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 A B S T R A C T

Modeling dynamic behavior and large deformation in porous media, encompassing coupled fluid 
flow, solid deformation, and heat transfer, remains a critical challenge in geomechanics. While 
the two-phase material point method (MPM) combined with the semi-implicit fractional step 
method (FSM) has demonstrated efficacy for saturated porous media under large deformation, 
traditional FSM is constrained to incompressible fluid and divergence-free velocity condition, 
limiting their applicability to scenarios involving compressible fluids, such as unsaturated soils 
or thermo-active systems. This study presents an enhanced FSM-based MPM framework that 
incorporates fluid compressibility and thermal expansivity under non-isothermal conditions. Key 
innovations include a node-based implicit scheme to solve intermediate variables, significantly 
improving computational efficiency while maintaining stability. Through a suite of hydro-
mechanical (HM) and thermo-hydro-mechanical (THM) coupling benchmarks, we demonstrate 
that fluid compressibility is essential for FSM to accurately resolve pressure shock waves 
induced by mechanical or thermal loading. Temporal resolution critically influences modeling 
of wave dynamics, with larger time steps accelerating wave attenuation. Notably, the semi-
implicit FSM can achieve comparable accuracy to explicit schemes while offering superior 
stability in dynamic regimes, irrespective of fluid compressibility. Practical trade-offs between 
computational efficiency and pressure wave-capture fidelity are discussed, guiding method 
selection based on scenario-specific needs. Furthermore, we explore the framework’s potential 
extension to triphasic porous systems to highlight its versatility for geomechanical applications. 
The work bridges a critical gap in simulating compressible, multiphysics-coupled porous media, 
offering a robust tool for both academic and industrial challenges.

1. Introduction

The interplay of fluid flow, solid deformation, and heat transfer within porous media, collectively referred to as coupled hydro-
mechanical (HM) and thermo-hydro-mechanical (THM) phenomena, occurs frequently in geological and geotechnical engineering. 
Modeling these intricately intertwined phenomena is often challenging due to the interdependence of multiple physical fields. 
Traditional mesh-based numerical techniques, particularly the finite element method (FEM), have advanced significantly in 
addressing TH and THM-coupled conditions. Contemporary geotechnical design emphasizes the need for comprehensive control 
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and prediction of geostructural behavior across a wide range of strain regimes, from small to large strains and eventual failures [1]. 
In large deformation scenarios, FEM often struggles with predictive capabilities, primarily due to mesh distortion issues. In 
response, particle-based and mesh-free methodologies have emerged as compelling alternatives, gaining traction in computational 
geomechanics over the past two decades. Notable among these methods are particle finite element method (PFEM) [2,3], MPM [4–6], 
smoothed particle hydrodynamics (SPH) [7–9], reproducing kernel particle method (RKPM) [10,11], and peridynamics [12,13]. Each 
method has its unique strengths and limitations, with this study focusing specifically on MPM.

MPM is a hybrid Eulerian and Lagrangian method that uses Lagrangian particles, known as material points (MPs), to discretize 
the material domain, convey material information, and track material movements while employing an Eulerian background mesh to 
solve the governing equations. Unlike the fixed quadrature in FEM [14], the material points in MPM can move across cell boundaries, 
and the background mesh is reinitialized after each solution loop. This combination allows MPM to leverage the advantages of 
the Lagrangian approach for simulating history-dependent materials while utilizing the Eulerian approach for addressing large-
deformation problems. Recent extensions of MPM have addressed the TH and THM problems in porous media [15–23]. The 
early application of MPM for saturated porous media predominantly employed explicit time integration due to its simplicity and 
robustness in dynamic scenarios [15–17,20,21,23]. In explicit multiphase MPM formulations, the kinematic variables are solved 
on the background mesh, while pore pressure is typically computed on the particles. Notably, to facilitate the explicit solution of 
pore pressure, fluid compressibility or the fluid bulk modulus must be specified. Consequently, the time step size is governed by 
the fluid compressibility (e.g., about 0.5 × 10−9 Pa−1 for water). Some studies mitigate computational overhead by assuming higher 
compressibility values (e.g., 1 × 10−8 Pa−1), allowing for larger time steps but potentially compromising solution accuracy [22].

Subsequent developments in MPM have introduced fully implicit time integration for HM-coupled problems, eliminating the 
need to specify fluid compressibility [18,24]. In incompressible HM-coupled formulations, the pore pressure is implicitly solved by 
ensuring the divergence-free velocity. However, it is known that under incompressible limit or undrained conditions, the pressure 
field may exhibit unphysical checkerboard modes if equal-low order interpolation functions are used for both the pressure and 
velocity fields in coupled MPM. This stability issue, known as inf-sup instability, is inherent to the mixed formulation and is also 
encountered in other numerical methods, including FEM. A common approach to mitigate unphysical pressure oscillations is to set 
the interpolation order for the velocity fields one order higher than that of the pressure field. However, this adjustment inevitably 
alters the existing MPM formulation and increases computational costs [25]. To maintain the use of low-order interpolation functions 
while ensuring stability, several techniques have been introduced to stabilize the pressure field, including reduced integration [24], 
node- and/or element-based averaging method [16], polynomial pressure projection [26,27], variational multiscale method [28,29], 
and fractional step method [19]. Among these, the fractional step method is particularly notable for balancing stability, efficiency, 
and accuracy without introducing additional stability parameters, thereby gaining popularity within the MPM community [30–35].

The fractional step method (FSM), also known as the projection method, was originally proposed by Chorin [36] to solve the 
incompressible Navier–Stokes equations. It has been widely recognized for its efficacy in stabilizing pressure field, even though 
it does not always satisfy the inf-sup condition, as later studies have shown [37,38]. Central to the FSM is the decoupling 
of pressure and kinematic variables in momentum equations via intermediate velocities. Although initially developed for fluid 
dynamics, the FSM has proven equally effective when applied to saturated porous media [39–42]. Recently, Kularathna et al. [19] 
incorporated the FSM into a one-point two-phase MPM to model HM-coupled large-deformation behavior in saturated porous media. 
Instead of enhancing stability, the semi-implicit time integration in this implementation alleviates the constraints imposed by fluid 
compressibility and permeability conditions on the time step size. Furthermore, the FSM-based semi-implicit MPM framework has 
been extended to THM problems in porous media experiencing large deformations, such as permafrost thawing [43], and has recently 
been applied to simulate unsaturated soils [35], although the compressibility of the gas phase was not considered in that study.

In existing FSM-based MPM studies, the compressibility of fluid (liquid and/or gas) was typically not considered [19,30,31,34,
35]. While the incompressible fluid assumption is manageable for most saturated porous media, it may lead to considerable errors 
when dealing with those containing highly compressible fluids, such as unsaturated soils, gas-hydrate-bearing sediments, tracer 
gas flow in porous media, and oil–gas reservoirs [44–46]. In geotechnical engineering, pore gases often exhibit compressibility 
magnitudes two to four orders greater than those of pore liquids. Even for relatively weakly compressible fluids like water, assuming 
incompressibility can result in a loss of crucial physical information, including dynamic effects [47], which will be discussed 
later. Consequently, there is a pressing need to extend the applicability of FSM to cover a broader range of fluid conditions, from 
incompressible to weakly and highly compressible fluids. However, a significant concern arises regarding the feasibility of utilizing 
the FSM for modeling compressible fluids in porous media, given its original development for incompressible fluid. Incorporating a 
compressibility term in the mass balance equation may disrupt the divergence-free velocity condition. Therefore, before extending 
the FSM to simulate unsaturated porous media, it is essential to evaluate its performance when considering fluid compressibility in 
coupled MPM simulations.

To address this concern, the study enhances the original fractional step formulation to accommodate compressible fluid 
conditions. While the conventional FSM requires matrix treatment and algebraic solution for two linear equation sets, namely the 
momentum predictor equations and the pressure Poisson equation, these steps remain computationally demanding [34]. To mitigate 
this, we propose a node-based implicit scheme utilizing lumped matrices to solve the momentum predictor equations, thereby 
reducing the number of linear system iterations from two to one. A suite of numerical benchmarks further validates the method’s 
accuracy and efficiency for both incompressible and compressible flows. For compressible scenarios, where analytical solutions are 
unavailable, simulation results are cross-verified against existing FEM data and explicit MPM simulations from the open-source 
CB-Geo MPM code [48]. The proposed framework employs a single-point, multiphase updated Lagrangian MPM, rigorously tested 
under isothermal and non-isothermal conditions. Although focused on biphasic saturated porous media, the formulation can be 
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extended to unsaturated media by modifying density and compressibility parameters to represent a water-air mixture [47]. Finally, 
the study further explores the method’s adaptability to triphasic porous systems with capillary suction, demonstrating its potential 
for broader applications in geomechanics and multiphase flow.

The structure of the paper is organized as follows. Section 2 will present the governing equations pertinent to THM-coupled 
problems in porous media with compressible fluid. Section 3 will outline the THM-coupled MPM algorithm based on improved 
semi-implicit FSM; Section 4 will showcase a range of diverse numerical examples crafted to assess the viability of FSM for handling 
compressible fluids in porous media.  Section 5 will discuss the extension of FSM for triphasic porous media. Finally, Section 6 will 
provide conclusive summaries of our findings.

2. Governing equations for fluid-infiltrated porous media

This section presents the mathematical model for porous media with compressible fluid under non-isothermal conditions. For 
generality, we start the derivation of governing equations from triphasic porous media wherein the pore fluid is a mixture of liquid 
and gas. Then, by assuming homogenized kinematics and material properties for the liquid-gas mixture, the three-phase porous 
media can be simplified as a two-phase porous medium where the equivalent fluid compressibility can vary significantly. Since this 
work mainly focuses on the effect of fluid compressibility rather than the theory development for unsaturated soils or multiphase 
flow in porous media, the capillary suction effect is not included here and will be discussed later in Section 5.

2.1. Homogenization of a triphasic porous medium

We consider the dynamic excitation of a porous medium consisting of a solid skeleton (𝑠) permeated by an interstitial fluid (𝑓 ), 
whereas the fluid phase is composed of uniformly distributed liquids (𝑙) and gases (𝑔). Based on the mixture theory [49], each 
material constituent 𝜋 = 𝑠, 𝑙, 𝑔 in a representative volume element (RVE) can be characterized by its volume fraction 𝑛𝜋 , which is 
used to define a partial density quantity 𝜌𝜋 by weighting the intrinsic density 𝜌𝜋 . It is also convenient to characterize the volume 
fraction for the fluid components 𝜗 = 𝑙, 𝑔 by the degree of saturation 𝑆𝜗. The volume fraction for each phase and the degree of 
saturation for fluid components in an RVE are defined and intertwined with the porosity 𝜙 as follows, 

𝑛𝜗 ∶=
𝑑𝑉𝜗
𝑑𝑉

= 𝜙𝑆𝜗, 𝑛𝑠 ∶=
𝑑𝑉𝑠
𝑑𝑉

= 1 − 𝜙, 𝑆𝜗 ∶=
𝑑𝑉𝜗

𝑑𝑉𝑙 + 𝑑𝑉𝑔
=
𝑑𝑉𝜗
𝑑𝑉𝑓

=
𝑛𝜗

𝑛𝑙 + 𝑛𝑔
, (1)

where 𝑑𝑉  and 𝑑𝑉𝜋 are the volumes of the RVE and the 𝜋 phase, respectively, and 𝑑𝑉𝑓  is the volume of the fluid. The volume fraction 
of the fluid phase, which is equal to the porosity, is defined as, 

𝑛𝑓 ∶=
𝑑𝑉𝑓
𝑑𝑉

=
𝑑𝑉𝑙 + 𝑑𝑉𝑔

𝑑𝑉
= 𝑛𝑙 + 𝑛𝑔 = 𝜙. (2)

Then, the partial density for each phase can be calculated based on the volume fraction, i.e., 𝜌𝜋 ∶= 𝑛𝜋𝜌𝜋 , and the density of mixture 
is calculated by 𝜌𝑚 = 𝑛𝑠𝜌𝑠 + 𝑛𝑙𝜌𝑙 + 𝑛𝑔𝜌𝑔 .

2.2. Equation of state for fluid and solid phases

For non-isothermal porous media, the density of each phase depends on the thermodynamic conditions, represented by the 
equation of state (EOS). The EOS is usually material-dependent. Generally, EOS is a function of temperature and pressure, i.e., 
𝜌𝜋 = 𝜌𝜋 (𝑝𝜋 , 𝑇𝜋 ), where 𝑝𝜋 and 𝑇𝜋 are the pressure and temperature of 𝜋 phase, respectively. Since the temperature for all phases is 
assumed to be uniform, the phase-wise temperature is replaced by a single temperature field 𝑇  hereafter.

It is more convenient to use the differential form of an EOS, expressed as, 
𝐷𝜋𝜌𝜋
𝐷𝑡

= 𝜌𝜋

(

𝛼𝜋
𝐷𝜋𝑝𝜋
𝐷𝑡

+ 𝛽𝜋
𝐷𝜋𝑇
𝐷𝑡

)

, (3)

where 𝐷𝜋 (∗)∕𝐷𝑡 is the material derivative with respect to 𝜋 phase, and 𝛼𝜋 and 𝛽𝜋 are the compressibility and thermal expansivity, 
respectively, defined as, 

𝛼𝜋 ∶= 1
𝜌𝜋

𝜕𝜌𝜋
𝜕𝑝𝜋

, 𝛽𝜋 ∶= − 1
𝜌𝜋

𝜕𝜌𝜋
𝜕𝑇

. (4)

For solid and liquid phases, 𝛼 and 𝛽 are often assumed to be constant, and then Eq. (3) can be integrated into the following 
exponential form, 

𝜌𝜋 = 𝜌0𝜋exp
[

𝛼𝜋 (𝑝𝜋 − 𝑝0𝜋 ) − 𝛽𝜋 (𝑇 − 𝑇 0)
]

, (5)

where 𝜌0𝜋 is the reference density at the reference pressure 𝑝0𝜋 and temperature 𝑇 0. The intrinsic density of the solid phase is also a 
function of the effective stress on the skeleton, but is not considered in this study.

For the gas phase, the classical Peng–Robinson equation [50] offers an accurate prediction of gas state, 

𝑝𝑔 =
𝑅𝑇 − 𝑎𝛼

2 2
, (6)
𝑉𝑚𝑔 − 𝑏 𝑉𝑚𝑔 + 2𝑏𝑉𝑚𝑔 − 𝑏
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Fig. 1. Illustration of the solution procedure of single-point multiphase MPM and the homogenization of a triphasic porous medium to a biphasic solid–fluid 
mixture. The MPM solution procedure mainly includes four steps: (1) P2G — map Particle information to Grid; (2) Solve PDEs — solve the governing equations 
on the background grid; (3) G2P — map Grid information to Particles; (4) Update MPs — update the material point properties and kinematics.

where 𝑉𝑚𝑔 =𝑀𝑔∕𝜌𝑔 is the gas molar volume, 𝑀𝑔 is the gas molar mass, 𝑅 is the gas constant, 𝛼 is a temperature-dependent function 
in the equation, 𝑎 and 𝑏 are two substance-specific constants calculated using critical properties (temperature and pressure) and the 
acentric factor of the substance. If 𝑎 and 𝑏 are set as zero, the Peng–Robinson equation is reduced to the EOS for the ideal gas,
i.e., 𝜌𝑔 = 𝑀𝑔𝑝𝑔∕𝑅𝑇 . For simplicity, we use the ideal gas equation in the following work [49,51,52]. Based on Eq. (3), it is easy to 
find that the compressibility and the thermal expansibility of an ideal gas can be expressed as, 

𝛼𝑔 =
𝑀𝑔

𝜌𝑔𝑅𝑇
= 1
𝑝𝑔
, 𝛽𝑔 =

𝑀𝑔𝑝𝑔
𝜌𝑔𝑅𝑇 2

= 1
𝑇
. (7)

Obviously, the gas compressibility is nonlinearly related to temperature and pressure. Under the normal atmospheric pressure of 
101 kPa, the compressibility of gas is approximately 1 × 10−5 Pa−1, which is much larger than that of water, around 0.5 × 10−9 Pa−1.

