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Abstract Landslides are major natural disasters that pose significant challenges for prediction. Recent
advances in monitoring tools have led to the accumulation of monitoring data with high spatiotemporal
resolution, calling for new and robust methodologies to efficiently analyze these complex big data and
accurately predict landslides. Here, we present a persistent homology‐based method that integrates the slope‐
scale monitoring data from interferometric synthetic aperture radar with novel measures of spatiotemporal
evolution of slope deformation to identify early warning precursors for impending landslides. Our proposed
method can capture critical patterns of accelerated deformation evolution and generate warning signals long
before the landslide occurrence. Six case studies confirm the effectiveness and accuracy of the proposed method
in landslide prediction, with a leading time exceeding 100 days for the Xinmo andMud Creek landslides. Strong
spatiotemporal correlations of slope deformation underscore long‐range effective predictions. Our method
offers a new, robust alternative to the conventional threshold‐based approach for understanding and predicting
landslides in natural slopes.

Plain Language Summary Landslides, characterized by sudden runaway slope failures, may cause a
lot of damage and put people's lives at risk. We have developed new ways to monitor slopes using technology
like interferometric synthetic aperture radar, which can detect small changes in the ground that might indicate a
landslide is about to happen. While these methods provide vast monitoring data regarding the spatiotemporal
evolution of dangerous slopes, methods that can handle these big data and distill precursory information
regarding the upcoming landslides are still lacking. To address this, we proposed a new method that looks at
how the slope deformation changes over time. We found that there are patterns of acceleration in the
deformation that can indicate a landslide is coming. This method can analyze the monitoring data covering the
whole slope and is better than transitional methods that focus only on displacement time series from a single or a
small set of monitoring points. This new method could also be useful for other fields that deal with large
amounts of complex data. Moreover, the proposed method provides valuable insights into many related fields
grappling with explosive data volume and complexity, ranging from climate changes to natural hazards and
solar radiation.

1. Introduction
Landslides are among the most destructive natural disasters, causing extensive damage to infrastructure and
posing a significant threat to human life and property (Intrieri et al., 2019; Lei et al., 2023; Schönfeldt et al., 2022).
Since the relevance between slope creep and precipitation is high (Handwerger et al., 2019, 2022), the ongoing
climate changes are likely to increase the occurrence of extreme precipitation events, which will undoubtedly
have a profound influence on the global risk of landslides (Gariano & Guzzetti, 2016; Kirschbaum et al., 2020;
Picarelli et al., 2021). As a result, monitoring, modeling, and predicting the occurrence of landslides have received
considerable attention in recent decades (Casagli et al., 2023; K. T. Chen & Wu, 2018; Fan et al., 2017; Lacroix
et al., 2020; Piciullo et al., 2018). While advances in monitoring techniques have provided abundant data for
investigating landslides, early warning for upcoming landslides remains a challenging task due to the highly
variable nature of slope motion in both space and time (Lei & Sornette, 2023; Poli, 2017). Existing early warning
methods typically focus on the deformation time series from individual monitoring points (MPs) and rely on
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setting some alert thresholds for landslide velocity/acceleration or rainfall intensity (Crosta & Agliardi, 2002;
Intrieri et al., 2019; Kothari & Momayez, 2018; Lacroix et al., 2020).

As illustrated in Figure 1, slow‐moving landslides exhibit non‐uniform spatial and temporal kinematic changes
under the coupled influence of heterogeneous geological structures, seasonal rainfall, earthquakes, and human
activities (Casagli et al., 2023; Cohen‐Waeber et al., 2018; Ding et al., 2023; Lacroix et al., 2020). Given their
complexity, landslides manifest in various types of failure such as slides, flows, and falls as well as complex
combinations of these, leading to distinct spatial deformation patterns (Hungr et al., 2014; Lacroix et al., 2020).
Recent studies have demonstrated that the spatial pattern of slope deformation contains critical information
related to landslide failure processes, such as landslide kinematic progression, failure depth, sinuosity,
compactness, and variations in slope (Bhuyan et al., 2024). Through data‐driven methods, these spatial defor-
mation patterns can be quantitatively linked to their triggers and underlying failure types (Bhuyan et al., 2024;
Rana et al., 2021).

Moreover, recent research indicates that regions approaching catastrophic failure display different spatiotemporal
characteristics from stable ones (Singh & Tordesillas, 2020; S. Zhou et al., 2022). In this context, many spatial
analysis techniques, such as community detection (Desai et al., 2023) and outlying aspects mining (S. Zhou
et al., 2022), have been proposed to identify potential failure zones within extensive monitoring data sets.
Collectively, these studies suggest that the spatiotemporal evolution of landslide deformation provides valuable
insights into the underlying failure mechanisms and kinematic processes of landslides. Therefore, it is reasonable
to speculate that by investigating the spatiotemporal evolution of landslide deformation, one may uncover ki-
nematic parameters that are capable of revealing early warning signals about impending landslides or even
supporting predictions of the timing of failure.

Recent years have witnessed an explosion of monitoring techniques that can examine slope motion with high
spatial and temporal resolution (Giri et al., 2019; Jaboyedoff et al., 2012; Kothari & Momayez, 2018; Le Breton
et al., 2021). Among those, interferometric synthetic aperture radar (InSAR) has emerged as one of the most
promising techniques, providing continuous and large‐scale monitoring data at the slope scale (Cohen‐Waeber
et al., 2018; Rouet‐Leduc et al., 2021). As a result, InSAR has been incorporated into the early warning systems
(EWS) (Di Traglia et al., 2021; Teshebaeva et al., 2019) to detect occurred and impending landslides (Intrieri
et al., 2018; Li et al., 2022). While advancements in remote‐sensing techniques allow for monitoring data that
cover entire slopes, there is an urgent need for methods that can quantify the spatiotemporal evolution of slope
deformation to better anticipate impending landslides (Intrieri et al., 2019; Leinauer et al., 2023; Singh &
Tordesillas, 2020).

