
Computer Methods in Applied Mechanics and Engineering 437 (2025) 117794

0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Coupled semi-Lagrangian and poroelastic peridynamics for
modeling hydraulic fracturing in porous media
Zirui Lu a, Fan Zhu b ,∗, Yosuke Higo a, Jidong Zhao c

a Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan
b Department of Urban Management, Kyoto University, Kyoto, Japan
c Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, HKSAR, China

A R T I C L E I N F O

Keywords:
Porous media
Fracture
Fluid-solid interaction
Peridynamics
Leak-off

A B S T R A C T

A novel peridynamics-based computational approach is proposed for modeling hydraulic frac-
turing in porous media with consideration of leak-off effect. The approach features the use of
the semi-Lagrangian peridynamics (PD) formulation which simulates fluid, and the poroelastic
PD formulation which simulates deformation and fracture of porous solid with seepage flow.
A new porous flow equation, which suits in the state-based PD, is derived using Non-local
Differential Operators (NDOs) and based on Darcy’s law. A novel fluid-solid interface (FSI)
model is proposed by coupling the two PD formulations. The FSI considers both the hydraulic
forces applied on the fracture surfaces and the leak-off of fluid into poroelastic media. The
proposed model is verified by benchmark cases including one-dimensional consolidation, 2-
D Mandel’s problem, and constant head permeability test, for which analytical solutions are
available. It is then applied to simulate hydraulic fracturing in porous media with consideration
of the fluid leak-off and benchmarked with the analytical solutions from the Kristianovich-
Geertsma-de Klerk (KGD) model and Carter’s equation. Simulation results demonstrate that the
proposed model can reasonably capture the porous flow and pore pressure variation with solid
deformation, the mass exchange between the fluid in the fracture and porous flow, and the
fracture propagation in the porous media with concurrent leak-off.

1. Introduction

Hydraulic fracturing plays a vital role in many engineering operations such as shale gas exploitation [1,2], Enhanced Geothermal
System (EGS) [3], and abrasive waterjet cutting [4]. A typical hydraulic fracturing process involves injection of pressurized fluid
into a solid which creates and extends fractures. The performance of fracturing directly influences the efficiency of those operations.
On the other hand, hydraulic fracturing needs to be carefully controlled in some engineering operations. In the EGS, the leakage of
fracking water into existing faults may lead to unwanted earthquakes which could be large sometimes [5,6]. In geological carbon
sequestration and wastewater disposal, hydraulic fracturing is to be avoided as it may cause leakage of the storage fluid. Assessment
of potential hydraulic fracturing is therefore a pivotal task. When fracturing geomaterials, the fluid is injected into porous rock
medium and some of the fluid infiltrate into the surrounding rock nearby the fracture. This phenomenon, known as leak-off, is a
critical aspect associated with the fracturing process because it can significantly affect the initiation and propagation of fractures
and the operational performance of hydraulic fracturing [7–9].
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A variety of numerical approaches are developed for simulation and study of hydraulic fracturing process. They can be generally
divided into mesh-based and meshfree methods. The former category mainly includes boundary element method [10–12] and
finite element-based methods [13–16]. Notably, Zhang et al. [11] presented a boundary element model for hydraulic fracturing

here fluid flow is solved by lubrication equation. Cheng et al. [12] introduced a coupled boundary element method and finite
volume method for modeling hydraulic fracturing near a wellbore in impermeable rock. Mohammadnejad and Khoei [16] developed
a coupled approach for modeling hydraulic fractures in porous media based on extended finite element method and cohesive
crack model. Settgast et al. [13] described a coupled finite element/finite volume approach for modeling hydraulic fracturing in
porous media where the leak-off is considered via a sink term given by the Cater’s leak-off method. Nonetheless, the mesh-based
continuum methods often encounter difficulties when significant discontinuities are introduced into the model by complex evolving
fractures. The meshfree methods, such as distinct element method [17–19], smoothed particle hydrodynamics [20,21], material point

ethod [22,23], and peridynamics (PD) [24–29], have received increasing attention for fluid-driven fracture modeling. In particular,
he PD method [30,31] is considered advantageous for addressing problems that involve significant discontinuities, owning to the

nature that it is formulated on integral-differentiation governing equations. The method has been demonstrated its considerable
versatility in simulating fracturing in a variety of materials such as rock [32,33], glass [34], metal [35], and membrane [36]
under different failure modes such as fatigue [37], hydraulic forces [24,26,27], blasting [33], and corrosion [38,39]. The PD theory
was originally developed for modeling fracturing in solids. The original bond-based peridynamics [30] is known to be restricted
to certain materials. The later developed state-based peridynamics (SBPD) [31] has nonetheless offered opportunities to model a
variety of materials. The SBPD can be further classified into ordinary and non-ordinary types where the latter allows convenient
implementation of classical material constitutive models into the PD framework.