2.3. Balance equations for triphasic porous media

The balance equations for the considered porous media are formulated in the single-point multiphase MPM framework, as 
illustrated in Fig.  1.

2.3.1. Mass balance equations
In the single-point multiphase MPM, all phases are represented by a shared Lagrangian material point in the current configuration. 

In this framework, solid phase motion dictates the movement of the material points, while fluid phases move relative to the solid 
phase, governed by Darcy-type flow or similar constitutive laws. Mass conservation of the solid phase is automatically fulfilled, as 
the material point trajectory follows solid motion. For the fluid phase, the local fluid mass can change due to fluid migration and 
solid deformation. Global mass conservation, however, is rigorously enforced via the mass conservation equation for each phase. 
Assuming no mass exchange between phases and no external sources, the mass balance equations for the solid and the fluid phases 
in the Lagrangian frame are given by,

𝐷𝑠[(1 − 𝜙)𝜌𝑠]
𝐷𝑡

+ (1 − 𝜙)𝜌𝑠∇ ⋅ 𝒗𝑠 = 0, (8)

𝐷𝑠(𝜙𝑆𝜗𝜌𝜗)
𝐷𝑡

+ 𝜙𝑆𝜗𝜌𝜗∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝜗𝜌𝜗(𝒗𝜗 − 𝒗𝑠) = 0. (9)

By applying the chain rule and neglecting the spatial gradient of fluid densities, Eqs. (8) and (9) can be reformulated as,

−
𝐷𝑠𝜙
𝐷𝑡

+
1 − 𝜙
𝜌𝑠

𝐷𝑠𝜌𝑠
𝐷𝑡

+ (1 − 𝜙)∇ ⋅ 𝒗𝑠 = 0, (10)

𝑆𝜗
𝐷𝑠𝜙
𝐷𝑡

+ 𝜙
𝐷𝑠𝑆𝜗
𝐷𝑡

+
𝜙𝑆𝜗
𝜌𝜗

𝐷𝑠𝜌𝜗
𝐷𝑡

+ 𝜙𝑆𝜗∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝜗(𝒗𝜗 − 𝒗𝑠) = 0. (11)
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Substituting Eq. (10) into Eq. (11), one can obtain, 

𝜙
𝐷𝑠𝑆𝜗
𝐷𝑡

+ 𝑆𝜗
1 − 𝜙
𝜌𝑠

𝐷𝑠𝜌𝑠
𝐷𝑡

+
𝜙𝑆𝜗
𝜌𝜗

𝐷𝑠𝜌𝜗
𝐷𝑡

+ 𝑆𝜗∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝜗(𝒗𝜗 − 𝒗𝑠) = 0. (12)

Further substituting the EOS of each phase into Eq. (12) and expressing the derivative of 𝑆𝜗 in terms of the capillary pressure 
𝑝𝑐 = 𝑝𝑔 − 𝑝𝑙, the equation can be reformulated as, 

𝜙
𝜕𝑆𝜗
𝜕𝑝𝑐

𝐷𝑠𝑝𝑐
𝐷𝑡

+ 𝜙𝑆𝜗𝛼𝜗
𝐷𝑠𝑝𝜗
𝐷𝑡

− 𝛽𝑠𝜗
𝐷𝑠𝑇
𝐷𝑡

+ 𝑆𝜗∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝜗(𝒗𝜗 − 𝒗𝑠) = 0, (13)

where 𝛽𝜗 = (1 − 𝜙)𝑆𝜗𝛽𝑠 + 𝜙𝑆𝜗𝛽𝜗, 𝐷
𝑠𝑝𝑐
𝐷𝑡 = 𝐷𝑠𝑝𝑔

𝐷𝑡 − 𝐷𝑠𝑝𝑙
𝐷𝑡 , and 

𝜕𝑆𝜗
𝜕𝑝𝑐

= 𝜕𝑆𝜗
𝜕𝑝𝑔

= − 𝜕𝑆𝜗
𝜕𝑝𝑤

, which can be calculated based on a given soil water 
retention curve. Here, the solid compressibility is futher neglected [49].

Considering 𝐷𝑠𝑆𝑙𝐷𝑡 + 𝐷𝑠𝑆𝑔
𝐷𝑡 = 0, Eq. (13) for liquid and gas can be combined into one for the mixture, 

𝜙𝑆𝑙𝛼𝑙
𝐷𝑠𝑝𝑙
𝐷𝑡

+ 𝜙𝑆𝑔𝛼𝑔
𝐷𝑠𝑝𝑔
𝐷𝑡

− 𝛽𝑚
𝐷𝑠𝑇
𝐷𝑡

+ ∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝜙𝑆𝑙(𝒗𝑙 − 𝒗𝑠) + ∇ ⋅ 𝜙𝑆𝑔(𝒗𝑔 − 𝒗𝑠) = 0, (14)

where 𝛽𝑚 = (1 − 𝜙)𝛽𝑠 + 𝜙𝑆𝑙𝛽𝑙 + 𝜙𝑆𝑔𝛽𝑔 . Note that since 𝛼𝑔 is typically several orders larger than 𝛼𝑙, the compressibility of the whole 
system is mainly governed by 𝛼𝑔 .

2.3.2. Momentum balance equations
For a dynamic problem in MPM, the state of motion of a fluid-infiltrated porous medium is characterized by the solid phase 

velocity 𝒗𝑠 and fluid phase velocities 𝒗𝜗 (i.e., liquid velocity 𝒗𝑙 and gas velocity 𝒗𝑔), and is governed by independent momentum 
balance equation of each phase, given by [17], 

𝑛𝜋𝜌𝜋
𝐷𝑠𝒗𝜋
𝐷𝑡

= ∇ ⋅ 𝝈𝜋 + 𝑛𝜋𝜌𝜋𝒃 + 𝒇 𝑏𝜋 + 𝒇 𝑑𝜋 , (15)

where 𝝈𝜋 is the partial stress on 𝜋 phase, 𝒇 𝑏𝜋 is the body force, 𝒇 𝑏 is the buoyancy force, and 𝒇 𝑑𝜋 is the drag force.
The partial stress acting on each phase is given by, 

𝝈𝜗 = −𝜙𝑆𝜗𝑝𝜗𝑰 , 𝝈𝑠 = 𝝈′ − 𝑛𝑠𝑝𝑓 𝑰 , (16)

where 𝑝𝜗 is the pore pressure (positive in compression) of 𝜗 fluid, 𝝈′ is the effective Cauchy stress tensor (positive in tension), and 
𝑰 is the identity tensor. Based on the effective stress principle [53,54], the total Cauchy stress 𝝈 is defined by the summation of 
stress on each phase, which yields, 

𝝈 = 𝝈′ − 𝑝𝑓 𝑰 , with 𝑝𝑓 = 𝑆𝑙𝑝𝑙 + 𝑆𝑔𝑝𝑔 , (17)

where 𝑝𝑓  is the pore fluid pressure.
Assuming that Darcy’s law is valid for fluid migration, the momentum balance equations can be formulated as, 

𝜙𝑆𝜗𝜌𝜗
𝐷𝑠𝒗𝜗
𝐷𝑡

= −𝜙𝑆𝜗∇𝑝𝜗 + 𝜙𝑆𝜗𝜌𝜗𝒃 − (𝜙𝑆𝜗)
2 𝜇𝜗
𝑘𝑎𝑘𝑟𝜗

(𝒗𝜗 − 𝒗𝑠), (18)

where 𝜇𝜗 is the fluid dynamic viscosity, 𝑘𝑎 is the absolute permeability, and 𝑘𝑟𝜗 is the relative permeability, dependent on the 
saturation of each phase.

Since the buoyancy and drag forces are internal forces, they can be canceled if adding the momentum balance equations for all 
phases together, which yields the equation for the mixture, 

(1 − 𝜙)𝜌𝑠
𝐷𝑠𝒗𝑠
𝐷𝑡

+ 𝜙𝑆𝑙𝜌𝑙
𝐷𝑠𝒗𝑙
𝐷𝑡

+ 𝜙𝑆𝑔𝜌𝑔
𝐷𝑠𝒗𝑔
𝐷𝑡

= ∇ ⋅
[

𝝈′ − (𝑆𝑙𝑝𝑙 + 𝑆𝑔𝑝𝑔)𝑰
]

+ 𝜌𝑚𝒃. (19)

2.3.3. Energy balance equation
The energy balance equation for the solid phase is formulated as, 

(1 − 𝜙)𝜌𝑠𝑐𝑠
𝐷𝑠𝑇
𝐷𝑡

+ ∇ ⋅ (−𝜆𝑒𝑓𝑓 ,𝑠∇𝑇 ) + 𝜃𝑒𝜼∶ �̇�𝑒 − 𝜃𝑝𝝈′ ∶ �̇�𝑝 = 0, (20)

where 𝑐𝑠 and 𝜆𝑒𝑓𝑓 ,𝑠 are respectively the specific heat capacity and the effective heat conductivity coefficient of the solid phase. 
The last two terms, 𝜃𝑒𝜼∶ �̇�𝑒 and 𝜃𝑝𝝈′ ∶ �̇�𝑝, represent respectively the thermo-elastic coupling term due to the reversible (elastic) 
deformation and the thermoplastic coupling term denoting the conversion of the irreversible plastic work into heat, where �̇�𝑒 and �̇�𝑝
are the elastic and plastic strain rate, 𝜼 is the stress–temperature modulus, and 𝜃𝑒 and 𝜃𝑝 are two coefficients of heat transfer [55,56].

For the fluid phase, the convective heat transfer due to relative motion with the solid phase should be taken into consideration 
in the energy balance equation, given by, 

𝜙𝑆𝜗𝜌𝜗𝑐𝜗
𝐷𝑠𝑇
𝐷𝑡

+ 𝜙𝑆𝜗𝜌𝜗𝑐𝜗(𝒗𝜗 − 𝒗𝑠) ⋅ ∇𝑇 + ∇ ⋅ (−𝜆𝑒𝑓𝑓 ,𝜗∇𝑇 ) = 0, (21)

where 𝑐  and 𝜆  are respectively the specific heat capacity and the effective thermal conductivity of 𝜗 phase.
𝜗 𝑒𝑓𝑓 ,𝜗
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Since assuming identical temperature for all phases at the same material point, the energy balance equation can be written into 
one for the mixture, 

𝐶𝑚
𝐷𝑠𝑇
𝐷𝑡

+
(

𝜙𝑆𝑙𝜌𝑙𝑐𝑙(𝒗𝑙 − 𝒗𝑠) + 𝜙𝑆𝑔𝜌𝑔𝑐𝑔(𝒗𝑔 − 𝒗𝑠)
)

⋅ ∇𝑇 + ∇ ⋅ (−𝜆𝑚∇𝑇 ) = 𝑄, (22)

where 𝑄 represents all sources of heat, 𝐶𝑚 and 𝜆𝑚 are respectively the mixture heat capacity and mixture thermal conduction 
coefficient, given by, 

𝐶𝑚 = (1 − 𝜙)𝜌𝑠𝑐𝑠 + 𝜙𝑆𝑙𝜌𝑙𝑐𝑙 + 𝜙𝑆𝑔𝜌𝑔𝑐𝑔 , 𝜆𝑚 = (1 − 𝜙)𝜆𝑠 + 𝜙𝑆𝑙𝜆𝑙 + 𝜙𝑆𝑔𝜆𝑔 , (23)

where 𝜆𝜋 is the intrinsic thermal conductivity of 𝜋 phase.

2.4. Simplified balance equations for biphasic porous media

2.4.1. Homogenization of liquid–gas mixture
We do not consider the capillary pressure in the above equations such that 𝑝𝜗 = 𝑝𝑓 , and we homogenize the liquid–gas mixture 

as a uniform fluid phase. The collective properties of the homogenized fluid 𝑓  is given by, 

𝑓 = 𝑆𝑙𝑙 + 𝑆𝑔𝑔 . (24)

In the presented model, 𝑓  can be the volume fraction, density, velocity, momentum, compressibility, thermal conductivity, specific 
heat capacity, permeability, and thermal conductivity. By such homogenization, the three-phase solid–liquid–gas problem can be 
reduced to a two-phase solid–fluid problem, as illustrated in Fig.  1.

Remark 1.  Another routine to simplify the three-phase problem to a two-phase problem is assuming the gas density 𝜌𝑔 and 
gas pressure 𝑝𝑔 to zero. This assumption is only reasonable for porous media with dry air and water and with good gas seepage 
conditions. However, such simplification becomes unrealistic for two-phase gas–liquid flow with low permeability, like gas–water 
or gas–oil flow in energy reservoirs, where fluid compressibility plays a more significant role.

2.4.2. Reduced balance equations
The reduced form for the balance Eqs. (14), (18), (19), and (22) are summarized as follows. For brevity, the time derivative of 

a function 𝑓 is expressed in the rate form ̇𝑓 in the remaining content.

• Mass balance equation of mixture: 
𝑛𝑓𝛼𝑓 �̇�𝑓 − (𝑛𝑠𝛽𝑠 + 𝑛𝑓 𝛽𝑓 )�̇� + ∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑛𝑓 (𝒗𝑓 − 𝒗𝑠) = 0, (25)

where the fluid compressibility 𝛼𝑓  and the fluid thermal expansivity 𝛽𝑓  are given by, 

𝛼𝑓 = 𝑆𝑙𝛼𝑙 + 𝑆𝑔𝛼𝑔 = 𝑆𝑙𝛼𝑙 + 𝑆𝑔∕𝑝𝑔 , (26a)

𝛽𝑓 = 𝑆𝑙𝛽𝑙 + 𝑆𝑔𝛽𝑔 = 𝑆𝑙𝛽𝑙 + 𝑆𝑔∕𝑇 . (26b)

• Momentum balance equations of mixture and fluid phase:

𝑛𝑠𝜌𝑠�̇�𝑠 + 𝑛𝑓 𝜌𝑓 �̇�𝑓 = ∇ ⋅ (𝝈′ − 𝑝𝑓 𝑰) + 𝜌𝑚𝒃, (27)

𝑛𝑓 𝜌𝑓 �̇�𝑓 = −𝑛𝑓∇𝑝𝑓 + 𝑛𝑓 𝜌𝑓𝒃 − 𝑛2𝑓
𝜇𝑓
𝑘𝑓

(𝒗𝑓 − 𝒗𝑠), (28)

• Energy balance equation of mixture: 
𝐶𝑚�̇� + 𝑛𝑓 𝜌𝑓 𝑐𝑓 (𝒗𝑓 − 𝒗𝑠) ⋅ ∇𝑇 + ∇ ⋅ (−𝜆𝑚∇𝑇 ) = 𝑄, (29)

where 𝐶𝑚 = 𝑛𝑓 𝜌𝑓 𝑐𝑓 + 𝑛𝑠𝜌𝑠𝑐𝑠 and 𝜆𝑚 = 𝑛𝑠𝜆𝑠 + 𝑛𝑓𝜆𝑓 .