In this work, we focus on identifying potential landslide precursors through the identification of slope defor-
mation patterns that are indicative of impending catastrophic failure. To achieve this, we propose a persistent
homology‐based method to quantify the spatiotemporal evolution of slope deformation. We demonstrate how this
method can integrate comprehensive slope‐scale monitoring data and capture precursory signals before the

Figure 1. Schematic depiction of the spatial heterogeneity of landslide deformation.
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occurrence of landslides. We further test our method using InSAR monitoring data from six representative
landslides. Finally, we assess the robustness and superiority of the proposed method compared with conventional
threshold‐based alert methods.

2. Methods
In this work, a persistent homology‐based method is proposed to quantify the spatiotemporal evolution of ground
deformation at the slope scale. Persistent homology (PH) provides an algebraic topology‐based framework to
quantify the persistence of topological invariants frommultiscale data in Euclidean space or graph‐based data. PH
can precisely describe the topological characteristics of complex networks by probing their inherent topological
structures. In recent years, PH has proven promising in studying the evolution of large data sets with complex
spatiotemporal characteristics and has been widely adopted in fields encompassing material science (Hiraoka
et al., 2016; Mei et al., 2023), natural language analysis (Zhu, 2013), and biology (Kovacev‐Nikolic et al., 2016).

Before a detailed introduction to the persistent homology method, we first introduce tools from network theory to
describe the spatial distribution of monitoring points (MPs). For each date, we define a monitoring point network
(MPN) to represent the spatial distribution of InSAR monitoring points that have continuous data over the time
period of interest. In network theory, a network typically consists of nodes and the edges connecting them,
providing a powerful framework to characterize interactions within complex systems (Desai et al., 2023;
Papadopoulos et al., 2018). In this study, the MPN is defined solely on the spatial locations of InSAR monitoring
points, as indicated in Figure 2a. Specifically, each monitoring point (MP) is treated as a node in the network, and
an edge is assigned to connect two monitoring points (nodes) if their spatial distance is less than a specified cutoff
distance Lc. Each node is then assigned the velocity of its corresponding monitoring point on the current date. The
MPN, along with the velocity information, serves as the foundation for the subsequent persistent homology
analysis.

Based on the MPN, the proposed persistent homology method can be described as two parts: the spatial filtration
process and distance calculation. Specifically, the former is designed to investigate how topological invariants
emerge and disappear with varying filtration thresholds. This process achieves a significant dimension reduction
of the original network while maintaining its inherent topological properties. Taking the MPN shown in Figure 2b
as a heuristic example, the spatial filtration process is realized by continuously increasing the velocity threshold η.
First, given an initial threshold η, a partial monitoring network containing MPs with velocity smaller or equal to
this threshold can be obtained. From this partial monitoring network, we can extract a commonly used topological
structure called component (Wasserman, 2018). A component is defined as a local maximally connected group of
nodes within a given network (Mei et al., 2023). Any two nodes within a component can reach each other via paths
but are not connected to any nodes outside this component. Thus, the initial threshold should be sufficiently small
to catch the appearance of components with the smallest values of velocity. Then the velocity threshold η is
continuously increased and a partial monitoring network at each threshold is also defined. In this way, we can
obtain a sequence of partial monitoring networks and track the appearance and death of each component. The
death of a component refers to its mergence with another component that appeared earlier. As shown in Figure 2b,
components are referred to as C‐k, where k is the order of appearance during the spatial filtration process. For
example, C‐1 refers to the first appeared component and appears when the threshold η increases to − v1. The
component C‐2 appears at η = − v2 and merges with C‐1 when η further increases to − v3. Given that C‐1 appears
earlier than C‐2 during the filtration process, the persistence of C‐2 refers to the interval between − v2 and − v3.

Persistent diagrams (PD) are then employed to illustrate the results of the spatial filtration process. Specifically, a
persistent diagram is the representation of points that encode the information about the appearance and disap-
pearance of components during the spatial filtration process. As indicated in Figure 2c, for a chosen point (ηbirth;
ηdeath) in the persistent diagram, ηbirth and ηdeath correspond to the velocity thresholds at which the corresponding
component appears (birth) and merges with others (death), respectively. Therefore, each point in the persistent
diagram provides essential information regarding the existence of a component over the spatial filtration process.
In short, the spatial filtration process employs a multi‐scale analysis to examine the hierarchical structure of
complex networks, and the resulting persistent diagram achieves significant dimension reduction of the ground
deformation field by encoding its inherent topological features.

After the spatial filtration process, the spatiotemporal evolution of slope deformation can be represented by the
time‐varying persistent diagrams. We further calculate the distance between two temporally adjacent persistent
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diagrams to quantify its evolution. The Wasserstein distance is among the most commonly used distance metrics
and is adopted in this study. Given two temporally adjacent persistent diagrams PDs and PDt, their Wasserstein
distance ΔWDs,t can be calculated as

Figure 2. Methodology of persistent homology. (a) Schematic of a monitoring point network (MPN) constructed from
discretely distributed monitoring points. (b) Spatial filtration process by continuously increasing velocity threshold η. Each
point is colored by its moving velocity. The shown spatial infiltration example is only for one time slice of the MPN.
(c) Persistent diagrams that encode the birth and death information of components.
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ΔWDs,t (PDs, PDt) = min
ϕ(PDs,PDt)

( ∑
p∈PDs

d( p,ϕ( p))2)
1/2

(1)

where PDs and PDt are persistent diagrams generated at date s and t (t> s), respectively. p iterates over all points
in PDs, and ϕ( p) refers to the corresponding point in PDt via the bijection ϕ. d( p,ϕ( p)) is the distance between
two points and is calculated as

d( p,ϕ( p)) = max(
⃒
⃒ηbirth,p − ηbirth,ϕ( p)

⃒
⃒,
⃒
⃒ηdeath,p − ηdeath,ϕ( p)

⃒
⃒) (2)

Thus, the Wasserstein distance is dependent on the choice of ϕ, and the final result is determined as the minimum
value over all possible bijections. Then we define the cumulative Wasserstein distance at date t as

WDt =WDs + ΔWDs,t (3)

By definition, the slope of WD curve indicates the intensity of topological properties evolution and essentially
reflects the spatiotemporal evolution rate of slope deformation. Taken together, the proposed PH method consists
of two parts: spatial filtration process and distance calculation. The former aims to determine the spatial distri-
bution of moving velocities and how points with different velocities relate across the slope, reflecting the spatial
structure of the slope deformation field. The distance calculation part investigates how this spatial structure
changes over time. The resulting temporal evolution of WD serves as a quantitative indicator of the spatiotem-
poral evolution rate of slope deformation.