Given the advantages of the PD theory in modeling problems involving discontinuities, the theory has been extended for
simulation of hydraulic fracturing problems. Zhang et al. [40] proposed an ordinary state-based peridynamics approach for modeling
hydraulic fracturing where fluid flow is described by the cubic law on crack elements. Qin et al. [41] studied the hydraulic fracture
of layered rock using bond-based PD and modeled the fluid flow in fracture as one-dimensional seepage based on the parallel-plate
flow theory [42]. Coupled methods have been developed where the PD theory is employed for modeling fracturing in solid with other
numerical methods used for simulating fluid flow [27,43–47]. Recently, a novel branch of the PD theory, namely the semi-Lagrangian
formulation [48], was developed to simulate fluid [49,50]. The formulation is also known as the updated-Lagrangian formulation.

he semi-Lagrangian formulation is adaptive to large deformation of material, as the neighborhood of each material point is updated
t every time step and material response is calculated based on current configuration instead of the initial configuration. The Navier–
tokes equations is solved non-locally using the PD differential operator [51,52], and the fluid-solid interaction can be established
y proper coupling between the semi- and total-Lagrangian formulations of PD [53]. Two types of non-local operators have been

developed for solving partial differential equations, namely the peridynamic differential operator (PDO) and the non-local differential
perator (NDO) [54]. The PDO was developed as a class of antisymmetric non-local operators derived from non-local balance

laws [55–58]. This operator assumes that the function it acts upon is antisymmetric, and both the action and reaction along the
bond are considered. Its performance, however, was found to deteriorate when with non-uniform material point discretization [54].
The NDO [59] is derived from the Taylor series expansion of non-local interpolation. It computes the gradient and divergence at
he material point as a function of all bonds within a horizon. It has been proved to converge to the local gradient/divergence
perator as the horizon approaches zero [59]. Both PDO and NDO are defined without partial derivatives with respect to space,

offering unique advantage in solving non-local diffusion problems. NDO has been successfully applied in modeling fluid [49], and
subsequently, a coupled semi- and total-Lagrangian approach was proposed [60] for modeling hydraulic fracturing in impermeable
solids. Hence, both the fluid and solid can be explicitly modeled within the PD framework. For porous media with seepage flow, the
poroelastic peridynamic model has been progressively developed [24,26,61–67]. Katiyar et al. [61] presents a peridynamic model
to simulate the porous flow in porous media without considering the mechanical behavior. Turner [63] proposed a SBPD model
for porous media based on mixture theory, where the interaction between the fluid and solid phases is explicitly considered. The
model implements effective stress principle to capture the fluid induced deformation without accounting for crack initiation. Ouchi
t al. [24] developed a fully coupled porous flow and geomechanics model that simultaneously considers both porous flow and
racture flow, along with crack propagation. In this model, the fracture fluid pressure is applied normally to the fracture surface by
odifying the force density. The deformation and damage of peridynamic poroelastic material are modeled under various conditions

n literature [26,64–67]. However, the existing peridynamics-based methods have dealt with hydraulic fracturing in simplified ways.
It was a common approach to directly apply hydraulic pressures on the damaged material points to simulate pressurized fluid in the
fractures without explicit simulation of the fluid flow. In most studies, the solid was assumed to be impermeable which only suits
in the condition that injection rate is much higher than the rate of fluid infiltration into the porous media. To rigorously model the
hydraulic fracturing process in porous media, it is demanded that a numerical model can concurrently simulate the fluid flow inside
or outside the fractures, the leak-off and flow in the porous media, as well as the mass exchange between fluid in the fracture and
the flow in porous media.

In this paper, a novel peridynamics-based computational approach is proposed for modeling hydraulic fracturing in porous solid.
he approach features the coupling of semi-Lagrangian and poroelastic formulations of PD for modeling fluid and porous solid,
espectively, in the framework of state-based PD. The explicit modeling of fluid naturally captures fluid flow in complex fracture
eometry. For the poroelastic PD formulation, we derive the governing equation for the porous flow based on the NDO and Darcy’s

law. A new fluid-solid interface (FSI) model is proposed to couple the two formulations while allowing mass transfer from fluid
material points into the porous medium. The proposed approach takes into account the fluid leak-off during the fracturing process,
and is fully formulated in the PD framework which allows convenient implementation. The mass loss of fracturing fluid can be
2
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quantitatively assessed in the proposed approach. In the following section, the formulations of the poroelastic PD model, the semi-
agrangian fluid model, and the FSI model are described. Validations of the model and numerical examples are given in Section 3,

with discussion and conclusions presented in Section 4.

2. Coupled fluid-poroelastic peridynamics formulation

2.1. Peridynamics theory for solids

In peridynamics, the continuum domain is discretized into a set of Lagrangian elements known as material points, each endowed
with specific properties and initial conditions. For a given material point 𝒙, a virtual spherical space, denoted as the family 𝛺𝒙, is
defined by a radius termed horizon 𝛿 (Fig. 1). All material points within 𝛺𝒙 are considered neighbors of 𝒙, and a peridynamic bond
is established between 𝒙 and each of its neighbors to characterize the interactions among them. The generalized equation of motion
of state-based PD is given by

𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫𝛺𝒙

[

𝐓(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ − 𝐓(𝒙′, 𝑡)⟨𝒙 − 𝒙′⟩
]

𝑑 𝑉𝒙′ + 𝐛(𝒙, 𝑡) (1)

where 𝜌(𝒙) represents the density of material point 𝒙, 𝒖 denotes displacement, 𝐛 represents body force density and 𝑑 𝑉𝒙′ denotes the
volume of neighbor point 𝒙′. In state-based PD, the force state 𝐓⟨𝒙′ −𝒙⟩ describes the force acting on the vector ⟨𝒙′ −𝒙⟩ originating
from material point 𝒙 and pointing to a neighbor point 𝒙′. For the linear peridynamic solid (LPS) material model, which is a non-local
analogy to the linear elastic material model, the force state is calculated by