Remark 2.  If 𝛼𝑓  is small enough, then the fluid can be assumed to be incompressible, and the first term in the mass balance Eq. (25) 
vanishes. For isothermal conditions, the second term can further vanish. Then, the mass balance equation reduces to the well-known 
velocity divergence-free Poisson equation, 

∇ ⋅ 𝒗𝑠 + ∇ ⋅ 𝑛𝑓 (𝒗𝑓 − 𝒗𝑠) = 0. (30)

However, as indicated by the expression of 𝛼𝑓  (Eq. (26a)), the presence of a gas phase prevents 𝛼𝑓  from becoming negligibly small. 
Therefore, it should not be ignored. In practice, simulations often involve the simultaneous transition between incompressible, 
weakly compressible, and highly compressible fluids across both spatial and temporal scales. This requires the two-phase solver to 
be versatile enough to handle a wide range of pore fluid conditions.
6 
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2.4.3. Boundary conditions
Eqs. (25), (27), (28), and (29) are the primary governing equations to be solved. The THM-coupled equations are collectively 

subject to boundary conditions as follows.
The Dirichlet boundary conditions include the velocity, pressure, and temperature boundary conditions, given by, 

𝒗𝑠 = �̂�𝑠 on 𝛤𝑠, (31a)
𝒗𝑓 = �̂�𝑓 on 𝛤𝑓 , (31b)

𝑝𝑓 = �̂�𝑓 on 𝛤𝑝, (31c)

𝑇 = �̂� on 𝛤𝑇 . (31d)

The Neumann boundary conditions include the mixture traction, liquid traction, liquid flux, and heat flux boundaries, given
by, 

𝝈 ⋅ 𝒏 = �̂� on 𝛤𝑡, (32a)
𝝈𝑓 ⋅ 𝒏 = �̂�𝑓 on 𝛤𝑡𝑓 , (32b)

−𝒒𝑓 ⋅ 𝒏 = 𝑞𝑓 on 𝛤𝑞𝑓 , (32c)

−𝒒𝑒 ⋅ 𝒏 = 𝑞𝑒 on 𝛤𝑞𝑒, (32d)

where 𝒏 is the outward unit normal vector.

2.4.4. Mechanical model for solid skeleton
For non-isothermal conditions, the effective stress rate is calculated by, 

�̇�′ = 𝑫 ∶
(

�̇�𝑠 + �̇�𝑇
)

, (33)

where 𝑫 is the tangential stiffness tensor, �̇�𝑠 and �̇�𝑇  are the mechanical strain rate and the thermal strain rate, respectively, given 
by, 

�̇�𝑠 =
1
2
(

∇𝒗𝑠 + (∇𝒗𝑠)𝑇
)

, �̇�𝑇 = −
𝛽𝑠
3
�̇� 𝑰 , (34)

where 𝛽𝑠 is the volumetric thermal expansivity of the solid phase, and �̇�  is the rate of temperature.
A simple elastoplastic non-associated strain-softening Mohr–Coulomb model is adopted in this study. The yield function 𝐹  and 

the flow potential function 𝑃  defined in terms of friction angle 𝜑, cohesion 𝑐, and dilation angle 𝜓 , are given by, 

𝐹 = 𝑅𝑚𝑐𝑞 + 𝑝 tan𝜑 − 𝑐, (35a)

𝑃 =
√

(𝜖𝑐 tan𝜓)2 +
(

𝑅𝑚𝑤𝑞
)2 + 𝑝 tan𝜓, (35b)

where 𝑝 and 𝑞 are the mean effective stress and the deviatoric stress, respectively. 𝜖 and 𝑒 are the meridional eccentricity and the 
deviatoric eccentricity, respectively. In addition, 𝑅𝑚𝑐 and 𝑅𝑚𝑤 are two functions related to the Lode’s angle, friction angle, and 
deviatoric eccentricity.

Large deformation may cause localized failure patterns in porous materials, leading to a decrease in the effective material strength 
with the accumulation of plastic strain. This phenomenon can be captured by a strain-softening model [21]. In this work, a simple 
linear strain-softening model is adopted, given as follows, 

𝑐 = 𝑐𝑝𝑒𝑎𝑘 +
(

𝑐𝑟𝑒𝑠 − 𝑐𝑝𝑒𝑎𝑘
)

(𝜀𝑝 − 𝜀𝑝𝑝𝑒𝑎𝑘)∕(𝜀
𝑝
𝑟𝑒𝑠 − 𝜀

𝑝
𝑝𝑒𝑎𝑘), 𝜀

𝑝 ≤ 𝜀𝑝𝑝𝑒𝑎𝑘, (36a)

𝜑 = 𝜑𝑝𝑒𝑎𝑘 +
(

𝜑𝑟𝑒𝑠 − 𝜑𝑝𝑒𝑎𝑘
)

(𝜀𝑝 − 𝜀𝑝𝑝𝑒𝑎𝑘)∕(𝜀
𝑝
𝑟𝑒𝑠 − 𝜀

𝑝
𝑝𝑒𝑎𝑘), 𝜀

𝑝 ≤ 𝜀𝑝𝑝𝑒𝑎𝑘, (36b)

where 𝜀𝑝 is the plastic deviatoric strain and the subscripts ‘𝑝𝑒𝑎𝑘’ and ‘𝑟𝑒𝑠’ represent the peak and residual values of strength 
parameters, respectively. If 𝜀𝑝 > 𝜀𝑝𝑝𝑒𝑎𝑘, 𝑐 = 𝑐𝑟𝑒𝑠 and 𝜑 = 𝜑𝑟𝑒𝑠.

3. An improved fractional step formulation in MPM

In this section, we present the weak form for the strong form equations and the MPM solution algorithms based on explicit time 
integration and the new semi-implicit time integration with an improved fractional step method. The optimizations of the solution 
algorithm aiming to improve computational efficiency and accuracy are highlighted.

3.1. Weak form and MPM discretization

By performing the standard Galerkin approximation, the weak form equivalent to the balance equations in Section 2.4.2 along 
with the Neumann boundary conditions can be derived as,
7 
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• Momentum balance equations

∫𝛺
𝛿𝒗𝑠 ⋅ 𝑛𝑠𝜌𝑠�̇�𝑠𝑑𝑉 + ∫𝛺

𝛿𝒗𝑠 ⋅ 𝑛𝑓 𝜌𝑓 �̇�𝑓𝑑𝑉 = −∫𝛺
∇𝛿𝒗𝑠 ∶ (𝝈′ − 𝑝𝑓 𝑰)𝑑𝑉 + ∫𝛤𝑡

𝛿𝒗𝑠 ⋅ �̂�𝑑𝑆 + ∫𝛺
𝛿𝒗𝑠 ⋅ 𝜌𝑚𝒃𝑑𝑉 , (37)

∫𝛺
𝛿𝒗𝑓 ⋅ 𝑛𝑓 𝜌𝑓 �̇�𝑓𝑑𝑉 = −∫𝛺

∇𝛿𝒗𝑓 ∶ (−𝑛𝑓 𝑝𝑓 𝑰)𝑑𝑉 + ∫𝛤𝑡𝑓
𝛿𝒗𝑓 ⋅ �̂�𝑓𝑑𝑆 + ∫𝛺

𝛿𝒗𝑓 ⋅ 𝑛𝑓 𝜌𝑓𝒃𝑑𝑉 − ∫𝛺
𝛿𝒗𝑓 ⋅ 𝑛2𝑓

𝜇𝑓
𝑘𝑓

(𝒗𝑓 − 𝒗𝑠)𝑑𝑉 , (38)

• Energy balance equation

∫𝛺
𝛿𝑇 ⋅ 𝐶𝑚�̇� 𝑑𝑉 + ∫𝛺

𝛿𝑇 ⋅ 𝑛𝑓 𝜌𝑓 𝑐𝑓 (𝒗𝑓 − 𝒗𝑠) ⋅ ∇𝑇𝑑𝑉 + ∫𝛤𝑞𝑒
𝛿𝑇 ⋅ 𝑞𝑒𝑑𝑆 − ∫𝛺

𝛿𝑇 ⋅ ∇ ⋅ (−𝜆𝑚∇𝑇 )𝑑𝑉 = ∫𝛺
𝛿𝑇 ⋅𝑄𝑑𝑉 , (39)

• Mass balance equation

∫𝛺
𝛿𝑝 ⋅ 𝑛𝑓𝛼𝑓 �̇�𝑓𝑑𝑉 − ∫𝛺

𝛿𝑝 ⋅ (𝑛𝑠𝛽𝑠 + 𝑛𝑓 𝛽𝑓 )�̇� 𝑑𝑉 + ∫𝛺
𝛿𝑝 ⋅ ∇ ⋅ 𝒗𝑠𝑑𝑉 − ∫𝛺

∇𝛿𝑝 ⋅ 𝑛𝑓 (𝒗𝑓 − 𝒗𝑠)𝑑𝑉 + ∫𝛤𝑞𝑓
𝛿𝑝 ⋅ 𝑞𝑓𝑑𝑆 = 0, (40)

where 𝛿𝒗𝑠, 𝛿𝒗𝑓 , 𝛿𝑇 , and 𝛿𝑝 are arbitrary test functions with zero values on the boundaries of the corresponding fields; ̂𝒕, ̂𝒕𝑓 , 𝑞𝑒, and 
𝑞𝑓  are prescribed boundary mixture traction, fluid traction, heat flux, and fluid flux defined in Section 2.4.3.

The weak form equations are then discretized in space based on the generalized interpolation material point (GIMP) method [6]. 
Considering a material domain 𝛺 discretized into a finite number of subdomains, each subdomain 𝛺𝑝 is represented by a material 
point (i.e., particle) located at its central position 𝒙𝑝. For 1D condition, the interpolation function 𝑆𝐼𝑝 ∶= 𝑆𝐼 (𝑥𝑝) and its gradient 
∇𝑆𝐼𝑝 ∶= ∇𝑆𝐼 (𝑥𝑝) regarding particle 𝑝 and node 𝐼 are given by, 

𝑆𝐼𝑝 =
1
𝑉𝑝 ∫𝛺𝑝∩𝛺

𝜒𝑝(𝑥)𝑁𝐼 (𝑥)𝑑𝑉 , ∇𝑆𝐼𝑝 =
1
𝑉𝑝 ∫𝛺𝑝∩𝛺

𝜒𝑝(𝑥)∇𝑁𝐼 (𝑥)𝑑𝑉 , (41)

where 𝜒𝑝 and 𝑁𝐼  are the particle characteristic function and the grid shape function, and 𝑉𝑝 is the particle volume. With the shape 
function, the physical fields and the virtual test fields can be approximated by, 

𝑝 =
𝑁𝑛
∑

𝐼=1
𝑆𝐼𝑝𝐼 , 𝛿𝑝 =

𝑁𝑛
∑

𝐼=1
𝑆𝐼𝑝𝛿𝐼 , (42)

where  = 𝒗𝑠, 𝒗𝑓 , 𝑝𝑓 , 𝑇  represents the unknowns.

3.2. Explicit solution scheme

In explicit THM-coupled MPM, the weak form for the energy balance equation can be discretized into the following compact 
form, 

𝑇 �̇�
𝑘+1 = 𝑖𝑛𝑡 +𝑒𝑥𝑡, (43)

where 𝑇 , 𝑖𝑛𝑡, and 𝑒𝑥𝑡 are the nodal heat capacity, internal heat, and external heat, respectively, given by, 

(𝑇 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝐶𝑚𝑝𝑆𝐼𝑝, (44a)

(𝑖𝑛𝑡)𝐼 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛𝑓 𝜌𝑓 𝑐𝑓 (𝒗𝑘𝑓𝑝 − 𝒗𝑘𝑠𝑝)∇𝑇

𝑘
𝑝 𝑆𝐼𝑝 −

𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜆𝑚∇𝑇 𝑘𝑝 ∇𝑆𝐼𝑝, (44b)

(𝑒𝑥𝑡)𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑄𝑝𝑆𝐼𝑝 −

𝑁𝑝
∑

𝑝=1
𝑉𝑝ℎ

−1
𝑝 𝑞𝑒𝑝𝑆𝐼𝑝. (44c)

where the superscripts ‘‘𝑘’’ and ‘‘𝑘 + 1’’ represent the current time step and the next time step, respectively, and ℎ𝑝 is the thickness 
of boundary particles.

Similarly, the momentum balance equations can be discretized as,
𝑠�̇�𝑘+1𝑠 +𝑓 �̇�𝑘+1𝑓 = 𝒇 𝑖𝑛𝑡 + 𝒇 𝑒𝑥𝑡, (45)

𝑓 �̇�𝑘+1𝑓 = 𝒇 𝑖𝑛𝑡𝑓 + 𝒇 𝑒𝑥𝑡𝑓 −𝑑 (𝒗𝑘𝑓 − 𝒗𝑘𝑠 ), (46)

where 𝑠 and 𝑓  are the nodal mass matrices, 𝑑 is the nodal drag force coefficient, and 𝒇 𝑖𝑛𝑡, 𝒇 𝑒𝑥𝑡, 𝒇 𝑖𝑛𝑡𝑓 , and 𝒇 𝑒𝑥𝑡𝑓  are the nodal 
internal and external forces, given by, 

(𝜋 )𝐼 =
𝑁𝑝
∑

𝑉𝑝𝑛𝜋𝑝𝜌𝜋𝑝𝑆𝐼𝑝, 𝜋 = 𝑠, 𝑓 , (47a)

𝑝=1
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(𝑑 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛

2
𝑓𝑝

𝜇𝑓
𝑘𝑓
𝑆𝐼𝑝, (47b)

(𝒇 𝑖𝑛𝑡)𝐼 = −
𝑁𝑝
∑

𝑝=1
∇𝑆𝐼𝑝 ∶ 𝑉𝑝(𝝈′𝑘

𝑝 − 𝑝𝑘𝑓𝑝𝑰), (47c)

(𝒇 𝑒𝑥𝑡)𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝ℎ

−1
𝑝 �̂�𝑝𝑆𝐼𝑝 +

𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜌𝑚𝑝𝒃𝑝𝑆𝐼𝑝, (47d)

(𝒇 𝑖𝑛𝑡𝑓 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛𝑓𝑝𝑝

𝑘
𝑓𝑝∇𝑆𝐼𝑝, (47e)

(𝒇 𝑒𝑥𝑡𝑓 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝ℎ

−1
𝑝 �̂�𝑓𝑝𝑆𝐼𝑝 +

𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛𝑓𝑝𝜌𝑓𝑝𝒃𝑝𝑆𝐼𝑝. (47f)

Once the nodal variables �̇� 𝑘+1, �̇�𝑘+1𝑠 , and �̇�𝑘+1𝑓  are solved and mapped to the particles, the particle pore fluid pressure is then 
calculated by, 

𝑝𝑘+1𝑓𝑝 = 𝑝𝑘𝑓𝑝 +
𝛥𝑡

𝑛𝑓𝑝𝛼𝑓𝑝

(

𝛽𝑚𝑝�̇�
𝑘+1
𝑝 − 𝑛𝑘+1𝑠𝑝 �̇�𝑘+1𝑠𝑝 − 𝑛𝑘+1𝑓𝑝 �̇�

𝑘+1
𝑓𝑝

)

, (48)

where 𝛥𝑡 is the time step size, 𝛽𝑚𝑝 = 𝑛𝑠𝑝𝛽𝑠𝑝 + 𝑛𝑓𝑝𝛽𝑓𝑝 is the mixture thermal conductivity, and �̇�𝑠𝑝 = 𝑡𝑟(�̇�𝑠𝑝) and �̇�𝑓𝑝 = 𝑡𝑟(�̇�𝑓𝑝) are 
respectively the rate of volumetric strain of the solid and fluid phases. To reduce the pressure oscillation in explicit MPM, the 
reduced integration is adopted for the fluid volumetric strain rate, namely, replacing �̇�𝑓𝑝 by the volumetric strain rate calculated at 
the cell center �̇�𝑓𝑐 [17].