3. Results
In this work, we employ the proposed persistent homology (PH) method to quantify the spatiotemporal evolution
of slope deformation and identify landslide precursors from the InSARmonitoring data. We resort to the Sentinel‐
1A/B satellite to obtain SAR images with a spatial resolution of 15 m, which are further processed using the
SBAS‐InSAR technique (Berardino et al., 2002; Li et al., 2022). By setting appropriate spatial and temporal
baselines for SAR images, the SBAS‐InSAR technique forms differential interferograms and increases the
correlation of interferograms' formation. It is worth noting that the InSAR results of the work are processed using
the open‐source software SNAP and STAMP. Moreover, atmospheric correction is made via the Generic At-
mospheric Correction Online Service for InSAR (GACOS) (Yu et al., 2018). More details about the InSAR
processing procedures can be found in our previous study (C. Guo et al., 2022). In this section, we present six
landslide cases: three that resulted in catastrophic failure and three that exhibited slow‐moving behavior without
catastrophic failure.

3.1. Landslide Cases Demonstrating Catastrophic Failures

3.1.1. Xinmo Landslide

The Xinmo landslide that demonstrates catastrophic failure is first examined. On 24 June 2017, the Xinmo
landslide, classified as a rock avalanche, devastated Xinmo village in Sichuan Province, southwestern China, as
depicted in Figure 3a. The landslide zone is located in the Longmenshan‐Minshan Fault zones, which have
experienced multiple significant earthquakes in history, including the 1933 Diexi earthquake, the 1976 Songpan‐
Pingwu earthquake, and the 2008 Wenchuan earthquake. The local climate is shaped by the Westerlies, Asian
monsoon, and Tibetan Plateau monsoon, with an annual precipitation averaging 491 mm. Over 70% of precip-
itation falls between June and September. The landslide zone experienced intense and prolonged rainfall prior to
the occurrence of the Xinmo landslide. Previous studies indicate that the Xinmo landslide was initiated by the
failure of a rock mass, which had been already weakened by the 1933 Diexi earthquake (Fan et al., 2017). The
combined impact of seismic activity and rainfall is considered a key factor in triggering the landslide (Intrieri
et al., 2018; Moretto et al., 2021). This event has been widely regarded as one of the most catastrophic landslides
in recent years, and more details are available in many existing studies (Intrieri et al., 2018; S. Zhou et al., 2022).

We utilize the Sentinel‐1A/B satellite to obtain 45 SAR images spanning from 9 October 2014 to 19 June 2017,
that is, 5 days before the failure. These SAR images cover the entire area of Xinmo village and Songping gully and
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are acquired along the descending orbit and processed using the SBAS‐InSAR technique (Berardino et al., 2002;
Li et al., 2022). Figure 3a shows the pre‐event displacement map (ranging from 9 October 2014 to 19 June 2017)
of the Xinmo landslide. Positive values correspond to motion toward the SAR satellite, while negative values

Figure 3. Collective motion toward catastrophic failure. (a) Ground displacement map (from 9 October 2014 to 19 June 2017)
of the Xinmo landslide, with inset showing its location within the Sichuan Province of China. The selected MP is used in the
analysis in Figure 12. (b) Deformation velocity map at four typical time points, that is, T = − 786, T = − 570, T = − 306,
and T = − 18. T refers to the days before the ultimate failure, and T = 0 means the occurrence of landslide. (c) Evolution of the
spatial distribution of highly mobile clusters. Each cluster is colored according to its size Nc, which is defined as the number of
MPs it contains.
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correspond to deformation away from the satellite. Following the procedures described above, we construct a
network to describe the spatial distribution of MPs. Specifically, we treat each MP as a node and assign an edge
between two adjacent MPs. TwoMPs are considered adjacent if their spatial distance is less than a cutoff distance
Lc. We note that, unless otherwise specified, the results presented in this study are based on Lc = 20 m, and we
will demonstrate later different choices of Lc have minimal impact on our conclusions.

We first examine the temporal evolution of slope deformation from a network‐based perspective. Figure 3b il-
lustrates the deformation velocity map at four typical dates. Long before the landslide occurs, the velocity map
exhibits a less concentrated spatial distribution while showing a sharp transition to collective motion near the
occurrence of the landslide. The collective motion indicates the formation of highly mobile clusters in space and
can be quantified via clustering analysis. This method is widely utilized in the geoscience and material science
communities with the purpose of identifying patterns and spatial correlations among highly mobile sites (Desai
et al., 2023; Ghosh et al., 2017; Kou et al., 2018). Previous studies commonly use thresholds between 10% and
25% to select these sites (Li et al., 2021; Mei et al., 2025). Accordingly, we focus onMPs within the MPN that fall
within the top 25% of the highest deformation velocities, defining these as highly mobile sites. These points are
then used to construct a partial MPN. Clusters within this network are identified, with each cluster defined as a
locally connected group of nodes. Therefore, a cluster is the same as the component in the persistent homology
method. As shown in Figure 3c, we observe the enlargement of highly mobile clusters when approaching the
ultimate failure, which serves as compelling indicators of an intensified spatial correlation within the ground
deformation map accompanied by the conspicuous emergence of collective motions. This underscores the
imperative need to quantify the spatiotemporal evolution of slope deformation, which may hold the potential of
unveiling precursory signals of impending landslides.

The above analysis suggests that quantifying the spatiotemporal evolution of slope deformation can provide
enhanced insights into the early signs of impending landslides. Therefore, the persistent homology method is
further employed to quantify the spatiotemporal evolution of ground deformation at the slope scale. Figures 4a
and 4b show the spatial filtration process and the resulting persistent diagram for a typical ground deformation
map of the Xinmo landslide. The evolution of persistent diagrams can be quantified by the Wasserstein distance
(see Section 2 for details). Figure 4c shows the evolution of cumulative Wasserstein distance WD with the
approaching of the Xinmo landslide. As we have mentioned, the slope of WD curve indicates the intensity of
topological properties evolution and essentially reflects the spatiotemporal evolution rate of landslide
deformation.