𝐓⟨𝒙′ − 𝒙⟩ = 𝑡 𝐘
‖𝐘‖

(2)

where 𝑡 is the scalar force state representing the magnitude of bond force density, and 𝐘 is the deformation vector given by the
urrent configuration. The scalar force state [24,31] is defined as

𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
(

𝐾 − 𝜇
3

)

𝜗⟨𝒙⟩

𝑚̄⟨𝒙⟩
𝜔⟨‖𝝃‖⟩‖𝝃‖ + 8𝜇

𝑚̄⟨𝒙⟩
𝜔⟨‖𝝃‖⟩e𝑑 for 2D,

3𝐾 𝜗⟨𝒙⟩
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩‖𝝃‖ + 15𝜇
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩e𝑑 for 3D

(3)

where 𝐾 and 𝜇 represent bulk modulus and shear modulus, respectively, and 𝝃 is the bond vector from material point 𝒙 to neighbor 𝒙′
n the reference configuration. Note that the 2D condition refers to the plane strain condition and all subsequent simulations assume
he plane strain condition. Hydraulic fracturing under plane stress condition is considered uncommon in engineering practice. The

nfluence function 𝜔 is taken as 𝜔 = 𝑒−
(

‖𝝃‖
0.4𝛿

)2

, which is known as the Gaussian type and is reported to improve accuracy and
numerical stability [68]. The weighted volume 𝑚̄ and dilatation 𝜗 are defined by

𝑚̄⟨𝒙⟩ = ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩‖𝝃‖2𝑑 𝑉𝒙′ (4)

𝜗⟨𝒙⟩ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
𝑚̄⟨𝒙⟩ ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩‖𝝃‖e𝑑 𝑉𝒙′ for 2D

3
𝑚̄⟨𝒙⟩ ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩‖𝝃‖e𝑑 𝑉𝒙′ for 3D
(5)

where e is the scalar extension state of a bond composed of an isotropic part e𝑖 and a deviatoric part e𝑑 , which are expressed by
= e𝑖 + e𝑑 = ‖𝐘‖ − ‖𝝃‖ and e𝑑 = e − 𝜗⟨𝒙⟩‖𝝃‖

2 for 2D, e − 𝜗⟨𝒙⟩‖𝝃‖
3 for 3D, respectively.

2.2. Poroelastic PD model

The poroelastic PD model is intended for simulation of single-phase flow within a porous medium, where both the solid and
fluid phases coexist at each material point. The mass conservation equation for the porous flow is expressed as

𝜕
𝜕 𝑡

(

𝜌𝑓 (𝒙, 𝑡)𝜙(𝒙, 𝑡)
)

= −∇ ⋅
(

𝜌𝑓 (𝒙, 𝑡)𝒒(𝒙, 𝑡)
)

+ 𝑅(𝒙, 𝑡) (6)

where 𝜌𝑓 is the density of the fluid phase, 𝜙 represents the porosity of the porous medium, 𝒒 represents the volumetric flux, 𝑅
enotes the mass change rate of source/sink, ∇⋅ denotes the divergence operator. According to Darcy’s law, the volumetric flux is

computed by

𝒒(𝒙, 𝑡) = − 𝑘
𝜇̄
∇⊗ 𝛷(𝒙, 𝑡) (7)

where 𝑘 is the intrinsic permeability of the porous medium, 𝜇̄ is the dynamic viscosity of fluid, 𝛷 is the potential field, ∇⊗ is
the gradient operator. In the present study, the potential 𝛷 takes into account only the pressure head and gravity head, with the
assumption that porous flow is slow so that the velocity head is negligible. To derive the peridynamic form of the volumetric flux,
3
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Fig. 1. Material points, family, and horizon in peridynamics.

the NDOs [31,59] are adopted. The NDOs approximate the gradient and divergence operators in the form of

∇⊗ 𝐀 = ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩(𝛥 ⋅ 𝐀)⊗
(

𝐊−1
𝒙 𝝃

)

𝑑 𝑉𝒙′ (8)

∇ ⋅ 𝐀 = ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩(𝛥 ⋅ 𝐀) ⋅ (𝐊−1
𝒙 𝝃)𝑑 𝑉𝒙′ (9)

𝐊𝒙 = ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩𝝃 ⊗ 𝝃𝑑 𝑉𝒙′ (10)

where 𝐀 is an arbitrary scalar, vector, or tensor field, 𝛥 ⋅ 𝐀 = 𝐴𝑥′ − 𝐴𝑥 is the difference operator. 𝐊𝒙 is defined as the shape tensor
of material point 𝒙. Substituting Eq. (8) into Eq. (7) yields the peridynamic form of volumetric flux as

𝒒(𝒙, 𝑡) = − 𝑘
𝜇̄ ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩(𝛥 ⋅𝛷)⊗ (𝐊−1
𝒙 𝝃)𝑑 𝑉𝒙′ (11)