3.3. Improved semi-implicit fractional step scheme

Although the explicit scheme can directly consider the fluid compressibility and is suitable for modeling dynamic problems, 
it has three major limitations: (1) the pressure field shows spatial oscillations even with reduced integration; (2) the time step 
size is dependent on the permeability and the compressibility coefficient, making it inefficient for low-permeability conditions; 
(3) it cannot be used to simulate incompressible limit. The semi-implicit MPM based on the fractional step method (FSM) can 
tackle these limitations. However, as aforementioned, the previous FSM-related MPM works are all based on the incompressible 
fluid assumption [19,31,34]. In this section, we introduce an improved fractional step formulation, which is applicable for both 
compressible and incompressible conditions and is more computationally efficient than the original FSM.

3.3.1. Semi-implicit time integration
With the semi-implicit time integration, the energy equation is still solved explicitly, whereas the mass and momentum balance 

equations are solved implicitly, except that the effective stress is evaluated explicitly to avoid the involution of the elastoplastic 
stiffness matrix. The temporally discretized mass and momentum equations are given by,

• Mass balance equation:

𝑛𝑓𝛼𝑓 �̇�
𝑘+1
𝑓 − 𝛽𝑚�̇� 𝑘+1 + ∇ ⋅ 𝒗𝑘+1𝑠 + ∇ ⋅ 𝑛𝑓 (𝒗𝑘+1𝑓 − 𝒗𝑘+1𝑠 ) = 0. (49)

• Momentum balance equations:

𝑛𝑠𝜌𝑠�̇�𝑘+1𝑠 + 𝑛𝑓 𝜌𝑓 �̇�𝑘+1𝑓 = ∇ ⋅
(

𝝈′𝑘 − 𝑝𝑘+1𝑓 𝑰
)

+ 𝜌𝑚𝒃, (50)

𝑛𝑓 𝜌𝑓 �̇�𝑘+1𝑓 = −𝑛𝑓∇𝑝𝑘+1𝑓 + 𝑛𝑓 𝜌𝑓𝒃 − 𝑛2𝑓
𝜇𝑓
𝑘𝑓

(𝒗𝑘+1𝑓 − 𝒗𝑘+1𝑠 ). (51)

3.3.2. Fractional step splitting
The FSM utilizes the intermediate velocities to decouple pressure and velocity fields in the momentum balance equations. 

Accordingly, the velocity for 𝜋 ∈ {𝑠, 𝑓} phase can be split as, 

�̇�𝑘+1𝜋 =
𝒗𝑘+1𝜋 − 𝒗𝑘𝜋

𝛥𝑡
=

𝒗∗𝜋 − 𝒗𝑘𝜋
𝛥𝑡

⏟⏞⏟⏞⏟
�̇�∗𝜋

+
𝒗𝑘+1𝜋 − 𝒗∗𝜋

𝛥𝑡
⏟⏞⏞⏞⏟⏞⏞⏞⏟

�̇�∗∗𝜋

, (52)

where 𝒗∗𝜋 is the intermediate velocity, and �̇�∗𝜋 and �̇�𝑘+1𝜋  are the intermediate and corrected accelerations.
Based on Eq. (52), the momentum balance equations can be split into the predictor,

𝑛 𝜌 �̇�∗ + 𝑛 𝜌 �̇�∗ = ∇ ⋅
(

𝝈′𝑘 − 𝑝𝑘 𝑰
)

+ 𝜌 𝒃, (53)
𝑠 𝑠 𝑠 𝑓 𝑓 𝑓 𝑓 𝑚

9 
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𝑛𝑓 𝜌𝑓 �̇�∗𝑓 = −𝑛𝑓∇𝑝𝑘𝑓 + 𝑛𝑓 𝜌𝑓𝒃 − 𝑛2𝑓
𝜇𝑓
𝑘𝑓

(𝒗∗𝑓 − 𝒗∗𝑠 ), (54)

and the corrector,
𝑛𝑠𝜌𝑠�̇�∗∗𝑠 + 𝑛𝑓 𝜌𝑓 �̇�∗∗𝑓 = −∇(𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 ), (55)

𝑛𝑓 𝜌𝑓 �̇�∗∗𝑓 = −𝑛𝑓∇(𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 ) −𝑛
2
𝑓

𝜇𝑓
𝑘𝑓

((

𝒗𝑘+1𝑓 − 𝒗∗𝑓
)

−
(

�̇�𝑘+1𝑠 − 𝒗∗𝑠
)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
correction for drag force

, (56)

where 𝛥𝑝𝑘+1𝑓 = 𝑝𝑘+1𝑓 − 𝑝𝑘𝑓  denotes the pressure increment.

Remark 3.  Note that the drag force terms in the predictor are calculated using the intermediate velocities, which yields the 
correction term for drag force in the corrector. It was neglected in existing FSM-based two-phase MPMs [19,31,34]. However, the 
absence of this term would weaken the conservation of mass and momentum, thereby introducing additional errors in the velocity 
fields and causing over-dissipation of pore pressure. In this work, we reconsider the correction term to enhance the accuracy.

Eqs. (55) and (56) can be reformulated as,
𝑛𝑠𝜌𝑠�̇�∗∗𝑠 = −𝜉𝑠𝑛𝑠∇(𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 ), (57)

𝑛𝑓 𝜌𝑓 �̇�∗∗𝑓 = −𝜉𝑓 𝑛𝑓∇(𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 ), (58)

where 𝜉𝑠 and 𝜉𝑓  are given by, 

𝜉𝑙 =
1 + 𝛥𝑡𝑛2𝑓

𝜇𝑓
𝑘𝑓

1
𝑛𝑓 𝑛𝑠𝜌𝑠

1 + 𝛥𝑡𝑛2𝑓
𝜇𝑓
𝑘𝑓

(

1
𝑛𝑓 𝜌𝑓

+ 1
𝑛𝑠𝜌𝑠

) , 𝜉𝑠 =
1 + 𝛥𝑡𝑛2𝑓

𝜇𝑓
𝑘𝑓

1
𝑛𝑠𝑛𝑓 𝜌𝑓

1 + 𝛥𝑡𝑛2𝑓
𝜇𝑓
𝑘𝑓

(

1
𝑛𝑓 𝜌𝑓

+ 1
𝑛𝑠𝜌𝑠

) . (59)

By substituting Eqs. (57) and (58) into Eq. (49), the mass balance equation can be reformulated into the pressure Poisson 
equation, 

𝛥𝑡
(

𝜉𝑠
𝑛𝑠
𝜌𝑠

+ 𝜉𝑓
𝑛𝑓
𝜌𝑓

)

∇2(𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 ) − 𝑛𝑓𝛼𝑓 �̇�
𝑘+1
𝑓 + 𝛽𝑚�̇� 𝑘+1 − ∇ ⋅ 𝒗∗𝑠 − ∇ ⋅ 𝑛𝑓 (𝒗∗𝑓 − 𝒗∗𝑠 ) = 0. (60)

The modification to consider drag force correction is simply by multiplying two scalar coefficients on the pressure gradient. 
Therefore, the original solution scheme for FSM still holds: first, the rate of temperature is solved explicitly, and the intermediate 
accelerations are then solved based on Eqs. (53) and (54), and then the incremental pore pressure is solved from Eq. (60), and 
finally the accelerations are corrected based on Eqs (57) and (58).

3.3.3. Discretized form
Since the energy balance equation is still solved explicitly, its discretized form is nothing different from that shown in Section 3.2. 

The split momentum and mass balance equations based on the FSM can be further discretized as follows.

• Predictor to solve the intermediate accelerations �̇�∗𝑠 and �̇�∗𝑓 :
[

𝑠 𝑓
−𝛥𝑡𝑑 𝑓 + 𝛥𝑡𝑑

]

{

�̇�∗𝑠
�̇�∗𝑓

}

=

{

𝒇 𝑖𝑛𝑡 + 𝒇 𝑒𝑥𝑡

𝒇 𝑖𝑛𝑡𝑓 + 𝒇 𝑒𝑥𝑡𝑓 −𝑑 (𝒗𝑘𝑓 − 𝒗𝑘𝑠 )

}

. (61)

• Pressure Poisson equation to solve incremental pore pressure 𝛥𝑝𝑘+1𝑓 = 𝑝𝑘+1𝑓 − 𝑝𝑘𝑓 :
[

𝑓 +𝑓
]

{

𝛥𝑝𝑘+1𝑓

}

=
{

𝑇 �̇� 𝑘+1 +  𝑠 ⋅ 𝒗∗𝑠 +  𝑓 ⋅ (𝒗∗𝑓 − 𝒗∗𝑠 )
}

. (62)

• Corrector to solve corrected accelerations �̇�𝑘+1𝑠  and �̇�𝑘+1𝑓 :
[

𝑠 0
0 𝑓

]

{

�̇�𝑘+1𝑠
�̇�𝑘+1𝑓

}

=

{

 𝑠𝛥𝑝𝑘+1𝑓 +𝑠�̇�∗𝑠
 𝑓𝛥𝑝𝑘+1𝑓 +𝑓 �̇�∗𝑓

}

. (63)

The components of the above nodal matrices and force vectors, 𝑠, 𝑓 , 𝑑 , 𝒇 𝑖𝑛𝑡, 𝒇 𝑒𝑥𝑡, 𝒇 𝑖𝑛𝑡𝑓 , and 𝒇 𝑒𝑥𝑡𝑓 , are the same as those in the 
explicit scheme, if lumped matrices are employed. The components of the additional matrices 𝑝, 𝑝, 𝑇 ,  𝑠,  𝑓 ,  𝑠, and  𝑓

are given by, 

(𝑓 )𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝛥𝑡

(

𝜉𝑠𝑝
𝑛𝑠𝑝
𝜌𝑠𝑝

+ 𝜉𝑓𝑝
𝑛𝑓𝑝
𝜌𝑓𝑝

)

∇𝑆𝐼𝑝∇𝑆𝐽𝑝, (64a)

(𝑓 )𝐼𝐽 =
𝑁𝑝
∑

𝑉𝑝𝛥𝑡
−1𝑛𝑓𝑝𝛼𝑓𝑝𝑆𝐼𝑝𝑆𝐽𝑝, (64b)
𝑝=1

10 
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(𝑇 )𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝛽𝑚𝑝𝑆𝐼𝑝𝑆𝐽𝑝, (64c)

( 𝑠)𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑆𝐼𝑝∇𝑆𝐽𝑝, (64d)

( 𝑓 )𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛𝑓𝑝∇𝑆𝐼𝑝𝑆𝐽𝑝, (64e)

( 𝜋 )𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜉𝜋𝑝𝑛𝜋𝑝𝑆𝐼𝑝∇𝑆𝐽𝑝, 𝜋 = 𝑠, 𝑓 . (64f)

Remark 4.  Eqs. (61) and (62) represent two implicit, computationally intensive steps in each solution loop due to large matrix 
assemblies and iterative solvers. Between them, Eq. (61) is notably more demanding, as it involves solving for multiple-directional 
degrees of freedom and two field variables. To mitigate this cost, we adopt lumped matrices for 𝑠, 𝑓 , and 𝑑 , enabling a 
node-wise implicit scheme that decouples the system into node-level solves for intermediate accelerations, i.e., 

[

𝑠 𝑓
−𝛥𝑡𝑑 𝑓 + 𝛥𝑡𝑑

]

𝐼

{

�̇�∗𝑠
�̇�∗𝑓

}

𝐼

=

{

𝒇 𝑖𝑛𝑡 + 𝒇 𝑒𝑥𝑡

𝒇 𝑖𝑛𝑡𝑓 + 𝒇 𝑒𝑥𝑡𝑓 −𝑑 (𝒗𝑘𝑓 − 𝒗𝑘𝑠 )

}

𝐼

. (65)

This approach helps to (1) significantly improve the computational efficiency by eliminating iterative solvers while retaining 
stability; (2) maintain time-step flexibility, as the critical time step remains independent of permeability, and (3) preserve accuracy, 
as demonstrated in case studies. Compared to Yuan et al. [34]’s explicit method for solving momentum predictors, this implicit 
method differs in approximating the drag force using (�̇�∗𝑓 − �̇�∗𝑠 ) instead of (�̇�∗𝑓 − �̇�𝑘𝑠 ). This choice helps gain the same efficiency as 
their explicit method while avoiding introducing additional errors for the solid velocity update in high-frequency dynamic and large 
deformation problems.

3.3.4. Completed solution algorithm
The solution procedure for the proposed new two-phase MPM with enhanced FSM is briefly given as follows:

Step 1: At the beginning of each time step, initialize the background mesh and compute the shape functions based on the relative 
location of particles in each element.

Step 2: Map the particle velocities and temperature to nodes and compute the particle strains, stresses, porosity, densities, and 
volumes.

Step 3: Assemble nodal coefficient matrices and force vectors based on particle properties. Note that the lumped matrices are 
adopted for 𝑇 , 𝑠, 𝑓 , and 𝑑 in this study.

Step 4: Compute updated nodal temperature rate �̇� 𝑘+1 by solving Eq. (43), and compute the intermediate accelerations �̇�∗𝑠 and �̇�∗𝑓
by solving Eq. (65).

Step 5: Compute updated pore pressure increment, 𝛥𝑝𝑘+1𝑓 , based on updated �̇� 𝑘+1 and intermediate velocities, 𝒗∗𝑠 and 𝒗∗𝑓 , by solving 
Eq. (62).

Step 6: Compute the corrected acceleration, �̇�𝑘+1𝑠  and �̇�𝑘+1𝑓 , and the end-of-step velocities, 𝒗𝑘+1𝑠  and 𝒗𝑘+1𝑓 , based on the updated 
𝛥𝑝𝑘+1𝑓  by solving Eq. (78).

Step 7: Map the updated nodal temperature rate, accelerations, and pore pressure increment to particles, and update the particle 
temperature, velocities, displacements, and coordinates.

Step 8: If the current time 𝑡 < 𝑡𝑓 , go to the next loop; otherwise, terminate the simulation.

In summary, the improved fractional step formulation introduces three key advancements over the original framework [19,31]:

• Compressible fluid compatibility: Inclusion of the compressibility term 𝑛𝑓𝛼𝑓 �̇�𝑘+1𝑓  in the pressure Poisson equation enables the 
modeling of compressible fluids and offers a critical extension for scenarios like unsaturated soils or thermo-hydro-mechanical 
systems.

• Enhanced accuracy via drag force correction: Introduction of correction coefficients 𝜉𝑠 and 𝜉𝑓  in the momentum corrector 
and pressure Poisson equation helps to refine drag force coupling and improve accuracy for dynamic, large deformation 
problems.

• Efficient node-based implicit algorithm: A novel node-wise implicit scheme for solving intermediate accelerations helps to 
significantly improve the computational efficiency in each time step while preserving numerical stability and accuracy.