As indicated in Figure 4c, WD shows a typical two‐stage evolution trend that increases slightly at the initial stage
(blue‐shaded region) with a rapid increase afterward (red‐shaded region). The former indicates a steady evolution
behavior of the slope deformation, which may correspond to the initial and secondary creep stages of the
traditional three‐phase creep behavior (Noda & Chang, 2023). The latter stage is accompanied by the sudden
acceleration of the evolution of ground deformation. Recalling the above analysis, this behavior essentially in-
dicates the emergence of some precursory spatiotemporal motions before the ultimate failure. From the
perspective of soft matter physics, it can be regarded as the slope entering into a marginally stable state, delicately
poised on the verge of instability (Baule et al., 2018; Deshpande et al., 2021). In this state, the slope becomes
fragile and is susceptible to catastrophic failures triggered by some external factors, such as heavy rainfalls
(Handwerger et al., 2022; Iverson, 2000; Notti et al., 2021) and earthquakes (Bell, 2018; Yin et al., 2009; Zhao
et al., 2023). Thus, the transition point between these two stages acts as a precursory indicator of the impending
landslide.

Identifying transition points in the evolution of WD is closely related to the longstanding topic of online (or real‐
time) changepoint detection within time series data (Goswami et al., 2018). Unlike offline algorithms, which
identify transition points by analyzing the entire data set retrospectively, online algorithms work concurrently
with data collection, processing each data point as it arrives to detect changes as quickly as possible (Amini-
khanghahi & Cook, 2017). Efficient online changepoint detection algorithms include the Bayesian‐based
(Ruggieri & Antonellis, 2016), kernel‐based (Ferrari et al., 2023), and machine learning methods (Zhang &
Shi, 2020), which typically require large amounts of data to calculate probability distributions or to train models
(Aminikhanghahi & Cook, 2017; Lei et al., 2023). This need for high data volume makes them currently un-
suitable for the InSAR data used in this study. Therefore, we introduce a 3σ criterion to identify the transition
point from the evolution of WD, which is a traditional heuristic approach presuming that most values lie within
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three standard deviations of the mean. This criterion is straightforward to implement and has been widely used for
anomaly detection in time series data (Cui et al., 2019; Liu et al., 2023). With future monitoring data at much
higher temporal resolution, further improvements of the proposed PH method can benefit from the aforemen-
tioned state‐of‐the‐art detection algorithms.

The 3σ criterion can be briefly described as follows. At each date i, we use a linear function to fit the data from
WD0 to WDi, from which we can get the standard deviation σ between the predicted values and real values.
Moreover, by extending the fitting, we can get the estimated value at the next date, WD ʹ

i+1. If the real value at the
next date, WDi+1, falls within the range of WD ʹ

i+1 ± 3σ, WDi+1 is considered reasonable, and no transition point
is identified. However, if WDi+1 falls outside this range, a transitional point indicative of the landslide precursor is
recognized. To account for the seasonal deformation behaviors of landslides, the first year of WD serves as the
baseline for calculating the 3σ interval, and WDi begins from the second year. Through this criterion, it is
demonstrated that the Xinmo landslide exhibits a failure precursor about 125 days prior to its occurrence (see the
dotted line in Figure 4c). Moreover, Figure 5 shows the evolution of WD calculated based on different Lc, where
the trend of WD and resulting failure precursors are independent of different choices of Lc. We note the
decreasing of WD with increasing Lc is due to the fact that a smaller value of Lc exhibits more isolated com-
ponents, which further increases the calculated Wasserstein distance between two persistent diagrams.

Figure 4. Persistent homology reveals landslide precursors. (a) Typical spatial filtration process of ground deformation map
with the increasing of velocity threshold η. The red square highlights the MP with the largest cumulative displacement
throughout the study period. (b) Resulting persistent diagram after the spatial filtration process. (c) Evolution of the cumulative
Wasserstein distance WD with the approaching of landslide. The black line shows the maximum cumulative displacement
within the Xinmo landslide zone, and the corresponding MP is shown by the red square in panel (a).

Journal of Geophysical Research: Earth Surface 10.1029/2024JF007949

MEI ET AL. 8 of 22

 21699011, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JF007949 by Jidong Z

hao - H
ong K

ong U
niversity O

f , W
iley O

nline L
ibrary on [13/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.1.2. Mud Creek Landslide

The proposed PH method is further employed to verify its applicability for a second case, the Mud Creek
landslide. On 20 May 2017, the Mud Creek landslide occurred in California, United States (see Figure 6a),
destroying part of California State Highway 1 (CA‐1). The landslide zone is located in the California Coast
Ranges, where slow‐moving landslides are prevalent due to mechanically weak rocks, active uplift, and high
seasonal precipitation (Desai et al., 2023). Annual precipitation averages around 1,000 mm, with 80% occurring
between October and May (Desai et al., 2023). It is worth noting that this region experienced a historic drought
that lasted from 2012 to 2016, followed by the wettest year (2017) on record. As indicated in a previous study, the
Mud Creek landslide demonstrated decades of creep behavior before its failure and is believed to be triggered by
increased pore‐fluid pressure from heavy rainfall (Handwerger et al., 2019). More details can be found in previous
studies (Desai et al., 2023; Urgilez Vinueza et al., 2022).

We obtain 59 SAR images along the descending orbit that span from 12May 2015 to 13 May 2017, that is, 7 days
before the failure. Similarly, we obtain the ground deformation map from these SAR images through the SBAS‐
InSAR technique. Figure 6b illustrates the pre‐failure displacement map (from 12 May 2015 to 13 May 2017) of
the Mud Creek landslide, in which we show the outline of the Mud Creek landslide. Following the above pro-
cedures, we quantify the spatiotemporal evolution of the deformation field of the Mud Creek landslide. The
resulting evolution of WD also demonstrates a two‐stage evolution trend, as shown in Figure 6c, with surprising
similarity with that of the Xinmo landslide. Through the proposed 3σ criterion, our method generates failure
precursors identifiable about 127 days prior to the occurrence of the Mud Creek landslide. In comparison to the
maximum cumulative displacement within the landslide zone (see Figure 6c), our method surely generates a much
clearer signal for the impending catastrophic failure.