Note that the derived volumetric flux equation directly takes the classical material intrinsic permeability as an input parameter,
liminating the need to find an equivalent micro-permeability as done in the bond-based PD. Applying the NDO expressed by Eqs. (9)

to (6), the continuity equation of porous flow is obtained as
𝜕
𝜕 𝑡

(

𝜌𝑓 (𝒙, 𝑡)𝜙(𝒙, 𝑡)
)

= −𝜌𝑓 ∫𝛺𝒙

𝜔⟨‖𝝃‖⟩(𝛥 ⋅ 𝒒) ⋅ (𝐊−1
𝒙 𝝃)𝑑 𝑉𝒙′ + 𝑅(𝒙, 𝑡) (12)

Solving Eq. (12) gives the updated pore fluid density in the porous medium which is used to calculate the hydraulic pressure via an
quation of State (EoS). The pore water pressure term is incorporated into the isotropic part of the scalar force state following [24,63]

and the Eq. (3) is modified to the following form for poroelastic material:

𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2((𝐾 − 𝜇
3 )𝜗⟨𝒙⟩ + 𝛼 𝑝)
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩‖𝝃‖ + 8𝜇
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩e𝑑 for 2D.

3(𝐾 𝜗⟨𝒙⟩ + 𝛼 𝑝)
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩‖𝝃‖ + 15𝜇
𝑚̄⟨𝒙⟩

𝜔⟨‖𝝃‖⟩e𝑑 for 3D,
(13)

where 𝛼 represents Biot’s coefficient, which was introduced by Biot [69] as a supplement to the original effective stress principle.
Biot’s coefficient is defined as the ratio of the fluid volume change to the bulk volume change, and it controls the extent to which
pore pressure contributes to the total stress in relation to the effective stress. 𝛼 typically ranges from 0 to 1. 𝑝 is the pore water
pressure which is positive in compression. Tait’s EoS [70] is adopted to compute pore water pressure in porous media and hydraulic
ressure of fluid. The EoS is expressed by 𝑝 = 𝐾𝑓

𝛾 [( 𝜌𝑓
𝜌𝑓0

)𝛾 − 1] + 𝑝𝑏 where 𝐾𝑓 is the bulk modulus, 𝜌𝑓0 and 𝜌𝑓 are the initial and
current fluid density, respectively, 𝛾 is a coefficient, 𝑝𝑏 is the background pressure. In the subsequent simulations where water is
modeled, the 𝐾𝑓 has been taken as 22 MPa (note that it is taken much smaller than the bulk modulus for better numerical stability
although it results in higher compressibility), 𝛾 is taken to be 7.5 and the background pressure is set to zero.

To consider the influence of deformation on porous flow, the porosity is updated by an iterative scheme following [24,71]:

𝜙𝑛+1(𝒙) = 𝜙𝑛(𝒙)(1 − 𝐶𝑟𝛥𝑝) + 𝛼(1 − 𝜗(𝒙))(𝐶𝑟𝛥𝑝 + 𝛥𝜗(𝒙)) + 𝛥𝜌𝐴𝑟𝑡𝑖𝑓 𝑖𝑐 𝑖𝑎𝑙𝜙𝑛(𝒙)
𝜌𝑓 (𝒙, 𝑡)

(14)

where 𝑛 represents the time step, 𝐶𝑟 denotes the compressibility of matrix material. Note that the formulation described above
is a fully coupled hydro-mechanical formulation for poroelastic material where the mutual influence between the hydraulic field
nd mechanical deformation is incorporated. Note that the last term in Eq. (14) considers the influence of mass change caused by

numerical stabilization algorithm (e.g., density smoothing) introduced in Section 2.5 on the porosity.
4
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2.3. Damage model

To simulate crack initiation and propagation, the peridynamic bonds between material points are allowed to break. In this study,
the critical stretch damage model [72,73] is adopted for modeling 2D brittle materials. The model assumes that a bond breaks
irreversibly upon reaching a critical strain level given by

𝑠0 =

√

𝐺𝑐
(4𝑘′ − 8𝜇)𝜒 ′ + 8𝜇 𝜒 (15)

where 𝐺𝑐 represents critical energy release rate, 𝑘′ is the two-dimensional bulk modulus, 𝜒 and 𝜒 ′ are the certain parameters of
unctions of the horizon size [74]. 𝜒 and 𝜒 ′ are set to 0.239𝛿 and 0.804𝛿 respectively, and 𝑘′ = 𝐸∕[2(1 −𝑣)] for plane strain condition.
or each peridynamic bond, a bond status variable 𝑔 is defined as either 0 or 1, representing intact or broken status, respectively.
t each material point, the damage 𝜙̃ is defined by

𝜙̃(𝒙) = 1 −
∫𝛺𝒙

𝑔⟨𝝃⟩𝑑 𝑉𝒙′
∫𝛺𝒙

𝑑 𝑉𝒙′
(16)

The definition of damage at material points explicitly quantifies the extent of damage and offers a straightforward index for
onitoring initiation and propagation of cracks.