4. Numerical examples

This section presents a series of 1D and 2D hydro-mechanical (Section 4.1) and thermo-hydro-mechanical (Section 4.2) coupling 
examples to show the performance of the new FSM-based MPM in simulating porous media with compressible fluid. The last 
11 
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Fig. 2. Geometry and boundary conditions of 1D consolidation problem.

example further demonstrates the efficacy of the proposed approach in simulating large deformations in porous media with different 
fluid compressibilities. For comparison, we also present the results based on the explicit sequential solution scheme presented in 
Section 3.2. For brevity, in the following analysis, the semi-implicit FSM is simply denoted as the ‘‘FSM’’ scheme, while the explicit 
sequential scheme is denoted as the ‘‘explicit’’ scheme.

4.1. Hydro-mechanical coupling problems

4.1.1. 1D wave propagation
The first example examines the propagation of a pressure wave, a phenomenon of wave shock within a saturated soil column, 

which is a common dynamic feature of compressible fluid in porous media [3,16]. The geometry and boundary conditions of the 
problem are shown in Fig.  2. The height and width of the soil column are set as 𝐻 = 2.5 m and 𝐿 = 0.0025 m, respectively. To 
accurately capture the wavefront dynamics, the domain is discretized using a highly refined mesh with 1,000 uniform quadrilateral 
cells and 4,000 particles. The bottom of the soil is fully fixed, whereas the left and right sides are only fixed in the normal direction. 
The top is a free surface and drained boundary, i.e., a zero-pressure boundary, while other boundaries are impermeable. A surface 
surcharge of 𝑞𝑠 = 1 kPa is prescribed on the top surface instantaneously at the beginning of the simulation. The initial pressure and 
stresses are set as zero, and the gravitational force is not considered in this example. The soil is modeled as a linear elastic material. 
The material properties are given as follows: solid grain density 𝜌𝑠 = 2,650 kg∕m3, fluid density 𝜌𝑓  = 1,000 kg∕m3, porosity 𝜙 = 0.4, 
Young’s modulus 𝐸 = 5,000 MPa, Poisson’s ratio 𝜈 = 0, fluid viscosity 𝜇𝑓 = 1×10−3 Pa s, and fluid compressibility 𝛼𝑓 = 0.5×10−9 Pa−1. 
Two different permeabilities are considered: 𝑘𝑓 = 1× 10−12 m2 and 𝑘𝑓 = 1× 10−10 m2. A time step size 𝛥𝑡 = 1× 10−6 s is adopted for 
both the FSM and Explicit schemes.

The theoretical solution for the initial pore pressure and effective stress after the instantaneous loading was given by Verruijt 
[47],

𝑝0 =
1∕𝑀

𝜙∕𝐾𝑓 + 1∕𝑀
𝜎, (66)

𝜎′0 =
𝜙∕𝐾𝑓

𝜙∕𝐾𝑓 + 1∕𝑀
𝜎, (67)

where 𝑀 is the P-wave modulus, 𝐾𝑓  is the liquid bulk modulus, and 𝜎 is the total stress equaling the applied surface traction. 
For this case with 𝑀 = 5,000 MPa and 𝐾𝑓 = 1∕𝛼𝑓  = 2,000 MPa, the applied surface traction will be carried out equally by the 
fluid and solid phases at first, that is, 𝑝0 = 𝜎′0 = 0.5 kPa. According to Biot’s consolidation theory for saturated porous media with 
compressible fluid [47,54], there are normally two waves generated in the porous media due to the instantaneous application of 
surface loading. The first wave is known as the undrained wave, where the fluid and solid move synchronously at the same speed. 
12 
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Fig. 3. Normalized pore pressure versus time at the depth of 0.4 m for the high permeability case (𝑘𝑓 = 1×10−10 m2): (a) comparison of results by FSM, explicit 
scheme, and analytical solution; (b) comparison of FSM results with and without considering fluid compressibility.

The second wave is called the damped wave, where the fluid and the solid move asynchronously. The propagation speed of these 
two waves is given by,

𝑐𝑢 =

√

𝑀 +𝐾𝑓∕𝜙
𝜌𝑚

, (68)

𝑐𝑑 =

√

𝜙𝑀
(1 − 𝜙)𝐾𝑓 + 𝜙𝑀

√

𝐾𝑓
𝜌𝑓

. (69)

For the given problem, the two speeds are calculated as 𝑐𝑢 = 2,236 m/s and 𝑐𝑑 = 1,118 m/s.
Fig.  3(a) shows the normalized pressure versus time at a depth of 0.4 m for the case with low permeability. In this case, only 

the undrained wave is visible due to low-speed relative motion between the fluid and solid phases. The undrained wave arrives 
at a depth of 0.4 m at a time of about 1.8 × 10−4 s, which agrees well with the theoretical solution. The observed peak pressure 
and effective stress in the column are both 0.5 kPa, which are in good agreement with the theoretical solution. The wave arrives 
at the bottom after about 1.1 × 10−3 s and then is reflected back with doubled amplitude due to the rigid boundary condition at 
the bottom. The reflected wave arrives at a depth of 0.4 m at a time approximately 2 × 10−3 s, which is also consistent with the 
calculated time based on the undrained wave speed. For the high permeability case, as shown in Fig.  4(a), the undrained wave 
arrives at a depth of 0.4 m at a time of 1.8×10−4 s, which is consistent with the high permeability case, whereas the arrival time for 
the damped wave is around 3.6 × 10−4 s since the damped wave only has half the speed of the undrained wave. After the arrival of 
the damped wave, the pore pressure decreased sharply to approximately 0.3 kPa due to the strong interaction between the solid and 
fluid phases. For the high permeability case, the fluid and the solid move with large relative velocities, and thus, the damped wave 
is strongly damped out due to the interaction between the two phases. Figs.  3(a) and 4(a) show that MPM with the compressible 
FSM scheme can capture the correct wave propagation as that with the explicit scheme. Moreover, pressure oscillations are observed 
in the simulation results with the explicit scheme, which is also observed in previous explicit SPFEM [3] and MPM work [16,57]. 
In contrast, the results based on FSM show almost no pressure oscillations, indicating that it can filter the numerical noises and 
stabilize the simulation results. However, for FSM with 𝛼𝑓  = 0, as shown in Figs.  3(b) and 4(b), the time-dependent pressure term 
is absent so that the dynamic wave propagation cannot be captured.

4.1.2. 1D consolidation
In Terzaghi’s 1D consolidation theory, the pore fluid and the solid grains are assumed to be incompressible. In the later 

development of the theory, compression of the pore fluid and particles has been taken into account [54]. In this example, the 
1D consolidation tests with different fluid compressibilities are conducted. The geometry and boundary conditions are basically the 
same as the previous 1D wave propagation example (see Fig.  2) except that the height and the width of the soil column are set as 
𝐻 = 1.0 m and 𝐿 = 0.02 m, respectively, and the surface surcharge is set as 𝑞𝑠 = 10 kPa. The computational domain is discretized 
into 50 uniform quadrilateral cells and 200 particles. Since a clear wavefront is no longer the primary concern of this example, a 
relatively coarse mesh is adopted. Again, no gravitational force is considered. The soil is modeled as a linear elastic material, with 
material parameters given as follows: 𝜌𝑠 = 2,650 kg∕m3, 𝜌𝑓  = 1,000 kg∕m3, 𝜙 = 0.4, 𝛼𝑓 = 0.5 × 10−9 Pa−1, 𝐸 = 10 MPa, 𝜈 = 0.0, 
𝜇 = 1 × 10−3 Pa s, and 𝑘 = 1 × 10−10 m2. The Terzaghi’s 1D consolidation solutions for pore fluid pressure 𝑝  at the depth 𝑥 and 
𝑓 𝑓 𝑓
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Fig. 4. Normalized pore pressure versus time at the depth of 0.4 m for the low permeability case (𝑘𝑓 = 1×10−12 m2): (a) comparison of results by FSM, explicit 
scheme, and analytical solution; (b) comparison of FSM results with and without considering fluid compressibility.

Table 1
Comparison of the elapsed CPU time for different tests simulated by the original FSM and the improved FSM with node-wise implicit scheme.
 Test 𝑁𝑝 𝑁𝑛 𝛥𝑡 𝑁𝑠𝑡𝑒𝑝𝑠 Original- Improved- Time saved 
 Section 4.1.2 200 102 2.5 × 10−4 40,000 44.1 s 34.7 s 21.3%  
 Section 4.1.3 26,800 6,885 5 × 10−4 4,000 530.3 s 322.2 s 39.2%  
 Section 4.2.1 200 102 2.5 × 10−4 40,000 50.9 s 39.7 s 22.0%  
 Section 4.2.2 25,600 6,561 1 × 10−4 10,000 1,316.8 s 877.2 s 33.4%  

time 𝑡 and for the surface displacement 𝑢𝑠 are given as follows, 

𝑝𝑓 (𝑥, 𝑡) = 𝑞𝑠
∞
∑

𝑛=0

2
𝜉𝐻

sin(𝜉𝑥)𝑒−𝜉
2𝑐𝑡, (70a)

𝑢𝑠(𝑡) = −
𝑞𝑠
𝑀

+
𝑞𝑠
𝑀

∞
∑

𝑛=0

2
𝜉2𝐻

𝑒−𝜉
2𝑐𝑡, (70b)

where 𝜉 = (2𝑛 + 1)𝜋∕(2𝐻), 𝐻 is the height of the soil column, 𝑞𝑠 is the surface surcharge, 𝑀 is the P-wave modulus, and 
𝑐 = 𝑘𝑓𝑀∕(𝜌𝑓 𝑔) is the consolidation coefficient.

We first assess the numerical accuracy of the improved FSM with drag-force correction (DC) and node-wise implicit (NI) scheme. 
The accuracy is quantified using the relative error, 𝑒𝑟, defined as, 

𝑒𝑟 =

√

√

√

√

√

1
𝑁𝑝

𝑁𝑝
∑

𝑝=1
(𝑝𝑓,MPM − 𝑝𝑓,ANA)2, (71)

where 𝑝𝑓,MPM and 𝑝𝑓,ANA denote pore pressures from MPM simulations and analytical solution, respectively, and 𝑁𝑝 is the total 
number of particles. Four permeability values spanning from 1 × 10−10 m2 to 1 × 10−13 m2 were tested. At dimensionless time 
𝑇𝑣 = 𝑐𝑡∕𝐻2 = 0.1, Fig.  5(a) demonstrates a 50% reduction in 𝑒𝑟 with DC, highlighting its role in enhancing accuracy. Moreover, 
the NI Scheme maintains comparable accuracy while reducing computational time by 20%–30%, as illustrated in Fig.  5(b). To 
generalize these findings, we evaluated CPU times for larger-scale 2D wave propagation (Section 4.1.3) and thermo-poroelastic 
problems (Section 4.2.2), as summarized in Table  1. Simulations were conducted on an Intel 32-Core i9-13980HX CPU with OpenMP 
parallelization. The efficiency gains from the NI scheme become more pronounced as particle count increases, as the original 
FSM’s matrix assembly and iterative momentum predictor solutions scale poorly with problem size. By contrast, the improved FSM 
minimizes these bottlenecks, achieving superior scalability for high-resolution models. 

We further evaluated the performance of the compressible FSM. Given the lack of analytical solutions for dynamic two-phase 
systems with compressible fluids, we validated the MPM results against explicit FEM simulations generated by a custom python-based 
solver. As shown in Fig.  6(a), the pore pressure profiles at the base of the soil column exhibit nearly identical fluctuations between 
the FSM, explicit MPM, and FEM results when using a fixed time step size 𝛥𝑡 = 1 × 10−5 s. This alignment confirms the accuracy 
of the compressible FSM in resolving transient pressure waves under dynamic, compressible condition. The fluctuations represent 
physical pressure waves within porous media induced by instantaneous loading, as per prior analyses. Similarly, the theoretical 
value of initial pore pressure can be calculated, which is about 9.98 kPa, equal to the applied surface traction approximately. The 
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Fig. 5. Comparison of (a) numerical accuracy and (b) computational cost for the original FSM and the improved FSM.

Fig. 6. Evolution of (a) pore pressure at the bottom of the soil column and (b) the surface displacement.

undrained wave speed is calculated at about 1,587 m/s, and accordingly, the undrained wave arrives at the bottom of the soil at 
about 4.5 × 10−4 s. As depicted in Fig.  6(a), the first pressure shock occurs at about 4.5 × 10−4 s and the peak is nearly twice the 
applied surface traction, which is consistent with theoretical values. The wave dissipates very rapidly, vanishing after several wave 
periods. However, if fluid compressibility is not considered, such pressure waves cannot be captured. Since the FSM can set a larger 
time step size, we also test the case with 𝛥𝑡 = 2.5 × 10−4 s, 25 times larger than the previous one. It is observed that a large time 
increment can accelerate the damping of pressure waves. Once the pressure wave is completely attenuated, pressure dissipation 
curves for all tests converge to a nearly uniform one, consistent with Terzaghi’s analytical solution. Fig.  6(b) further displays the 
simulated displacements for all cases. No obvious oscillation is observed from the consolidation curve, and they all align well with 
Terzaghi’s analytical solution.

We further tested three additional cases with higher fluid compressibility values, i.e., 1 × 10−8, 1 × 10−7, and 1 × 10−6 Pa−1. Fig. 
7(a) shows the bottom pore pressure and the surface displacement. The FEM results and the explicit MPM results are also shown 
for comparison. The conclusion is basically the same as the former case. If using the same time step size, the FSM scheme can 
give nearly identical pressure wave propagation and dissipation features as the explicit MPM and FEM results for all three cases. 
However, with a larger time step size, the pressure waves simulated by the FSM are quickly damped, similar to that observed in Fig. 
6(a). It is also evident that the amplitude of the pressure wave decreases with 𝛼𝑓 , while the length of the pressure wave increases 
with 𝛼𝑓 . Again, the simulated peak values for pore pressure are consistent with the calculated value by Eq. (66), i.e., 19.2, 14.3, 
and 4.0 kPa for 𝛼𝑓 = 1 × 10−8, 1 × 10−7, and 1 × 10−6 Pa−1, respectively. And, the time when the wave propagates to the bottom is 
also consistent with the calculated value based on Eq. (68), i.e., 2.77 × 10−3, 7.54 × 10−3, and 1.26 × 10−2 s for 𝛼 = 1× 10−8, 1 × 10−7, 
𝑓
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Fig. 7. Evolution of pore pressure at the bottom of the soil column and the surface displacement for (a–b) 𝛼𝑓 = 1×10−8 Pa−1, (c–d) 𝛼𝑓 = 1×10−7 Pa−1, and (e–f) 
𝛼𝑓 = 1 × 10−6 Pa−1.
16 



J. Yu et al. Computer Methods in Applied Mechanics and Engineering 444 (2025) 118100 
Fig. 8. Effect of particle damping on vanishing the oscillation of (a) pore pressure at the bottom of the soil column and (b) the surface displacement, taking 
𝛼𝑓 = 1 × 10−7 Pa−1 as an example.

and 1 × 10−6 Pa−1, respectively. However, the displacement fields show more oscillations than the low compressibility case. The 
amplitude seems to increase with growing 𝛼𝑓 , with their frequency keeping in tune with the pore pressure wave. It is worth noting 
that with increasing 𝛼𝑓 , the pressure responses significantly deviate from Terzaghi’s solution derived based on the incompressible 
fluid assumption.