Figure 5. Evolution of WD calculated based on different choices of Lc: (a) Lc = 10 m, (b) Lc = 15 m, (c) Lc = 25 m, and
(d) Lc = 30 m. Dotted lines denote the early warning dates detected by the 3σ criteria.
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3.1.3. Longjing Landslide

To further validate the effectiveness of the proposed method, we applied it to the Longjing landslide, which has
different failure conditions than the previously analyzed sites. The Longjing landslide occurred on 19 February
2019, in Guizhou Province, China. The landslide zone is generally dominated by karst topography and a sub-
tropical monsoon climate. The region receives over 1,300 mm of annual precipitation, mostly between May and
October. The landslide material comprises thick‐bedded dolomite that slides along weak bedrock layers rich in
argillaceous limestone and dolomite. Unlike the aforementioned two catastrophic landslides, the Longjing
landslide was triggered by slope toe excavation (Fan et al., 2019; Zeng et al., 2024). Using Sentinel‐1A/B satellite
data, we obtained 58 SAR images from 20 March 2017 to 14 February 2019 (5 days before failure) along the
ascending orbit. Figures 7a and 7b show the resulting displacement map and the evolution of WD, respectively.
The results show that the proposed method identifies the early warning signal on 9 January 2019, that is, 41 days
ahead of the occurrence of the Longjing landslide. This demonstrates that our method can effectively apply to a
wider range of natural landslides under different failure conditions.

3.2. Slow‐Moving Landslides Without Catastrophic Failure

The aforementioned cases represent landslides that have undergone catastrophic failure. In the following section,
we apply our method to three slow‐moving landslides that exhibit continuous creeping behavior but have not
eventually undergone catastrophic failure, namely the Cheyiping landslide, Zhenggang landslide, and Boulder
Creek landslide.

Figure 6. Precursory analysis of the Mud Creek landslide. (a) Geographic location of Mud Creek landslide within United
States. (b) Pre‐failure displacement map (from 12 May 2015 to 13 May 2017) of Mud Creek slope captured by
interferometric synthetic aperture radar monitoring. (c) Evolution of WD with the approaching of Mud Creek landslide. The
black line shows the maximum cumulative displacement within the Mud Creek landslide zone, and the corresponding MP is
highlighted by the black square in panel (b).
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3.2.1. Cheyiping and Zhenggang Landslides

As shown in Figures 8a and 9a, the Cheyiping and Zhenggang landslides are both located in the Yunnan province
of China. The region is characterized by high mountains and deep valleys formed by the uplift of the Tibetan
Plateau due to the collision between the Indian and Asian plates. The local climate is classified as a subtropical
plateau monsoon climate, with over 85% of annual precipitation occurring between May and October. The
Cheyiping landslide is situated in the upper reaches of the Lancang River in Lanping County, approximately
39 km from the Huangdeng Hydropower Station. It is a typical reactivated reservoir landslide, with materials
primarily consisting of Quaternary deposits of silty clay and fragmented rubble. The underlying bedrock com-
prises silty mudstone, argillaceous siltstone, and sandstone from the Middle Jurassic Huakaizuo Formation. The
Zhenggang landslide, located downstream on the right bank of the Lancang River, comprises quaternary deposits,
including residual slope sediments and collapse materials. The underlying bedrock primarily consists of sand-
stone and slate. Further details about these two landslides are available in previous studies (Chong et al., 2016; C.
Guo et al., 2022).

For the Cheyiping landslide, 114 InSAR images that span from 6 November 2017 to 10 September 2021 are
obtained along the ascending orbit. Similarly, for the Zhenggang landslide, 75 SAR images spanning from 23
April 2017 to 8 February 2022 are obtained along the ascending orbit. Figures 8b and 9b show the ground
displacement maps over the investigated periods for Cheyiping and Zhenggang landslides, respectively. As
depicted in Figures 8c and 9c, the maximum cumulative displacements of these landslides exhibit similar
continuous creeping behavior, albeit with significant fluctuations. Following the same procedure, we test the
proposed persistent homology method on these two landslides, and the resulting WD series are respectively
shown in Figures 8d and 9d. It is important to note that Yunnan Province in southwest China experiences high
precipitation (Huang, 2009), which surely has a profound influence on the spatiotemporal evolution of landslide
movement (Gariano & Guzzetti, 2016; Paul et al., 2024; Sreejith et al., 2024). To illustrate the relationship be-
tween precipitation and landslide deformation, we have included monthly rainfall data in these figures, repre-
sented by the blue bars at the bottom. It is shown thatWD exhibits a nearly linear evolution for both landslides and
no transition point is detected via the 3σ criterion. Recalling the results of the above sites with catastrophic
failures, we demonstrate the effectiveness of our method in quantifying the spatiotemporal evolution of slope
deformation patterns and detecting landslide precursors.

Furthermore, for the Zhenggang landslide, high levels of precipitation broadly coincide with accelerated WD
evolution, indicating that the proposed method may be effective in analyzing how the spatiotemporal evolution of
a landslide is driven by external factors such as precipitation, earthquakes, and groundwater fluctuations. These
factors have been shown to significantly alter the hydro‐mechanical properties of geotechnical materials and
affect the movement of large landslides (Handwerger et al., 2019, 2022; Kirschbaum et al., 2020; Ye et al., 2024;

Figure 7. The precursory analysis of Longjing landslide. (a) Pre‐failure displacement map of the Longjing landslide from 20
March 2017 to 14 February 2019. (b) Evolution of WDwith the approaching of Longjing landslide. The black line shows the
maximum cumulative displacement within the landslide zone, and the corresponding MP is highlighted by the black square in
panel (a).
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Zhao et al., 2023). In this context, future research into this topic requires not only deformation monitoring data
with higher temporal resolution than currently feasible, but also additional information regarding the mechanical
processes such as direct measurements of hydraulic conductivity and pore‐fluid pressure at the sliding surface
(Finnegan et al., 2022; Murphy et al., 2022; Oya et al., 2024), continuous seismic and acoustic signals (Le Breton
et al., 2021; Hu et al., 2018; Q. Zhou et al., 2024).