2.4. Semi-Lagrangian formulation for fluid

The classical PD theory is based on the total-Lagrangian formulation with an assumption of small deformation in the material.
For modeling materials that experience large deformation (such as fluids), the semi-Lagrangian PD formulation [48–50,59,75],
which is also referred to as Eulerian PD or updated Lagrangian formulation, was developed and proved effective. This formulation
dynamically updates the neighborhood at each material point in response to material deformation, and the material response is
assessed based on the current (i.e., deformed) configuration. As illustrated in Fig. 2, the neighborhood 𝐵𝒙 of a peridynamic material
point in semi-Lagrangian formulation does not change its shape with deformation. Instead, the neighboring points are updated at
ach time step. The equation of motion in the semi-Lagrangian PD is expressed by

𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫𝐵𝒙

[

𝐓(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ − 𝐓(𝒙′, 𝑡)⟨𝒙 − 𝒙′⟩
]

𝑑 𝑉𝒙′ + 𝒃(𝒙, 𝑡) (17)

which has a similar form to the total-Lagrangian PD except that the spatial range of integration is changed from 𝛺𝒙 to 𝐵𝒙, indicating
constant update of the neighborhood. The force state is computed referring to the non-ordinary form [31] as

𝐓(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ = 𝜔⟨‖𝐘‖⟩𝜎𝒙𝐌−1
𝒙 𝐘 (18)

where 𝜎𝒙 represents the Cauchy stress tensor, 𝐌𝒙 denotes the shape tensor in the current configuration which should be updated
at each time step by

𝐌𝒙 = ∫𝐵𝒙

𝜔⟨‖𝐘‖⟩𝐘⊗ 𝐘𝑑 𝑉𝒙′ (19)

The Navier–Stokes equations are transformed into the following non-local integral form by using the NDO [59,60] and are solved
t each material point:

𝐷 𝜌
𝐷 𝑡 = −𝜌∫𝐵𝒙

𝜔⟨‖𝐘‖⟩𝒗(𝐘)(𝐌−1
𝒙 𝐘)𝑑 𝑉𝒙′ (20)

𝜌𝐷𝒗
𝐷 𝑡 = ∫𝐵𝒙

𝜔⟨‖𝐘‖⟩(𝝈𝒙𝐌−1
𝒙 + 𝝈𝒙′𝐌−1

𝒙′ )𝐘𝑑 𝑉𝒙′ + 𝐛(𝒙, 𝑡) (21)

where 𝒗 represents the velocity of a material point, 𝒗⟨𝑌 ⟩ denotes the relative velocity vector of a deformed bond. Solving the
continuity equation Eq. (20) updates the density of fluid material points which can be used subsequently to calculate pressure. The
Eq. (21) is equivalent to the equation of motion given in Eq. (17). To improve numerical stability of the fluid simulation, a density
smoothing algorithm, together with artificial viscosity and particle shifting technique are used to mitigate the pressure oscillation and
to prevent particle clustering issue [60]. These techniques are commonly used in smoothed particle hydrodynamics. For validation
of the semi-Lagrangian PD approach in modeling fluids, a series of benchmark cases have been presented in an earlier work [60]
where interested readers can refer to. Note that the formulations presented in this section are used for modeling free-flowing fluid
nd the flow in fractures. The flow inside the porous medium is handled by the poroelastic PD model as described in Section 2.2.

2.5. Fluid-solid interface

In the proposed computational scheme, the fluid outside porous media (including fluid in the fracture) is modeled by solving
he Navier–Stokes equations in a semi-Lagrangian PD formulation, whereas the porous flow, which is governed by Darcy’s law, is
andled within the framework of a poroelastic PD formulation. It is therefore critical that a proper fluid-solid interface (FSI) model
e developed to consider the leak-off of fluid into the porous medium. In other words, the mass exchange from the fluid inside the
racture towards the porous medium must be considered. In addition, the hydraulic pressure exerted by the fluid on the fracture
5
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Fig. 2. Illustration of the neighborhood updating in semi-Lagrangian formulation.

surface must be accounted for in the FSI so that the propagation of fracture driven by the pressurized fluid can be captured. The
FSI model proposed herein couples the semi-Lagrangion fluid model with the poroelastic model in PD. The model consists of two
algorithms. One to quantify the interface forces between fluid and the poroelastic solid and the algorithm follows a previous work
by Yang et al. [60]. The other one, which is first proposed in this work, accounts for the mass exchange between the fluid in the
fracture and the porous flow (i.e., the leak-off process).

The FSI model is developed based on the concept of fictitious point. At each time step, the neighboring points of all fluid points
re updated under the semi-Lagrangian scheme. If solid points are present within the neighborhood of a fluid point, that fluid point
s identified as an FSI fluid point. This is illustrated in Fig. 3. The master point, which is a fluid point, has neighbors in both the fluid

domain and the poroelastic solid domain. In this case, the solid neighboring points (i.e., the set 𝐵𝑠) are treated as fictitious fluid
points. The forces between the master point and the fictitious fluid points (i.e., forces on bonds that cross the fluid-solid interface)
can be conveniently calculated following the fluid model by

𝐓𝑖 = 𝜔⟨‖𝐘‖⟩𝝈𝒙𝐌−1
𝒙 𝐘 (22)

which is in the same form as Eq. (18). This interaction force is only calculated on the fluid material points and a reaction force with
he same magnitude is applied on the neighboring solid points (i.e., fictitious fluid points). The shape tensor of fluid points at the
nterface, 𝐌𝒙, is constructed with the information of both the real fluid points and the fictitious fluid points, as expressed by

𝐌𝒙 = ∫𝑩𝑠

𝜔⟨‖𝐘‖⟩𝐘⊗ 𝐘𝑑 𝑉𝒙′ + ∫𝑩𝒔

𝜔⟨‖𝐘‖⟩(1 − 𝜙̃𝒙′ )𝐘⊗ 𝐘𝑑 𝑉𝒙′ (23)

where 𝐵𝑠 denotes the set of neighboring fictitious fluid points. When computing the fictitious point part of interaction force, the
damage 𝜙̃(𝒙) at the solid point is considered to allow the fluid to enter the damaged solids. In addition, to prevent the fluid points’
infiltration into the intact solids, a repulsive force 𝑻 𝑟 is implemented from only the immediate contact layer of the solids [60].