The simulation results indicate that although the semi-implicit FSM scheme was originally designed for incompressible fluid, 
it can be effectively employed in simulating porous media with compressible fluid, albeit with a compromise on certain dynamic 
effects when using larger time step sizes. Nevertheless, there are instances where these dynamic effects are undesirable. One way 
to stabilize the pressure is by introducing artificial damping to particle accelerations. Fig.  8 indicates that particle damping can 
effectively help to reduce oscillations [23]. However, a proper damping ratio is important for the success of the stabilization of 
pressure. Based on our experience, it is advised that the damping ratio should not surpass the undrained wave speed. Otherwise, 
over-dissipation will be observed. A more physical approach to dismissing the wave reflection is to prescribe the absorbing boundary 
for an artificially fixed boundary; see for Refs. [16,58].

4.1.3. 2D wave propagation
This example simulates the dynamic wave propagation in a saturated porous medium, which has been well benchmarked to 

validate FEM codes [3,39]. A rectangular domain with a height of 10 m and a width of 21 m is simulated. The bottom of the domain 
is fixed while the left and right sides are roller boundaries. The top surface is free and drained, whereas the other boundaries are 
impermeable. An impulse surface surcharge of 𝑞 = 𝑓 (𝑡) with a width of 1 m is applied on the middle of the top surface. The impulse 
loading is given as 𝑓 (𝑡) = 105sin(25𝜋𝑡) before 0.04 s, after which the surcharge is removed. Due to symmetry, only half of the domain 
is simulated. The geometry, boundary conditions, and loading function are depicted in Fig.  9. The half domain is discretized into 
6,720 uniform quadrilateral cells and 26,880 particles. The porous medium is modeled as a linear elastic material. The material 
properties are given as follows: 𝜌𝑠 = 2,000 kg∕m3, 𝜌𝑓  = 1,000 kg∕m3, 𝜙 = 0.33, 𝛼𝑓 = 0.5 × 10−9 Pa−1, 𝐸 = 14.5 MPa, 𝜈 = 0.3, 
𝜇𝑓 = 1 × 10−3 Pa s, and 𝑘𝑓 = 1 × 10−9 m2. The gravitational force is not considered. From previous 1D examples, it is found that the 
temporal resolution may have a great influence on the pressure responses using the FSM scheme. In this 2D case, the effect of time 
step size is also investigated. For the explicit scheme, a smaller time step size 𝛥𝑡 = 1 × 10−5 s is adopted, while for the fractional 
step scheme, both a larger time step size 𝛥𝑡 = 2.5 × 10−4 s and a smaller one 𝛥𝑡 = 1 × 10−5 s are tested.

Fig.  10(a) plots the pore pressure evolution at point A before 0.2 s. Pressure oscillations are observed after 0.04 s, the time after 
the impulse loading, for both FSM and explicit schemes with 𝛼𝑓 = 0.5×10−9 Pa−1. Notably, if using the same 𝛥𝑡 = 1×10−5 s, the FSM 
can capture almost identical oscillations as the explicit scheme. With a larger 𝛥𝑡 = 5×10−4 s, the oscillations become less significant 
but still visible. By contrast, without considering the fluid compressibility (𝛼𝑓  = 0), the FSM yields a rather smooth pressure. These 
observations are consistent with the 1D cases. Generally, the MPM results agree well with the FEM results by Markert et al. [39] and 
SPFEM results by Yuan et al. [3]. Notably, the MPM results based on the incompressible FSM formulation match quite well with the 
SPFEM results. Yuan et al. [3] also compared the explicit and FSM schemes with compressible fluids, but no pressure fluctuation 
after 0.04 s was observed in their results. One possible reason is that the SPFEM algorithm over-smoothed the pressure. Fig.  10(b) 
further shows the movement of the material point at a surface Point B. The trajectory of point B shows an elliptic particle movement, 
a typical Rayleigh wave-specific motion. The numerical results obtained by different MPM schemes are nearly identical. Again, the 
coupled MPM results match rather well with the results in the literature. The contours of pore pressure at the time instances of 
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Fig. 9. Geometry, boundary conditions, and loading function of the 2D wave propagation problem.

Fig. 10. (a) Pore pressure evolution at point A and (b) particle trajectory at point B.

0.1 s and 0.2 s are presented in Fig.  11. The pressure distributions are basically the same for all four tests. Minor differences are 
observed between the FSM with 𝛥𝑡 = 5 × 10−4 s and the explicit scheme. However, the gaps become invisible given the same 𝛥𝑡.

We further tested cases with large fluid compressibility, for example, 𝛼𝑓 = 1 × 10−6 Pa−1. Due to the use of a larger 𝛼𝑓 , the 
explicit scheme can also adopt a relatively larger time step size. Herein, 𝛥𝑡 = 2.5 × 10−4 s is adopted for both schemes. Fig.  12 
presents the contours of pore pressure. The explicit dynamic FEM results are also presented for comparison. Comparing the pore 
pressures of 0.05 s and 0.08 s, it is clear that at the initial loading stage, the pressure wave propagates from the loading point to the 
far end. It then reflects and overlaps after reaching the far-end boundaries (bottom and right). The quantitative comparison shows 
that even with a larger fluid compressibility, the FSM can also obtain comparable results as the explicit method for 2D problems. 
Qualitatively, both results are in good agreement with the FEM results. Fig.  13 quantitatively compares the pore pressure and the 
vertical displacement at point A. Obvious fluctuations are observed from both pressure and displacement evolution curves. Compared 
to the 1D case, the 2D wave propagation patterns are more complex due to the overlapping of waves from two directions. Notably, 
the pore pressure magnitude is much smaller than that of the low compressibility case. Although some minor discrepancies between 
the FSM-based MPM results and the FEM results can be observed, their overall trend and magnitude are quite similar. This example 
shows that in 2D conditions, the FSM can also effectively capture correct fluid compressibility-related dynamic responses. The 
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Fig. 11. Pore pressure contours by MPM with FSM and explicit schemes at the time instances of 0.1 s and 0.2 s. 

pressure responses in multidimensional conditions are rather complicated, which is dependent on not only the fluid compressibility 
but also the permeability and the solid stiffness, while a detailed analysis of the wave patterns is out of the scope of this study.

4.2. Thermo-hydro-mechanical coupling problems

The thermal load can also generate pore pressure waves in porous media, though seldom documented in the literature. In this 
section, 1D and 2D thermo-poroelastic problems are simulated to show how the thermal wave propagates and whether the FSM 
scheme can capture correct wave features.

4.2.1. 1D thermo-poroelastic response
We first consider a 1D non-isothermal soil column with a height of 𝐻 = 1 m and an initial temperature 𝑇0 = 0 ◦C subjected 

to a surface temperature increment 𝑇𝑠 = 50 ◦C, as illustrated in Fig.  14. The example is modified from the classical non-
isothermal consolidation problem designed by Aboustit et al. [59]. It has been widely adopted as a benchmark to validate the THM 
formulations [23,60–62]. However, the dynamic effect induced by the instantaneously applied thermal load was not investigated in 
previous works. The model geometry and boundary conditions are basically the same as those of the 1D consolidation case, except 
that the surface is subject to temperature load. The material properties are given as follows: 𝜌𝑠 = 2,650 kg∕m3, 𝜌𝑓  = 1,000 kg∕m3, 
𝜙 = 0.4, 𝐸 = 10 MPa, 𝜈 = 0.0, 𝜇𝑓 = 1×10−3 Pa s, and 𝑘𝑓 = 1×10−10 m2, 𝑐𝑠 = 920 J/(kg ◦C), 𝑐𝑓  = 4,186 J/(kg ◦C), 𝜆𝑠 = 2.4 MW/(m 
◦C), 𝜆𝑓  = 0.6 MW/(m ◦C), 𝛽𝑠 = 3 × 10−5 /◦C, and 𝛽𝑓 = 2.1 × 10−4 /◦C. Similarly, the time step size for the explicit scheme is set as 
𝛥𝑡 = 1 × 10−5 s, whereas for FSM, 𝛥𝑡 = 1 × 10−5 and 2.5 × 10−4 s are tested. 𝛼𝑓 = 0.5 × 10−9 Pa−1 is first considered, followed by three 
larger ones, i.e., 𝛼𝑓 = 1 × 10−8, 1 × 10−7, 1 × 10−6 Pa−1.

Wu [63] gave the analytical solution for this problem under the assumption of incompressible fluid. The temperature 𝑇  and pore 
pressure 𝑝 at time 𝑡 and depth 𝑥 and the surface displacement 𝑢𝑠 are given as follows, 

𝑇 (𝑥, 𝑡) = 𝑇𝑠

[
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∞
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2
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where 𝜉 = (2𝑛+1)𝜋∕(2𝐻), 𝑐 = 𝑘𝑓𝑀∕𝜌𝑙𝑔 is the consolidation coefficient, 𝜅 = 𝜆𝑚∕𝐶𝑚 is the thermal diffusion coefficient, 𝑏 = 𝑎−𝛽𝑚𝑀 , 
𝑎 = 𝛽𝑠(3𝜆 + 2𝐺), 𝑀 = 𝜆 + 2𝐺, and 𝜆 and 𝐺 are the Lamé constants. For the cases with compressible fluid, the explicit FEM results 
are also presented for comparison.

Fig.  15(a) shows the evolution of pore pressure at the bottom of the soil column. Similar to the isothermal 1D consolidation 
example, pressure oscillations are observed at the beginning of the simulation for cases considering fluid compressibility (𝛼𝑓 =
0.5 × 10−9 Pa−1). Notably, explicit MPM and FEM exhibit stronger temporal oscillations, with the initial pressure peak exceeding 
100 kPa and decaying sharply after 0.1 s. In contrast, the FSM-based MPM resolves comparable pressure waves but with significantly 
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Fig. 12. Comparison of pore pressure solved by (a–d) FSM-based MPM, (e–h) explicit MPM, and (i–l) FEM with fluid compressibility 𝛼𝑓 = 1 × 10−6 Pa−1 at the 
time instances of 0.05, 0.08, 0.5, and 2 s.

Fig. 13.  Evolution of (a) pore pressure and (b) vertical displacement at point A.

stabilized profiles, demonstrating reduced numerical noise and smoother pressure evolution. This suggests the semi-implicit FSM 
inherently acts as a numerical filter for effective mitigation of high-frequency oscillations through controlled dissipation. However, 
as the time step 𝛥𝑡 increases, the wave peak diminishes, and wave attenuation intensifies, again suggesting that the FSM may fail to 
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Fig. 14. Geometry and boundary conditions for the 1D thermo-poroelastic problem.

Fig. 15. Evolution of (a) pore pressure at the bottom of the soil column and (b) the surface displacement.

capture the correct wave if the temporal resolution is not fine enough. As pressure waves dampen, a positive pore pressure follows 
and gradually rises to a peak before dissipating to zero due to fluid drainage from the surface. This behavior arises from solid 
skeleton expansion due to heating. Throughout this stage, simulated results across all tests closely align with the analytical solution, 
regardless of the time step size. Furthermore, displacement remains minimally affected by these waves, as evidenced in Fig.  15(b), 
where simulation curves closely mirror the analytical solution.

Fig.  16 further compares the cases with higher fluid compressibility. For the case with 𝛼𝑓 = 1×10−8 Pa−1 and 𝛼𝑓 = 1×10−7 Pa−1, 
similar pressure oscillations are observed as the case with 𝛼𝑓 = 0.5 × 10−9 Pa−1. However, as the fluid compressibility increases, the 
wavelength increases, the amplitude decreases, and the wave attenuation speed decreases as well. Again, employing a large time step 
for the simulation can accelerate the wave damping. In addition, it is found that for smaller 𝛼𝑓  cases, the pressure wave becomes less 
dominant, whereas the oscillations in the displacement curves seem more evident. Also, with smaller 𝛼𝑓 , the peak of pressure and, 
accordingly, the displacement become smaller compared to the solution for an incompressible fluid. These findings are consistent 
with the isothermal consolidation cases. In short, thermal load (expansion or contraction) can generate wave propagation akin to 
21 



J. Yu et al. Computer Methods in Applied Mechanics and Engineering 444 (2025) 118100 
Fig. 16. Evolution of pore pressure at the bottom of the soil column and the surface displacement for (a-b) 𝛼𝑓 = 1 × 10−8 Pa−1, (c-d) 𝛼𝑓 = 1 × 10−7 Pa−1, and 
(e-f) 𝛼𝑓 = 1 × 10−6 Pa−1.
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Fig. 17. Geometry and boundary conditions for the 2D thermo-poroelastic problem.

mechanical load, and the wave pattern can be successfully captured if considering the fluid compressibility in FSM when a sufficiently 
small 𝛥𝑡 is used. This indicates that the FSM can be employed for THM modeling of porous media with both incompressible and 
compressible fluids as explicit dynamics, and the former is even more stable as it can filter some unexpected unphysical oscillations.

4.2.2. 2D thermo-poroelastic wave propagation
The following is a 2D THM example to showcase the dynamic wave propagation in the thermo-poro-elastic condition. Similar 

cases are presented as benchmarks in literature [64], but no pore fluid is considered. The model geometry and boundary conditions 
are depicted in Fig.  17. A square domain of 10 m × 10 m with an initial temperature of 0 ◦C is simulated. The left and bottom sides 
are fixed in normal directions and are prescribed with a fixed temperature of 50 ◦C. The two boundaries are impermeable, while 
the other two are free-drained boundaries. The material domain is discretized into 2,500 quadrilateral cells with a uniform size of 
0.2 m, and four particles are initiated in each cell. The material is modeled as perfectly linear elastic and the material parameters 
are given as follows: 𝜌𝑠 = 2,650 kg∕m3, 𝜌𝑓  = 1,000 kg∕m3, 𝜙 = 0.4, 𝐸 = 10 MPa, 𝜈 = 0.0, 𝜇𝑓 = 1×10−3 Pa s, and 𝑘𝑓 = 1×10−10 m2, 
𝑐𝑠 = 4,186 J/(kg ◦C), 𝑐𝑓  = 920 J/(kg ◦C), 𝜆𝑠 = 2.4 MW/(m ◦C), 𝜆𝑓  = 0.6 MW/(m ◦C), 𝛽𝑠 = 3 × 10−5 /◦C, and 𝛽𝑓 = 2.1 × 10−4 /◦C. 
Two fluid compressibilities are considered, i.e., 𝛼𝑓 = 0.5 × 10−9 Pa−1 and 𝛼𝑓 = 1 × 10−7 Pa−1.

Fig.  18 compares the spatial distribution of thermal-induced pore pressure. After the application of the thermal load, two 
orthogonal pressure waves are initiated from the fixed end and propagate to the free end. Overlapping of the two waves yields 
an evident peak alongside the 45-degree zone, propagating to the free end and then splitting into two again. The quantitative 
comparison shows that the FSM can capture the same dynamic wave pattern as the explicit scheme. Fig.  19(a) qualitatively shows 
the evolution of pore pressure at the central point P1 (5 m, 5 m) of the domain, which approximately follows a gradually damped 
sinusoidal wave. Both schemes give the same simulation results with 𝛼𝑓 = 0.5 × 10−9 Pa−1. Again, if we set 𝛼𝑓  = 0, the FSM cannot 
capture such pressure waves. Normally, there are two sources of pressure: one is fluid compressibility-induced pressure, and the 
other is thermal expansivity-induced pressure. However, for the case with 𝛼𝑓 = 0.5 × 10−9 Pa−1, the latter effect is less significant 
compared to the former at the initial loading stage, although some indications can still be found at the left-bottom corner at 𝑡 = 
0.0055 s in Fig.  18. Fig.  19(b) plots the vertical displacement at P0 (5 m, 10 m). Again, FSM with 𝛼𝑓 = 0.5 × 10−9 Pa−1 captures 
some wave patterns that FSM with 𝛼𝑓  = 0 cannot. Except for some local displacement oscillations corresponding to the pressure 
waves, there are still three obvious waves on a larger time scale induced by the thermal expansion.