3.2.2. Boulder Creek Landslide

To further evaluate the effectiveness of the proposed method, we apply it to the Boulder Creek landslide, a site
that experienced unprecedented acceleration but did not result in collapse. Both the Boulder Creek andMud Creek
landslides are located within the California Coast Ranges, with further details about the region provided in the
description of the Mud Creek landslide. Both sites underwent accelerated deformation from October 2016 to
January 2017 due to the shift from historic drought to extreme rainfall (Handwerger et al., 2019); however, unlike
Mud Creek, the Boulder Creek landslide ultimately stabilized without collapsing. We obtain 38 SAR images
along the descending orbit from 10 June 2015 to 18 May 2017, with the corresponding displacement map of the
Boulder Creek landslide shown in Figure 10a. Then, the proposed PHmethod is adopted to calculate the evolution
of WD for Boulder Creek landslide. As illustrated in Figure 10b, a sharp increase in WD occurs around January
2017. The red dashed zone in Figure 10b indicates WD slightly exceeds the 3σ interval near January 2017, which
indicates that the Boulder Creek landslide had a strong potential for catastrophic failure at that time. This aligns
with prior observations of a transition from historic drought to extreme rainfall in the region during that period
(Handwerger et al., 2019). Moreover, after February 2017, WD evolves back into the 3σ interval, aligning with
observations that the slope did not collapse but instead continued to deform gradually.

Figure 8. Persistent homology analysis of the Cheyiping landslide, which demonstrates continuous creeping without
catastrophic failure. (a) Geomorphic features of the Cheyiping landslide. Inset shows the locations of Cheyiping and
Zhenggang landslides within Yunnan Province, China. (b) Ground displacement map of the Cheyiping landslide from 6
November 2017 to 10 September 2021. (c) The maximum cumulative displacement within the landslide zone, and the
corresponding MP is highlighted by the black square in panel (b). (d) Evolution of WD and the monthly rainfall.
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Figure 9. Persistent homology analysis of the Zhenggang landslide, which demonstrates continuous creeping without
catastrophic failure. (a) Geomorphic features of the Zhenggang landslide. The location of Zhenggang landslide can be found
in Figure 8a (b) Ground displacement map of Zhenggang landslide from 23 April 2017 to 8 February 2022. (c) The maximum
cumulative displacement within the landslide zone, and the corresponding MP is highlighted by the black square in panel (b).
(d) Evolution of WD and the monthly rainfall.

Figure 10. Persistent homology analysis of the Boulder Creek landslide. (a) Ground displacement map of Boulder Creek
landslide from 10 June 2015 to 18May 2017. (b) Evolution of the resultingWD. The red dashed zone indicates the points that
exceed the 3σ interval. The black line shows the maximum cumulative displacement within the landslide zone, and the
corresponding MP is highlighted by the black square in panel (a).
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The results suggest that, while the proposed method robustly identifies landslide precursors through spatio-
temporal analysis of slope deformation, it may generate false alerts for landslides undergoing rapid, unprece-
dented acceleration due to natural variations such as extreme rainfall. This is a common challenge for landslide
alert methods that rely solely on surface deformation data (Intrieri et al., 2019; Lei et al., 2023; Leinauer
et al., 2023). Previous studies indicate that the catastrophic failure of the Mud Creek landslide was most likely due
to frictional weakening caused by a substantial increase in pore‐fluid pressure (Handwerger et al., 2019). In
contrast, the Boulder Creek landslide was able to adjust to the elevated pore‐fluid pressures and maintain stable
sliding without failure. These differences are fundamentally related to factors such as the landslide geometry,
material properties (such as porosity and rate‐strengthening/weakening properties), and drainage networks
(Teshebaeva et al., 2019; Youssef & Pourghasemi, 2021). For example, the slope angle and associated gravi-
tational driving stress were lower for the Boulder Creek landslide, reducing the likelihood of catastrophic failure
(Handwerger et al., 2019).

Given that landslide movement is controlled by frictional processes along the sliding surface, variations in in-
ternal hydro‐mechanical properties can significantly alter its frictional resistance (Handwerger et al., 2019; Noda
& Chang, 2023). In this context, integrating surface deformation data with internal mechanical information holds
promise for minimizing false alerts and enhancing landslide risk management (Le Breton et al., 2021; Oya
et al., 2024). However, obtaining in situ information in mountainous or inaccessible areas poses significant
challenges (Fan et al., 2017), and the high cost of in situ monitoring sensors makes it impossible for imple-
mentation on all possible landslides (Zeng et al., 2024).

For landslide cases where in situ mechanical information is unfeasible, another improvement of the proposed PH
method can be made by incorporating additional information into the construction of theMPN. For instance, slope
angles and other geometric characteristics between nearby nodes (monitoring points) can be encoded as feature
vectors on their connecting edges (Desai et al., 2023). Additionally, material properties can be integrated by
assigning different weights to each node based on their local conditions (Papadopoulos et al., 2018). In this way,
we can enrich the MPN with more detailed information about slow‐moving landslides, enabling a more accurate
assessment of the spatiotemporal evolution of slope deformation and potentially reducing false alerts for
impending landslides.