𝐓𝑟 = −𝐶𝑅𝐹 𝑐
2
0𝑓 (𝜂)

(

1 − ‖𝐘‖
𝛥𝑥

)

𝐘
‖𝐘‖2

(24)

where 𝐶𝑅𝐹 is a scaling factor that controls the magnitude of repulsive force to prevent unphysical penetration, 𝑐0 represents the
bulk wave speed, 𝑓 (𝜂) is defined in the form of B-spline kernel function. The total force on a bond crossing the interface is the sum
of 𝑻 𝑖 and 𝑻 𝑟, as expressed in Eqs. (22) and (24). The application of a repulsive force 𝑻 𝑟 also prevents overlapping between fluid
points and completely damaged solid points. In the present study, the horizon at the FSI is chosen to be 2.5 times the element size.
Note the horizon at FSI should be selected for the best performance of the FSI model. A too small horizon tends to cause intrusion
of fluid material points into the solid domain, whereas a too large horizon imposes strong repulsion between the fluid points and
adjacent solid points which may produce an unrealistic ‘‘gap’’ at the FSI. By experience, it is beneficial to select an FSI horizon
consistent with the horizon used for solid and fluid. For the solid, a horizon of 2 to 3 times element size is commonly used with
a balanced consideration between capturing crack branching and computational cost. For fluid, a horizon around 2 times element
size is a common practice. In the present study, the horizons for both solid and fluid are set to be 2.5 times the element size and
the same horizon is employed for the FSI model.

To model the leak-off occurring at the FSI, the fluid mass is allowed to transfer from fluid material points into the poroelastic
solid. The outflowing volumetric flux on the fluid point is calculated based on the pressure gradient using the NDOs in the current
configuration, as given by

𝒒(𝒙, 𝑡) = − 𝑘
𝜇̄ ∫𝐵𝑠

𝜔⟨‖𝐘‖⟩(𝛥 ⋅ 𝑝)⊗ (𝐌−1
𝒙 𝐘)𝑑 𝑉𝒙′ (25)

Eq. (25) is only applicable at the FSI on the fluid material points when they possess at least one neighboring point in the poroelastic
medium. The leak-off is driven by the pressure gradient between the fluid points and the fictitious fluid points. The volumetric flux
is computed with consideration of all neighbors including both the actual and fictitious fluid points. This helps to prevent obtaining
irregular flow pattern due to lack of neighbors. In the equation, the intrinsic permeability 𝑘 and dynamic viscosity 𝜇̄ for the solid
are adopted.
6
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Fig. 3. Illustration of fluid-solid interface model.

The density change of a fluid point due to the leak-off is given by
𝜕
𝜕 𝑡 𝜌(𝒙, 𝑡) = −𝜌∫𝐵𝒔

𝜔⟨‖𝐘‖⟩(𝛥 ⋅ 𝒒) ⋅ (𝐌−1
𝒙 𝐘)𝑑 𝑉𝒙′ (26)

It is slightly different from Eq. (12) as the current configuration is considered. Moreover, since the calculation is carried out on
ure fluid phase, the porosity in Eq. (12) is set to a constant value of 1.0. The density change as calculated by Eq. (26) is further

transformed into a mass change of the fluid point through:

𝛥𝑚(𝒙) = 𝛥𝜌𝑉𝒙 (27)

where 𝛥𝑚(𝒙) denotes the mass change of fluid material point 𝒙. Implementation of Eq. (26) also requires the shape function for the
fictitious fluid points (i.e., poroelastic material points within the horizon of fluid points at the FSI). They are calculated by

𝐌𝒙 = ∫𝑩𝑠

𝜔⟨‖𝝃‖⟩𝝃 ⊗ 𝝃𝑑 𝑉𝒙′ + ∫𝑩𝑠

𝜔⟨‖𝐘‖⟩𝐘⊗ 𝐘𝑑 𝑉𝒙′ (28)

where 𝑩𝑠 and 𝑩𝑠 represent the set of solid point neighbor and fluid point neighbor, respectively. The shape function of fictitious
points is obtained from two terms. The first term, which only involves the poroelastic material points, is calculated using the initial
configuration. The second term, which involves the fluid points, is calculated using the current configuration and needs to be updated
at each time step.