Fig.  20 shows the contour results of pore pressure in the case with 𝛼𝑓 = 1×10−7 Pa−1. Again, FSM can capture the same pressure 
pattern as the explicit method. The pressure pattern shown in Fig.  20, especially the two orthogonal waves, is rather similar to that 
in Fig.  18. However, the magnitude of the pressure wave is much lower than that of the low compressibility case. As a consequence, 
the pressure increment near the left and bottom boundaries, the thermal expansion-induced pore pressure, becomes more evident. 
Fig.  21 compares the time evolution of pore pressure at P1 and vertical displacement at P0 solved by explicit and semi-implicit 
MPM. Both results are nearly identical to each other. Obviously, the 2D thermal wave propagation is more complex than the 1D 
case. The details of the wave patterns will not be discussed in further detail since it is beyond the scope of this study.

To this stage, we have presented rich examples to demonstrate the efficacy of FSM in capturing the mechanical and thermal-
induced pressure wave in porous media with compressible fluid, but all are in the elastic range.
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Fig. 18. Comparison of thermal-induced wave propagation in porous media simulated by coupled MPM based on (a–d) FSM and (e–h) exlicit schemes at four 
representative time instances.

Fig. 19. (a) Thermal-induced pore pressure at the central point P1 (5 m, 5 m) and (b) vertical displacement at point P0 (5 m, 10 m) on the top surface.

4.3. Progressive failure of a slope

The last example simulates the progressive failure of a sensitive slope to show that the compressible FSM can correctly simulate 
the large deformation and failures in geotechnical problems. The geometry and boundary conditions are depicted in Fig.  22a. The 
height and bottom length are 5 m and 20 m, respectively, and the slope angle is 45◦. The bottom is fixed as a no-slip boundary, 
and the left is a roller boundary. The soil slope is assumed to be saturated, and no external heat source is applied. Quadrilateral 
mesh is used with a uniform mesh size of 0.2 m and initially four material points in each grid cell. The slope is consolidated first 
under gravity. During the consolidation stage, the linear elastic material model is adopted, with the material properties as follows: 
𝜌𝑠 = 2,040 kg∕m3, 𝜌𝑓  = 1,000 kg∕m3, 𝜙 = 0.4, 𝛼𝑓  = 0, 𝐸 = 1 MPa, and 𝜈 = 0.33. To accelerate the consolidation process, a large 
permeability 𝑘𝑓 = 1×10−6 m2 is adopted. The pore pressure after consolidation is presented in Fig.  22b. Then, the pore pressure and 
the initial stress serve as the initial conditions for the following slope failure simulation. The linear strain-softening Mohr–Coulomb 
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Fig. 20. Comparison of thermal-induced wave propagation in porous media simulated by (a-d) FSM and (e-h) explicit schemes.

Fig. 21. Comparison of thermal-induced wave propagation in porous media simulated by explicit MPM and FSM-based semi-implicit MPM: (a) pore pressure at 
P1 and (b) vertical displacement at P0.

model is adopted, with the strength parameter as follows: initial peak shear strength 𝜑𝑝𝑒𝑎𝑘 = 10◦ and 𝑐𝑝𝑒𝑎𝑘 = 15 kPa, residual shear 
strength 𝜑𝑟𝑒𝑠 = 0.5◦ and 𝑐𝑟𝑒𝑠 = 2 kPa, residual plastic deviatoric strains 𝜀𝑝𝑟𝑒𝑠 = 0.2, and the peak plastic deviatoric strain 𝜀𝑝𝑝𝑒𝑎𝑘 = 0. 
The permeability is set as 𝑘𝑓 = 1 × 10−15 m2, and the fluid compressibility is set as 𝛼𝑓 = 1 × 10−8 Pa−1. Both the explicit scheme and 
the FSM are tested for comparison purposes. It is worth mentioning that the PIC damping will cause extra energy dissipation, and 
the total amount of energy loss in a simulation round is dependent on the magnitude of the PIC damping coefficient 𝛼𝑃𝐼𝐶 and the 
time step. Therefore, for a fair comparison, both schemes adopt the same time step size of 5 × 10−4 s and the same 𝛼𝑃𝐼𝐶 = 0.001.

Fig.  23 shows the progressive failure process. There are three major slope slide events occurring at about 0.75. 3.25, and 6.5 s. 
For each slide, there is a major shear band accompanied by one or several minor shear bands. The explicit MPM is also employed to 
simulate the same problem, as shown in Fig.  24. Also, there are three slope slide events with the occurring times and locations and 
failure patterns nearly the same as those of the FSM results, except that the shear bands in the second slide show minor differences. 
For both simulations, the slope slides finally stopped with a runout of 27.5 m and a retrogressive distance of about 20 m. Fig.  25 
and Fig.  26 further show the contours of pore pressure at the time of each slide initiation solved based on the FSM and explicit 
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Fig. 22. (a) Geometry and boundary condition of a saturated slope, and (b) pore pressure after self-weight consolidation.

schemes. It is found that the pore pressure below the arc-shaped shear band in the slide event will increase suddenly, while above 
the shear band, the pore pressure decreases. Apparently, the pore pressures solved by both schemes are almost identical. Fig.  27 
compares the kinetic energy of the soil slope during the progressive failure process. Three peaks can be observed, corresponding 
to the three slides. The evolution curves for FSM and explicit MPM demonstrate close agreement. However, explicit MPM exhibits 
slower energy damping compared to FSM. This discrepancy likely stems from differences in shear band formation during the second 
sliding event, where distinct pressure field solution schemes (semi-implicit FSM vs. explicit) may drive divergence in shear band 
bifurcation. Additionally, numerical instability (e.g., mesh distortion, hourglassing) may accumulate errors over time, leading to 
divergent kinetic energy evolution paths. For small-deformation problems (discussed in prior sections), these factors have a negligible 
impact, resulting in nearly identical FSM and explicit MPM results. However, in large deformation regimes, perturbations from 
pressure field approximations and instability mechanisms are amplified temporally and spatially, culminating in a bifurcation point 
at a critical time frame. Overall, the FSM-based MPM can capture similar results as the explicit dynamics for a large deformation 
slope failure case if the fluid compressibility is set. Therefore, the FSM can be extended to simulate large deformations in porous 
media with compressible fluid.

To demonstrate the influence of fluid compressibility on the slope failure patterns, we compared the post-failure patterns of four 
cases with 𝛼𝑓 = 1 × 10−9, 1 × 10−8, 1 × 10−7, and 1 × 10−6 Pa−1, labeled as Case 1, Case 2, Case 3, and Case 4, respectively. Fig.  28 
depicts the deviatoric strains, which also shows the final slope geometry after the progressive failure. Similar to Case 2, Case 1 also 
experiences three major retrogressive slides. However, the runout distance and the retrogressive distance in Case 1 are a bit longer 
than in Case 2. By contrast, Case 3 experiences only two major retrogressive slides, and Case 4 only one major slide with a minor 
slide. Consequently, the retrogressive distances in Case 3 and Case 4, which are about 13.5 and 11.5 m, respectively, are much less 
than those in Case 1 and Case 2. The distinct responses result from the pore pressure, which is normally larger in the low 𝛼𝑓  porous 
media than in the high 𝛼𝑓  media. Inversely, the effective stress in the former case is lower than in the latter case. Therefore, the low 
𝛼𝑓  case is more prone to retrogressive failures. This example demonstrates the significance of considering pore fluid compressibility 
in accurately simulating the slope instability response.

5. Discussion on extension of three-phase fractional step formulation

While the FSM has proven effective for dynamic analysis of porous media with compressible fluids under the simplification of 
homogenized fluid–solid mixtures, it does not inherently resolve liquid/gas saturation evolutions or capillary suction in triphasic 
systems. These effects are critical for modeling unsaturated soils. To bridge the gap, we extend the two-phase FSM to a three-
phase framework, a novel advancement not yet reported in literature due to challenges in operator-splitting of three velocities 
variables (𝒗𝑠, 𝒗𝑙, 𝒗𝑔) and two pressure variables (𝑝𝑙, 𝑝𝑔). To tackle this challenge, we herein introduce three intermediate velocities
(𝒗∗𝑠 , 𝒗∗𝑙 , 𝒗∗𝑔) and solve two incremental pressures (𝛥𝑝𝑘+1𝑙  and 𝛥𝑝𝑘+1𝑔 ). Although this treatment will inevitably increase the degree of 
freedom of the linear system, the computational cost remains manageable due to the node-based implicit scheme for intermediate 
velocities. This section outlines the three-phase fractional step formulation under isothermal conditions (non-isothermal extensions 
follow analogously) and validates its efficacy through simplified benchmarks.
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Fig. 23. Contours of deviatoric strain simulated by coupled MPM based on FSM with 𝛼𝑓 = 1 × 10−8 Pa−1 at the time instances of 0.75, 3.25, 6.5, and 20 s.

Fig. 24. Contours of deviatoric strain simulated by coupled MPM based on explicit scheme with 𝛼𝑓 = 1 × 10−8 Pa−1 at the time instances of 0.75, 3.45, 7.45, 
and 20 s.

5.1. Three-phase material point method based on fractional step method

First, we split the momentum balance equations of the mixture, liquid, and gas phases, by introducing three intermediate 
velocities, 𝒗∗𝑠 , 𝒗∗𝑙 , and 𝒗∗𝑔 , into the predictors: 

(1 − 𝜙)𝜌 �̇�∗ + 𝜙𝑆 𝜌 �̇�∗ + 𝜙𝑆 𝜌 �̇�∗ = ∇ ⋅ 𝝈′𝑘 − ∇
(

𝑆 𝑝𝑘 + 𝑆 𝑝𝑘
)

+ 𝜌 𝒃, (73a)
𝑠 𝑠 𝑙 𝑙 𝑙 𝑔 𝑔 𝑔 𝑙 𝑙 𝑔 𝑔 𝑚
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Fig. 25. Contours of pore pressure simulated by coupled MPM based on FSM with 𝛼𝑓 = 1 × 10−8 Pa−1 at the time instances of 0.75, 3.25, 6.5, and 20 s.

Fig. 26. Contours of pore pressure simulated by coupled MPM based on explicit scheme with 𝛼𝑓 = 1 × 10−8 Pa−1 at the time instances of 0.75, 3.45, 7.45, and 
20 s.

𝜙𝑆𝑙𝜌𝑙�̇�∗𝑙 = −𝜙𝑆𝑙∇𝑝𝑘𝑙 + 𝜙𝑆𝑙𝜌𝑙𝒃 − (𝜙𝑆𝑙)2
𝜇𝑙
𝑘𝑎𝑘𝑟𝑙

(𝒗∗𝑙 − 𝒗∗𝑠 ), (73b)

𝜙𝑆𝑔𝜌𝑔 �̇�∗𝑔 = −𝜙𝑆𝑔∇𝑝𝑘𝑔 + 𝜙𝑆𝑔𝜌𝑔𝒃 − (𝜙𝑆𝑔)2
𝜇𝑔
𝑘𝑎𝑘𝑟𝑔

(𝒗∗𝑔 − 𝒗∗𝑠 ), (73c)

and the correctors: 
(1 − 𝜙)𝜌𝑠�̇�∗∗𝑠 = −(1 − 𝜙)𝑆𝑙∇(𝛥𝑝𝑘+1𝑙 ) − (1 − 𝜙)𝑆𝑔∇(𝛥𝑝𝑘+1𝑔 ), (74a)

𝜙𝑆 𝜌 �̇�∗∗ = −𝜙𝑆 ∇(𝛥𝑝𝑘+1), (74b)
𝑙 𝑙 𝑙 𝑙 𝑙
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Fig. 27. Evolution of kinematic energy during the progressive slope failure.

Fig. 28. Comparison of progressive slope failures with (a) 𝛼𝑓 = 1 × 10−9 Pa−1, (b) 𝛼𝑓 = 1 × 10−8 Pa−1, (c) 𝛼𝑓 = 1 × 10−7 Pa−1, and (d) 𝛼𝑓 = 1 × 10−6 Pa−1.

𝜙𝑆𝑔𝜌𝑔 �̇�∗∗𝑔 = −𝜙𝑆𝑔∇(𝛥𝑝𝑘+1𝑔 ). (74c)

where 𝛥𝑝𝑘+1𝑙 = 𝑝𝑘+1𝑙 − 𝑝𝑘𝑙  and 𝛥𝑝𝑘+1𝑔 = 𝑝𝑘+1𝑔 − 𝑝𝑘𝑔 . Note that the drag force correction terms are ignored here for simplicity.
Building on the two-phase FSM derivation framework, we substitute the three-phase correctors (Eq. (74)) into the mass 

conservation equation (Eq. (13)) to derive the pressure Poisson equations for the liquid and gas phases:
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𝑆𝑙𝛥𝑡
(

1 − 𝜙
𝜌𝑠

𝑆𝑙 +
𝜙
𝜌𝑙

)

∇2(𝛥𝑝𝑘+1𝑙 ) + 𝑆𝑙𝛥𝑡
1 − 𝜙
𝜌𝑠

𝑆𝑔∇2(𝛥𝑝𝑘+1𝑔 ) − 𝜙
𝜕𝑆𝑙
𝜕𝑝𝑐

�̇�𝑘+1𝑔 −
(

𝜙𝑆𝑙𝛼𝑙 − 𝜙
𝜕𝑆𝑙
𝜕𝑝𝑐

)

�̇�𝑘+1𝑙 =

𝑆𝑙∇ ⋅ 𝒗∗𝑠 + 𝜙𝑆𝑙∇ ⋅ (𝒗∗𝑙 − 𝒗∗𝑠 ),
(75a)

𝑆𝑔𝛥𝑡
(

1 − 𝜙
𝜌𝑠

𝑆𝑔 +
𝜙
𝜌𝑔

)

∇2(𝛥𝑝𝑘+1𝑔 ) + 𝑆𝑔𝛥𝑡
1 − 𝜙
𝜌𝑠

𝑆𝑙∇2(𝛥𝑝𝑘+1𝑙 ) + 𝜙
𝜕𝑆𝑔
𝜕𝑝𝑐

�̇�𝑘+1𝑙 −
(

𝜙𝑆𝑔𝛼𝑔 + 𝜙
𝜕𝑆𝑔
𝜕𝑝𝑐

)

�̇�𝑘+1𝑔 =

𝑆𝑔∇ ⋅ 𝒗∗𝑠 + 𝜙𝑆𝑔∇ ⋅ (𝒗∗𝑔 − 𝒗∗𝑠 ).
(75b)

The weak form is derived using the standard Galerkin method; its detailed formulation is omitted here for brevity. The node-based 
implicit scheme is retained to solve the momentum balance equations to ensure computational efficiency. Following the temporal 
solution sequence, the final discretized form for each time step is outlined below:

(1) Predictor of momentum equations to solve �̇�∗𝑠 , �̇�∗𝑙 , and �̇�∗𝑔 : 

⎡

⎢

⎢

⎣

𝑠 𝑙 𝑔
−𝛥𝑡𝑑𝑙 𝑙 + 𝛥𝑡𝑑𝑙 0
−𝛥𝑡𝑑𝑔 0 𝑔 + 𝛥𝑡𝑑𝑔

⎤

⎥

⎥

⎦𝐼

⎧

⎪

⎨

⎪

⎩

�̇�∗𝑠
�̇�∗𝑙
�̇�∗𝑔

⎫

⎪

⎬

⎪

⎭𝐼

=

⎧

⎪

⎨

⎪

⎩

𝒇 𝑒𝑥𝑡 + 𝒇 𝑖𝑛𝑡

𝒇 𝑒𝑥𝑡𝑙 + 𝒇 𝑖𝑛𝑡𝑙 −𝑑𝑙 (𝒗
𝑘
𝑙 − 𝒗𝑘𝑠 )