4. Discussion
4.1. Comparison With Conventional Early Warning Methods

In this section, using the monitoring data from the Xinmo landslide, we compare the early warning results of the
proposed method with those of conventional early warning methods. Generally, conventional alert methods
mainly rely on setting alert thresholds for individual displacement time series. To demonstrate the superiority of
the proposed method, a comparative analysis is further conducted with two conventional threshold‐based alert
methods (M. Chen & Jiang, 2020; Xu et al., 2011), that is, the tangential angle‐based (TA‐based) and velocity and
acceleration‐based (VA‐based) method. The TA‐based method focuses on the tangential angle of the displace-
ment curve (Xu et al., 2011). To overcome the question that units of the coordinates of the displacement‐time
curve may have different dimensions and scales, a previous study proposed a modified tangential angle by
normalizing the displacement with the velocity of the stable creep stage. The modified tangential angle of time ti
can be calculated as

αi = arctan
B(i) − B(i − 1)

ti − ti− 1
(4)

where αi is the modified tangential angle, and B(i) is the normalized displacement with the same dimension and
unit with time and can be calculated as

B(i) =
S(i)
v0

(5)

where S(i) refers to the cumulative displacement of time ti, v0 is the average velocity of the stable creep stage. In
this way, the tangential angle αi is independent of different units of time, and previous studies have established
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alert thresholds for the tangential angle between values of 80° and 90° (Fan et al., 2019; Intrieri et al., 2019; Xu
et al., 2011). For the VA‐based method, Chen and Jiang (2020) developed an alert threshold by analyzing 50
landslide failure cases and 50 non‐failure cases, using the dimensionless velocity vn and acceleration an:

vn =
v
v0

,an =
a
a0

(6)

where a0 is the initial acceleration of the tertiary/accelerating creep stage. For the non‐failure landslide cases, a0 is
selected as the largest acceleration during the first year of study. They found a combination of vn = 7 and an = 4
can effectively distinguish failed landslides from stable cases and acts as the alert threshold (M. Chen &
Jiang, 2020). Therefore, the velocity and acceleration thresholds should be met simultaneously when used for
early warning analysis.

However, these thresholds were originally developed using in situ monitoring data, such as the global navigation
satellite system and crack gauges, which exhibit much higher temporal resolution than InSAR monitoring data
(M. Chen & Jiang, 2020; Fan et al., 2019; Ju et al., 2020). Applying these thresholds directly to InSAR data would
fail to generate effective alert signals. Therefore, we further included an analysis on determining reasonable
thresholds for these conventional methods. A reliable threshold should effectively differentiate between land-
slides that result in catastrophic failures and those that do not. According to previous studies (Chen &
Jiang, 2020), we selected five monitoring points with the largest displacements from each landslide and calculated
the peak values of tangential angle, velocity, and acceleration for each monitoring point throughout the study
period. Figure 11a illustrates the distribution of peak values for tangential angles across different landslides. As
indicated by the dashed line, the threshold of α = 70° can well distinguish between landslides exhibiting cata-
strophic failures from those without catastrophic failures. A higher threshold may reduce the reliability of alerts
for failure cases, while a lower threshold could lead to more false alarms. Figure 11b presents the distribution of
peak values of dimensionless velocity and acceleration. Similarly, we derive the threshold of vn = 2.7 and
an = 1.5 to differentiate between landslides with catastrophic failures and those without. In summary, for the TA‐
based method, we set the tangential angle threshold to α = 70°, and for the VA‐based method, we set this
threshold as the combination of vn = 2.7 and an = 1.5.

We further compare these conventional alert methods with the proposed PH method using data from the Xinmo
landslide. Figure 12a illustrates the alert analysis for a specific MP, with the alert‐release date defined as the date
at which the indicator surpasses its alert threshold. The location of the selected MP is indicated in Figure 3a. This
analysis is replicated for 500 randomly selected MPs, yielding corresponding alert release dates as depicted in
Figure 12b. The x‐axis represents the days before failure when an alert signal is triggered by each method, and

Figure 11. Determining the thresholds for conventional alarm methods. (a) Distribution of the peak value of tangential angle
α for different landslides. (b) Distribution of the peak values of dimensionless velocity vn and acceleration an for different
landslides. The dashed lines indicate thresholds for conventional alarm methods. Red symbols represent landslides with
catastrophic failure, while blue symbols represent landslides without catastrophic failure.
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monitoring points that do not provide effective alert signals are assigned a value of 0. It is found that, when
assessed through conventional alert methods, most MPs lack the essential information required for effective
landslide alerts, and the earliest alert date achieved by these methods still lags behind the prediction from our PH
method. To the best of our knowledge, few reliable landslide‐alert methods are currently tailored specifically for
remote‐sensing data. In this context, our proposed method provides an effective early warning approach by
analyzing the spatiotemporal evolution of slope deformation. This is particularly advantageous in mountainous
regions with steep terrain or areas where in situ monitoring is challenging or unfeasible (Zeng et al., 2024).

4.2. Influence of Spatial and Temporal Resolution

Due to inherent limitations in the InSAR technique and many other remote‐sensing methods, these approaches
can face challenges with the temporal and spatial resolution of monitoring data (Casagli et al., 2023). In terms of
spatial resolution, while the development of remote‐sensing techniques enables large‐scale continuous moni-
toring, factors such as the number and quality of the source SAR images as well as environmental conditions such
as clouds, snow, crops, and vegetation can significantly impact the spatial resolution of the monitoring data
(Casagli et al., 2023; Le Breton et al., 2021). To assess the robustness of our proposed method under these
conditions, we assume that someMPs are absent for unknown reasons and employ three different spatial sampling
strategies: random spatial sampling, Poisson disk sampling, and area removal. In random spatial sampling,
different proportions of MPs are randomly removed, and persistent homology analysis is performed on each
realization. As shown in Figure 13, the proposed method can effectively quantify the spatiotemporal evolution of
slope deformation with minor deviations even when up to 40% of MPs are randomly removed. Poisson disk
sampling removes MPs while ensuring a minimum distance dmin between them, creating a more homogeneous
field from the available monitoring data, as seen in the insets of Figure 14. This approach is particularly useful for
defining homogeneous kinematic domains in heterogeneously distributed fields. Figure 14 shows that under
different choices of dmin, our proposed method can generate reliable early warning signals, indicating that varying
spatial resolutions have little influence on the method's effectiveness. Under the condition of Poisson disk
sampling, the cutoff distance Lc for defining the MPN is set as 1.5dmin. It is worth noting that in Figures 13 and 14,

Figure 12. Landslide alert via conventional methods. (a) Evolution of cumulative displacement s, tangential angle α,
normalized velocity vn and acceleration an for a selected MP. The location of the selected MP is indicated in Figure 3a.
Dotted lines and solid lines respectively indicate the alert thresholds and alert release dates for different methods. (b) Bottom
panel: days before failure when an alert is released for 500 randomly selected MPs. Upper panel: histogram of days to failure
based on conventional methods. The purple dotted line indicates the alert release date by using our method.
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we calculate WD and 3σ region and determine the alert date at each realization of the spatial sampling. The shown
WD and 3‐sigma region are averaged over different realizations, and the alert date (vertical dashed line) remains
consistent among different realizations.