In the proposed FSI model, when the leak-off is prominent, the fluid material points are allowed to vanish when they lose all the
mass they hold. To avoid potential numerical instability arising from large mass difference among the fluid material points, points
that hold very small mass will be removed from the simulation with their mass re-distributed to neighboring points. In this study
we set a threshold at 10% of the original mass of any material point, under which a fluid point will be removed and its mass is
distributed to neighboring points by

𝛥𝑚(𝒙′) = 𝑚(𝒙)
𝜔⟨‖𝐘‖⟩𝑑 𝑉𝒙′

∫𝑩𝑠
𝜔⟨‖𝐘‖⟩𝑑 𝑉𝒙′

(29)

where 𝛥𝑚(𝒙′) is the mass distributed to the neighboring point 𝒙′ and 𝑚(𝒙) is the remaining mass of point 𝒙 before its removal.
For the poroelastic material points at the FSI, in analogy to Eqs. (25) and (26), the flux equation and continuity equation possess

the form of

𝒒(𝒙, 𝑡) = − 𝑘
𝜇̄

(

∫𝑩𝑠

𝜔⟨‖𝝃‖⟩(𝛥 ⋅𝛷)⊗ (𝑀−1
𝒙 𝝃)𝑑 𝑉𝒙′ + ∫𝑩𝑠

𝜔⟨‖𝐘‖⟩(𝛥 ⋅ 𝑝)⊗ (𝑀−1
𝒙 𝐘)𝑑 𝑉𝒙′

)

(30)

𝜕
𝜕 𝑡 (𝜌𝑓𝜙) = −𝜌𝑓

(

∫𝑩𝑠

𝜔⟨‖𝝃‖⟩(𝛥 ⋅ 𝒒) ⋅ (𝑀−1
𝒙 𝝃)𝑑 𝑉𝒙′ + ∫𝑩𝑠

𝜔⟨‖𝐘‖⟩(𝛥 ⋅ 𝒒) ⋅ (𝑀−1
𝒙 𝐘)𝑑 𝑉𝒙′

)

(31)

Note that the second term on the right hand side of Eq. (31) describes the rate of change in pore fluid density for poroelastic material
points at the FSI. This terms indicates the fluid mass that is transferred from fluid to poroelastic medium. It shares the same form
s the right hand side of Eq. (26) so that mass conservation is ensured when fluid flows into the porous medium.

2.6. Numerical stabilization and computational algorithm

NDOs are implemented in this research for gradient and divergence computation, which relying heavily on the shape tensor
that is computed from the bond vectors linking each material point to its neighbors. The shape tensor is significantly impacted by
its position within the material, particularly at the boundary compared to the interior. It may even be non-reversible if there are
few neighbors within the horizon. This issue may lead to numerical error in the calculation for boundary particles [57,59,76]. The
potential error may manifest as pressure oscillations because NDOs are used for the hydraulic part of the poroelastic model. To
mitigate the pressure oscillations, a pore fluid density smoothing algorithm is utilized at the boundary, fracture surface and FSI in
7
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the poroelastic medium. For a poroelastic solid point, its pore fluid density is smoothed by:

𝜌𝑓 (𝒙, 𝑡) =
∫𝑩𝑠

𝜔⟨‖𝝃‖⟩𝜌𝑓 (𝒙′, 𝑡)𝑑 𝑉𝒙′ + ∫𝑩𝑠
𝜔⟨‖𝝃‖⟩𝐶 𝜌𝑓 (𝒙′, 𝑡)𝑑 𝑉𝒙′

∫𝑩𝑠
𝜔⟨‖𝝃‖⟩𝑑 𝑉𝒙′ + ∫𝑩𝑠

𝜔⟨‖𝝃‖⟩𝐶 𝑑 𝑉𝒙′
(32)

where 𝑩𝒔 and 𝑩𝑠 refer to the set of poroelastic neighbor point and fluid neighbor point, respectively, as illustrated in Fig. 3. 𝜌𝑓
denotes the pore fluid density in the poroelastic medium or fluid density of the fluid material points. 𝐶 is a coefficient which
controls the weight of fluid points in the smoothing operation. The coefficient affects the rate of fluid infiltration into porous
medium, independent of the material’s permeability. By adjusting 𝐶, the interaction between fluid and poroelastic materials can be
finely controlled to either dampen or enhance the infiltration. Making 𝐶 sufficiently small minimizes the numerical effect on the
infiltration process, which would be favorable for study of the transient response of fluid infiltration. Nonetheless, in scenarios where
the permeability is low, achieving a steady state porous flow can be computationally demanding due to the inherent resistance of the
poroelastic material to fluid infiltration. This often results in prolonged simulation time as the system slowly approaches equilibrium.
Based on our experience, a unity value of 𝐶 can significantly accelerate the establishment of a steady state porous flow and it has
been adopted in the present study. It should be noted that applying Eq. (32) to the poroelastic material points at the FSI may in fact
create or remove pore fluid mass. To ensure mass conservation, for any point x, the pore fluid density change, 𝛥𝜌𝑓 (𝒙, 𝑡), brought by
he smoothing algorithm needs to be balanced by modifying the fluid density at its neighboring points. After obtaining the smoothed
ore fluid density using Eq. (32), the corresponding increase/decrease in pore fluid mass at a point is compensated at its neighboring

points for the purpose of fluid mass conservation.
The computational algorithm for modeling the fluid, porous medium, and coupling of the semi-Lagrangian and poroelastic PD

formulations are summarized in “Algorithm”.