𝒇 𝑒𝑥𝑡𝑔 + 𝒇 𝑖𝑛𝑡𝑔 −𝑑𝑔 (𝒗
𝑘
𝑔 − 𝒗𝑘𝑠 )

⎫

⎪

⎬

⎪

⎭𝐼

. (76)

(2) Pressure Poisson equation to solve 𝛥𝑝𝑘+1𝑙  and 𝛥𝑝𝑘+1𝑔

[

𝑙𝑙 +𝑙𝑙 𝑙𝑔 +𝑙𝑔
𝑔𝑙 +𝑔𝑙 𝑔𝑔 +𝑔𝑔

]

{

𝛥𝑝𝑘+1𝑙
𝛥𝑝𝑘+1𝑔

}

=

{

 𝑙𝑠 ⋅ 𝒗∗𝑠 +  𝑙𝑙 ⋅ (𝒗∗𝑙 − 𝒗∗𝑠 )
 𝑔𝑠 ⋅ 𝒗∗𝑠 +  𝑔𝑔 ⋅ (𝒗∗𝑔 − 𝒗∗𝑠 )

}

. (77)

(3) Corrector of momentum equations to solve �̇�𝑘+1𝑠 , �̇�𝑘+1𝑙 , and �̇�𝑘+1𝑔 : 

⎡

⎢

⎢

⎣

𝑠 0 0
0 𝑙 0
0 0 𝑔

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

�̇�𝑘+1𝑠
�̇�𝑘+1𝑙
�̇�𝑘+1𝑔

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

 𝑠𝑙(𝛥𝑝𝑘+1𝑙 ) + 𝑠𝑔(𝛥𝑝𝑘+1𝑔 ) +𝑠�̇�∗𝑠
 𝑙𝑙(𝛥𝑝𝑘+1𝑙 ) +𝑙�̇�∗𝑙
 𝑔𝑔(𝛥𝑝𝑘+1𝑔 ) +𝑔 �̇�∗𝑔

⎫

⎪

⎬

⎪

⎭

. (78)

The expressions of the matrices in the above linear equation sets are presented in Appendix.

5.2. Numerical example: 1D consolidation of unsaturated porous media

We first validate the model by simulating suction-induced consolidation of an unsaturated porous medium within the elastic 
regime. The benchmark replicates with work of Lei et al. [23], who employed an explicit two-phase MPM with a simplified 𝒗𝑠−𝒗𝑙−𝑝𝑙
formulation assuming zero gas pressure (𝑝𝑔 = 0). Here is the model setup: A 1 m tall soil column (Fig.  2) is initialized with 
homogeneous matric suction 𝑝𝑐 = 300 kPa and liquid saturation 𝑆𝑙 = 0.7, governed by a linear soil–water retention curve (SWRC): 
𝑝𝑐 = 106(1−𝑆𝑙) Pa. A suction increase to 500 kPa is applied instantaneously at the top boundary at the beginning of the simulation. 
The material properties are give as follows: solid density 𝜌𝑠 = 2,500 kg∕m3, liquid density 𝜌𝑙 = 1,000 kg∕m3, gas molar mass 
𝑀𝑔 = 0.029 kg/mol, porosity 𝜙 = 0.3, liquid compressibility 𝛼𝑙 = 0.5 × 10−9 Pa−1, Young’s modulus 𝐸 = 10 MPa, Poisson’s ratio 𝜈 = 
0.4, liquid viscosity 𝜇𝑙 = 1 × 10−3 Pa s, gas viscosity 𝜇𝑔 = 1 × 10−5 Pa s, and absolute permeability 𝑘𝑎 = 5 × 10−11 m2. The simulation 
uses a time step size of 1 × 10−4 s under isothermal conditions.

For direct comparison with Lei et al. [23], we first enforce a constant pore gas pressure (𝑝𝑔 = 100 kPa) for a reduced 𝒗𝑠 − 𝒗𝑙 − 𝑝𝑙
formulation. Fig.  29 compares spatial distributions of suction (𝑝𝑐), liquid saturation (𝑆𝑙), porosity (𝜙), and vertical displacement 
at four time instances. The results show that saturation undergoes a gradual reduction from 0.7 to 0.5 due to the suction effect, 
and porosity drops slightly due to consolidation. The spatial distributions of the four variables exhibit strong agreement with Lei 
et al. [23]’s results, validating our model’s accuracy. Note: Porosity in Lei et al. [23] is extrapolated from volumetric strain (𝜀𝑣) by 
𝜙 = (𝜙0 + 𝜀𝑣)∕(1 + 𝜀𝑣), where 𝜙0 is initial porosity.

To advance the analysis, we further simulate the same problem using the three-phase FSM based on 𝒗𝑠−𝒗𝑙−𝒗𝑔−𝑝𝑙−𝑝𝑔 formulation. 
Pore gas pressure in the soil column is allowed to dynamically evolve during consolidation while maintaining a fixed surface gas 
pressure at 100 kPa due to drainage. This framework incorporates saturation-dependent permeability, which is absent in Lei et al. 
[23]’s work, using the following Brooks–Corey model, [49,65]: 

𝑘𝑟𝑙 = 𝑆3+2𝑚
𝑒 , 𝑘𝑟𝑔 = (1 − 𝑆𝑒)2

(

1 − 𝑆1+2𝑚
𝑒

)

, (79)

where 𝑆𝑒 = (𝑆𝑙 − 𝑆𝑙𝑐 )∕(1 − 𝑆𝑙𝑐 ) is the effective saturation, 𝑆𝑙𝑐 is the irreducible water saturation, and 𝑚 is the pore size distribution 
index. 𝑆𝑙𝑐 and 𝑚 are taken as 0 and 0.3, respectively, in this example. Fig.  30 shows the temporal evolution of suction (𝑝𝑐), pore gas 
pressure (𝑝𝑔), and pore liquid pressure (𝑝𝑙) at the bottom of the soil column and the surface displacement, with a comparison between 
the two-phase predictions and three-phase formulations considering permeability modifications. As can be seen, pore gas pressure 
evolves temporally, with great fluctuations when saturation-dependent permeability is active. The excess gas pressure influences 
liquid pressure and soil consolidation rate significantly. This underscores the importance of incorporating pore gas phase transport 
and permeability coupling to fully account for gas compressibility and mobility for accurate prediction of unsaturated soil behavior. 
The three-phase formulation with permeability adjustments also predicts slower consolidation, which is consistent with enhanced 
gas-phase resistance.
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Fig. 29. Comparison of simulation results of the 1D unsaturated soil consolidation problem by the presented FSM-based MPM and explicit MPM in Lei et al. 
[23].

From Fig.  30, oscillations in gas pressure (Fig.  30(b)) and surface displacement (Fig.  30(d)) prompt an investigation into 
whether the three-phase formulation alters wave propagation patterns. To address this, we re-simulate the 1D consolidation case 
in Section 4.1.2 using the three-phase fractional step formulation, incorporating the following gas-phase properties: gas viscosity 
𝜇𝑔 = 1×10−5 Pa s, gas molar mass 𝑀𝑔 = 0.029 kg/mol, and permeability 𝑘𝑎 = 1×10−10 m2. The compressibility for the fluid phase is 
set as 𝛼𝑙 = 0.5 × 10−9 Pa−1. Initial conditions include initial liquid saturation 𝑆𝑙 = 0.9, initial pore pressure at 100 kPa, and average 
gas–liquid system compressibility 𝛼𝑓 ≈ 1×10−6 Pa−1. The saturation-dependent permeability is not considered. The Van Genuchten 
(VG) model is adopted for the SWRC curve [66]: 

𝑝𝑐 = 𝑝0(𝑆
−1∕𝑚
𝑒 − 1)1−𝑚, (80)

where 𝑝0 is the reference pressure and 𝑚 is a material constant, taken as 100 kPa and 0.3, respectively. The VG model ensures 
the liquid saturation evolves within the physical range, i.e., (𝑆𝑙𝑐 , 1]. Fig.  31 shows the temporal evolution of pore liquid pressure, 
pore gas pressure, liquid saturation, and surface displacement, with the following observations. (1) Pressure waves persist in the 
three-phase system but dampen faster than in the two-phase formulations, likely due to energy dissipation from gas–liquid relative 
motion. (2) Gas pressure and liquid saturation exhibit transient fluctuations during consolidation before gradually returning to 
initial states as fluids equilibrate. (3) Gas-phase dynamics significantly influence transient consolidation rates but do not alter 
final soil settlement, highlighting their role in dynamics (vs. static) responses. This analysis confirms that the three-phase FSM 
effectively captures dynamic wave propagation in triphasic porous systems, demonstrating its adaptability for complex fluid–solid 
interactions. The enhanced damping mechanism underscores the importance of phase coupling in transient regimes, even when 
saturation-dependent permeability is neglected.

The above showcases the feasibility of extending the two-phase fractional step formulation to three-phase conditions, supported 
by preliminary validations and illustrative benchmarks. While the results underscore the method’s potential for resolving dynamic 
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Fig. 30. Evolution of (a) suction, (b) pore gas pressure, and (c) pore liquid pressure at the bottom of the soil column, and (d) the surface displacement solved 
by two-phase or three-phase FSMs.

interactions in unsaturated media, comprehensive numerical implementation detail and rigorous validation of the three-phase FSM 
remain beyond the current scope.

6. Concluding remarks

Accurately simulating porous media often requires consideration of fluid compressibility, which becomes particularly significant 
when the fluid phase comprises a highly compressible fluid, such as unsaturated soils and gas hydrate-bearing sediments. This study 
presents an improved semi-implicit fractional step formulation in the material point method (MPM) for porous media, accounting 
for the compressibility of pore fluids under both isothermal and non-isothermal conditions. A series of validation tests is conducted 
to evaluate the performance of the FSM in capturing the key hydro-mechanical and thermo-hydro-mechanical responses involving 
compressible fluids. The main conclusions are summarized as follows:

Firstly, the semi-implicit FSM that considers compressible fluid can effectively capture pressure shock waves within porous media. 
In contrast, the original incompressible FSM fails to account for such dynamic effects, as it neglects the time-dependent pressure 
term in the continuity equation. However, accurate wave characteristics, including amplitude, length, and attenuation, can only 
be captured if the time increment is smaller than the critical time step related to undrained wave propagation; otherwise, the 
wave will be overdamped. Additionally, wave characteristics are closely related to fluid compressibility. For example, the same 
porous media with low fluid compressibility may produce higher-frequency and higher-amplitude pressure waves with faster wave 
attenuation, while a high fluid compressibility may yield the opposite effect. These findings are consistent with theoretical analyses 
based on Fourier Analysis [47]. Similar to mechanical loads, thermal loads can also generate pressure shocks due to instantaneous 
thermal expansion/contraction. Overall, this study demonstrates that the FSM-based semi-implicit MPM is versatile for various fluid 
conditions.
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Fig. 31. Comparison of simulated wave propagation in 1D consolidation problem by three-phase FSM and simplified two-phase FSM.

Although the pressure wave and the wave propagation are inherent phenomena in fluid-infiltrated porous media, such dynamic 
effects may be undesirable in some scenarios, as wave reflection can contaminate results in the region of interest [39]. This is why 
one might opt to assume incompressibility for weakly compressible fluids, such as water. Alternatively, waves can be mitigated 
by introducing artificial damping or by implementing absorbing boundary conditions. Nevertheless, accounting for fluid and solid 
compressibility is crucial in many practical applications. Finally, we discussed the potential extension of the FSM for the real three-
phase porous media, such as unsaturated soil, considering the capillary effect. Future work should focus on the rigorous validation 
and application of the three-phase FSM formulation for non-isothermal unsaturated conditions and multiphase gas–water flows in 
porous media.
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Appendix. Matrices in three-phase fractional step formulation

The components of each matrix in the three-phase fractional step formulation in Section 5 are given as follows: 

(𝜋 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑛𝜋𝑝𝜌𝜋𝑝𝑆𝐼𝑝, 𝜋 = 𝑠, 𝑙, 𝑔, (A.1a)

(𝑑𝜗)𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝(𝜙𝑝𝑆𝜗𝑝)2

𝜇𝜗𝑝
𝑘𝑎𝑝𝑘𝑟𝜗𝑝

𝑆𝐼𝑝, 𝜗 = 𝑙, 𝑔, (A.1b)

(𝒇 𝑖𝑛𝑡)𝐼 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝∇𝑆𝐼𝑝 ∶ 𝝈𝑘𝑝 , (A.1c)

(𝒇 𝑒𝑥𝑡)𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝ℎ

−1
𝑝 �̂�𝑝𝑆𝐼𝑝 +

𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜌𝑚𝑝𝒃𝑝𝑆𝐼𝑝, (A.1d)

(𝒇 𝑖𝑛𝑡𝜗 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜙𝑝𝑆𝜗𝑝𝑝

𝑘
𝜗𝑝∇𝑆𝐼𝑝, (A.1e)

(𝒇 𝑒𝑥𝑡𝜗 )𝐼 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝ℎ

−1
𝑝 �̂�𝜗𝑝𝑆𝐼𝑝 +

𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜙𝑝𝑆𝜗𝑝𝜌𝜗𝑝𝒃𝑝𝑆𝐼𝑝, (A.1f)

(𝜗𝜗)𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝛥𝑡𝑆𝜗𝑝

(1 − 𝜙𝑝
𝜌𝑠𝑝

𝑆𝜗𝑝 +
𝜙𝑝
𝜌𝜗𝑝

)

𝑆𝐼𝑝𝑆𝐽𝑝, (A.1g)

(𝑙𝑔)𝐼𝐽 = (𝑔𝑙)𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝛥𝑡𝑆𝑙𝑝𝑆𝑔𝑝

1 − 𝜙𝑝
𝜌𝑠𝑝

𝑆𝐼𝑝𝑆𝐽𝑝, (A.1h)

(𝜗𝜗)𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝(𝛥𝑡)−1

(

𝜙𝑝𝑆𝜗𝑝𝛼𝜗𝑝 + 𝜙𝑝
𝜕𝑆𝑙𝑝
𝜕𝑝𝑙𝑝

)

𝑆𝐼𝑝𝑆𝐽𝑝, (A.1i)

(𝑙𝑔)𝐼𝐽 = (𝑔𝑙)𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝(𝛥𝑡)−1𝜙𝑝

𝜕𝑆𝑙𝑝
𝜕𝑝𝑙𝑝

𝑆𝐼𝑝𝑆𝐽𝑝, (A.1j)

( 𝜗𝜗)𝐼𝐽 =
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜙𝑝𝑆𝜗𝑝∇𝑆𝐼𝑝𝑆𝐽𝑝, (A.1k)

( 𝜗𝑠)𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝑆𝜗𝑝𝑆𝐼𝑝∇𝑆𝐽𝑝, (A.1l)

( 𝜗𝜗)𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝𝜙𝑝𝑆𝜗𝑝𝑆𝐼𝑝∇𝑆𝐽𝑝, (A.1m)

( 𝑠𝜗)𝐼𝐽 = −
𝑁𝑝
∑

𝑝=1
𝑉𝑝(1 − 𝜙𝑝)𝑆𝜗𝑝𝑆𝐼𝑝∇𝑆𝐽𝑝. (A.1n)

Data availability

Data will be made available on request.
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