Compared to the above two strategies, the area removal strategy directly removes MPs inside a large continuum
area. As shown in the insets of Figure 15, we randomly select oneMP and define a square area with a dimension of
200 m × 200 m around it. All MPs that are located within this area are then removed. Figure 15 shows the results
of four independent calculations, which demonstrate that the proposed PH method can still achieve reasonable
performance when large areas of MPs are missing. This feature is intriguingly appealing for the application of this
method to remote landslide sites located within high mountain canyon regions or highly vegetated environments
(R. Guo et al., 2021; Tong & Schmidt, 2016). Such areas usually experience diminished spatial coverage in the
InSAR maps due to high decorrelation (low coherence).

Regarding the temporal resolution, due to the limitation of revisit time, InSAR cannot detect large displacements
(exceeding half the radar wavelength). This means that if a monitoring point is moving too fast between two
subsequent acquisitions, the resulting phase aliasing may underestimate the real displacement, particularly in the
vicinity of catastrophic failures (Desai et al., 2023; Handwerger et al., 2022; Manconi, 2021;Warrick et al., 2019).
Therefore, while the spatiotemporal evolution rate of landslides near the catastrophic failure may be under-
estimated, what we have shown in this work is a lower bound, and a stronger early warning signal is expected with
higher time resolution data.

Figure 13. The evolution of WD calculated when the proportion r of MPs are randomly removed: (a) r = 10%, (b) r = 20%,
(c) r = 30%, and (d) r = 40%. Error bars indicate standard deviations over 10 individual computations. Gray dotted lines
stand for the early warning dates detected by the 3σ criteria. The inserts show the corresponding distributions of selected MPs
within one calculation.
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Moreover, while in this study we are focusing on revealing early warning signals long before the occurrence of
catastrophic failure, the proposed PHmethod offers valuable insights by quantifying the spatiotemporal evolution
of slope deformation, which would contribute to the future development of methods capable of predicting precise
failure dates. Currently, the most reliable methods for predicting the precise failure dates of landslides rely on the
slope displacement and its derivatives (velocity and acceleration) (Intrieri et al., 2019), such as the commonly
used inverse‐velocity method (Fukuzono, 1985; Intrieri et al., 2018; Leinauer et al., 2023). However, in regions
where in situ monitoring is not feasible, the revisit time of many remote sensing techniques, such as InSAR, often
limits their ability to capture large displacements and makes it difficult to predict precise failure dates in such
areas.

Fortunately, recent years have witnessed a tremendous improvement in reducing the revisit time of satellites, for
example, the combination of geosynchronous SAR systems and SAR microsatellites, which holds the potential
for reducing the revisit time to hours (Casagli et al., 2023; Xiao et al., 2020). Moreover, integrating satellite
InSAR data and satellite optical images can significantly enhance the spatiotemporal resolution of remote‐sensing
monitoring and provide deeper insight into the complex evolution of landslides (Lacroix et al., 2020; Stumpf
et al., 2017; Xiong et al., 2020). In this context, a key focus of future research is to incorporate the proposed PH
method and multi‐source monitoring data to examine the spatiotemporal evolution of slope deformation, with the
hope of uncovering crucial kinematic parameters that can aid in developing accurate methods for predicting the
time of failure.

Figure 14. The evolution of WD when MPs are selected using Poisson disk sampling with the minimum distance of
(a) dmin = 15 m, (b) dmin = 20 m, (c) dmin = 30 m, and (d) dmin = 40 m. Error bars indicate standard deviations over 10
computations, and gray dotted lines stand for the early warning dates detected by the 3σ criteria. The inserts show the
corresponding distributions of selected MPs within one calculation.
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5. Conclusion
In summary, the proposed PH‐based method, which integrates monitoring data covering the entire slope, allows
for the quantification of the spatiotemporal evolution of ground motion and reveals precursors that indicate
potential landslide occurrence. To the best of the authors' knowledge, this is the first instance in which the
spatiotemporal evolution of the deformation field at the slope scale has been quantitatively measured. The method
generates precursory signals 125 days, 127 days, and 41 days before the Xinmo, Mud Creek, and Longjing
landslides, respectively. These early warning signals are much earlier than in many existing studies (Desai
et al., 2023; Intrieri et al., 2018; Ju et al., 2020). The findings of this study highlight the essential role of the
spatiotemporal evolution of slope deformation in predicting impending landslides. Furthermore, given the
consensus that precipitation is a crucial part in inferring landslide occurrence (Cohen‐Waeber et al., 2018;
Handwerger et al., 2022), incorporating the proposed method with rainfall prediction is vital for improving
landslide forecasts.

Considering the complexity of natural landslides, we do not claim that our method is universally applicable to all
types of landslides under every circumstance. Instead, we believe that incorporating the proposed method into
existing EWS can lay a foundation for future advancements in landslide risk management. More importantly,
significant progress in monitoring techniques has led to the generation of vast amounts of data covering various
Earth‐ and space‐related aspects, such as climate changes, natural hazards, and solar radiation (Casagli
et al., 2023). While these high‐resolution monitoring data undoubtedly contain valuable information about

Figure 15. (a–d) The evolution of WD when some MPs inside a large area are removed. The inserts show the corresponding
distributions of selected MPs, and gray dotted lines stand for the early warning dates detected by the 3σ criteria. Different
subfigures represent different choices of removed areas.
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ongoing processes, the rapid increase in data volume and complexity presents considerable challenges for effi-
ciently deciphering underlying causal structures. In this context, our method offers a promising avenue to better
investigate the spatiotemporal structures within the ever‐growing big data, potentially leading to improved un-
derstanding of numerous Earth‐ and space‐related phenomena.
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