo + Lp[ID] + 12, Npo + Lp[ID] + 13, p7,Npo + Lp[ID] + 18};

Note: For clarity, representative steps are emphasized, while redundant operations with similar structure are omitted.

Algorithm A6
Reconstruction of the owner array and neighbor array for inner faces on the parent mesh.

Input: Refinement index Iy, inner face index RIF, face index f, numbering lists of FI face L, and cell L¢, owner cell index ID,, neighbor cell index ID,,, total number of inner faces

Niro and cells N in the parent mesh, and total number of added interior faces NLg after refinement.
Output: Owner array O and neighbor array N.

1 1st GPU kernel:
2 fori < NLy do
3 Get the inner face index j = RIF]i];
4 Get the owner cell index ID, and neighbor cell index ID,, for inner face j;
5 Define temporary number: N;; = N + Lr[j];
6 Define temporary number: N, = N¢o + L¢[IDo], N, = Neo + L¢[IDy];
7 if Io[ID,] = 0 and Ip[ID,] = O then
8 O = Ooff, NJj| = Nolj};
9 if Iy[IDo] = 0 and Ip[ID,] = 1 then
10 Get the indices of faces from the parent mesh: f[ID,][0] to f[ID,][5];
1 if j = f[ID,][0] then
12 0lj] = ID,, N[j| = IDy;
13 O[Np] =D, N[Ny] = N,
14 O[Nj + 1] =IDo, N[Nz + 1] =N, + 1;
15 O[Nj + 2] =1Do, N[N + 2] =N, +2;
16 if j = f[IDy][1] to f[ID4][5] then
17
18 if Iy[ID,] = 1 and Io[ID;] = O then
19 -+ (similar to Step 8)
20 if I[ID,] = 1 and Ip[ID,] = 1 then
21 Get the indices of faces from the parent mesh: f[ID,][0] to f[ID,][5];
22 Get the indices of faces from the parent mesh: f[ID,][0] to f[ID,][5];
23 if j = f[ID,][0] then
24 O[j] =D, O[Njs] =N,, O[Njz +1] =N, + 1, 0[Ny + 2] =N, + 2;
25 if j = f[ID,][1] to f[ID,][5] then
26
27 if j = f[ID,][0] then
28 N[j] =Dy, O[N] =N,, O[Ny + 1] =N, + 1, O[Nj + 2] =N, + 2,
29 if j = f[IDy][1] to f[IDy][5] then
30
Algorithm A7

Reconstruction of the owner array and neighbor array for inner faces in the sub-mesh.

W NG AW =

Input: cell index RC, numbering lists of FC face Lgc, and cell L, total number of inner faces Nz and cells N¢y in the parent mesh, and total number of added inner faces NLg and

cells NL¢ after refinement.
Output: Owner array O and neighbor array N.
1st GPU kernel:
fori < NL; do
Get the cell index j = RC[i];
Define temporary number: Nj; = Niro + NLgr + Lrclj];
Define temporary number: N; = Ngo + Lcjl;
Update the owner array and the neighbor array:
O[N] =1, N[Ny] = Ng
O[Np +1] =Ng+1, N[Nj +1] =Ng+2;
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9 O[Nj + 2] =Ng+ 3, N[Nz + 2] =Ng+ 4

10 O[Nj + 3] =Ng+ 5, N[Ny + 3] = Ng + 6

11 O[Njy +4] =Ng+1i, N[Ny +4] =N+ 1;

12 O[Nj +5] =N, N[Nip +5] =Ng+2;

13 O[Nj + 6] =Ng+ 3, N[Ny + 6] = Ng+ 5;

14 O[Ny +7] =N¢+ 4, N[Ny +7] =N¢+6;

15 O[Nj + 8] =i, N[Nz + 8] =N¢+3;

16 O[Ny +9] =Ng, N[N +9] =Ng+ 4

17 O[Nj + 10] =N¢+ 1, N[Nz + 10] =N+ 5;

18 O[Nj + 11] =Ng+ 2, N[Ny + 11] = Ng + 6;
Algorithm A8

Reconstruction of the owner array for boundary faces.

Input: boundary face index RBF, numbering lists of FB face Lgp, and cell L¢, owner array O, total number of boundary faces Ngry and cells N¢ in the parent mesh, total number of

inner faces Ny after refinement, and total number of added boundary faces NLgz after refinement.

Output: Owner array O.

1 1st GPU kernel:

2 for i < Npgy do

3 Update the owner array:

4 O|Ny + i] = O[i];

5 2nd GPU kernel:

6 for i < NLgz do

7 Get the boundary face index j = RBF[i];

8 Get the owner cell index ID, for boundary face j;

9 Get the indices of faces from the parent mesh: f[ID,][0] to f[ID,][5];
10 Define temporary number: Ny = Njp + Ngpo + Les|jl;

11 Define temporary number: N, = N¢o + Lc[IDo;

12 Update the owner array:

13 if j = f[ID,][0] then

14 O[N +j] =1IDo, O[Ngz] =N, O[Ngz + 1] =N, + 1, O[Ngz + 2] =N, + 2;
15 if j = f[ID,][1] to f[ID,][5] then

16

Algorithm A9

Remapping of variable field x.

Input: Refinement index Iy, cell index RC, numbering lists of cell L¢, owner array O, variable field x, and total number of cells N¢, in the parent mesh.

Output: Variable field x.

x[Lgll;

LA + 1] + -+ x"[L2[i] + 6])/8

| = x"[i]/8

1 1st GPU kernel:

2 for i < N¢y do

3 Get the cell index j = RC[i];

4 if I[i] = 0 and I1*![i] = O then

5 Xi] = xi];

6 if 0[] =1 and I*'[i] = 1 then

7 LI = x[i], L LA ]| =

8 X'”l[LFI[i] + } *X"[L"

9 xn+1 [Lnﬂ H } = x [L"

10 L] + 5] = x* L[]

11 ifINf]] =1and ;"' [i]] = 0 then

12 i) = (x[i] + x"[LE[])] +

13 ifII[i] = 0 and I3 [i] = 1 then

14 XA = x"[i/8, X [LE )

15 XHLLEI] + 1] = xP[i]/8, x™ 1 [LET[i] + 2] =
16 Xl [L"“[] + 3] =x"[i]/8, x* [LEH[i] + 4] =
17

XLEE] + 5] = x"[i]/8, x™ 1 [LE[i] + 6] =

+1], x’”liL"“ i+2] =
L +1 [Ln+1 l] + 4]
+ 5], a1 L8] + 6] =

x"[i]/8;
x"[i]/8;
x"[il/8;
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Data availability

Data will be made available on request.
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