Algorithm: Coupled semi-Lagrangian and poroelastic peridynamics algorithm
1 if 𝑡 = 0 then
2 Initialize material points;
3 Establish neighbor list and bonds in reference configuration;
4 Compute shape tensor 𝐊 for poroelastic points (10);
5 while 0 < 𝑡 and 𝑡 ≤ 𝑡𝑒𝑛𝑑 do
6 Update neighbor list and bonds in current configuration for fluid and FSI;
7 Update velocity for half step, 𝒗𝑛+1∕2 = 𝒗𝑛 + 1∕2 ∗ 𝑑 𝑡 ∗ 𝒂;
8 Update position to n+1 step: 𝐘𝑛+1 = 𝐗𝑜 + 𝐔𝑛 + 𝑑 𝑡 ∗ 𝒗𝑛+1∕2;
9 Implement bond damage 𝜙̃ and update bond status 𝑔 (15), (16);
10 Compute shape tensor 𝐌 for fluid and fictitious fluid points (19), (23), (28);
11 Compute volumetric flux 𝒒 (7), (25), (30);
12 Solve continuity equation for density change (12), (26), (31);
13 Update fluid point mass 𝑚 (27), pore pressure 𝑝 (EoS), and porosity 𝜙 (14);
14 Remove and redistribute small fluid particles (29);
15 Activate fluid density smoothing (32);
16 Solve Navier-Stokes equations (20), (21);
17 Compute force state and FSI force(13), (18), (22), (24);
18 Solve equation of motion (1), (17);
19 Update velocity and acceleration to n+1 step;
20 𝑡 = 𝑡 + 𝛥𝑡, 𝑛 = 𝑛 + 1;

3. Numerical simulations

In this section we present numerical simulations for validation of the proposed coupled fluid-poroelastic PD computational
approach. First, a one-dimensional consolidation and a two-dimensional Mandel’s problem are simulated for validation of the porous
flow simulation and associated deformation. Then, simulation of a constant head test is presented to verify the accuracy of the FSI
interface in terms of mass transfer from fluid to poroelastic domain. Lastly, simulations of hydraulic fracturing in porous medium are
presented to demonstrate the capacity of the computational approach in capturing crack propagation with leak-off. The simulation
results are compared with analytical solutions.

3.1. One-dimensional consolidation

The Terzaghi’s one-dimensional (1-D) consolidation theory [77] has been widely used to predict how a saturated soil column
consolidates over time. The 1-D consolidation problem assumes a constant load applied on a homogeneous soil column (i.e., a porous
media). The excess pore water pressure generated by the load gradually dissipates with drainage of water from the upper end of the
oil column, leading to volume reduction of the soil column. Here, we simulate the classical 1-D consolidation problem and compare

the results with the analytical solution with respect to the dissipation process of excess pore water pressure and the corresponding
8
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Fig. 4. 1D consolidation model.

Fig. 5. Excess pore pressure distribution (left to right: time = 0, 1, 5, 10, 20, 40 s).

degree of consolidation. As shown in Fig. 4, the numerical model simulates a 50-meter-tall column of a poroelastic material, with
a 3-meter thick fixed impermeable boundary at the bottom and a 3-meter thick drainage boundary at the top. Applying a finite
thickness boundary layer is due to the difficulty of applying traction type boundary conditions in peridynamics and the thickness is
selected to be the size of the horizon. The upper boundary layer is modeled with the same material points as for the column, whereas
the lower impermeable boundary is modeled with the classical linear peridynamic solid model (i.e., no pore fluid involved), so that
the model simulates a one-way drainage condition. The column is assumed to be fully saturated with water. A constant downward
body force density is applied at the upper boundary as the external load, which induces a uniformly distributed initial excess pore
water pressure of 𝑝0 = 6 × 103 k Pa in the column before the start of drainage. For simplicity, gravity is not considered in the
simulation. The intrinsic permeability, 𝑘, of the poroelastic material is set to 1.02 × 10−11 m2, and the dynamic viscosity 𝜇̄ of water
is 1 × 10−3 Pa s. These correspond to a hydraulic conductivity 𝐾̄ of 1 × 10−4 m/s in the porous medium. The bulk modulus and shear
modulus of the porous material is 5 GPa and 4 GPa, respectively. The initial porosity of the column is set at 0.306.

After the external load is applied, the excess pore pressure gradually gets stabilized and uniformly distributed. In the present
simulation, 10 s is found sufficient to reach a uniformly distributed excess pore pressure. The drainage boundary at the top is then
activated where excess pore water pressure is fixed at zero. Assume the time to be zero when the drainage boundary is activated,
the subsequent excess pore water pressure distribution at different times is obtained as shown in Fig. 5.

The analytical solution of the 1-D consolidation problem [77] is given by

𝑝 =
𝑚̂=∞
∑

𝑚̂=0

[

2𝑢0
𝑀

sin
(𝑀 𝑧

𝐻

)

]

𝑒−𝑀
2𝑇𝑣 (33)

where 𝑚̂ is an integer and 𝑀 = 𝜋
2 (2 𝑚+ 1), 𝑝0 is the initial excess pore water pressure, 𝑧 is depth, 𝐻 is the total height of the column,

𝑇 is the time factor. Eq. (33) gives the distribution of excess pore water pressure 𝑝 at different times to quantitatively describe the
9
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Fig. 6. Excess pore pressure profile along the column.

dissipation process. The degree of consolidation 𝑈 , which represents the ratio of the vertical displacement at a given time to the
final displacement, is expressed by

𝑈𝑧 = 1 −
𝑚̂=∞
∑

𝑚̂=0

2
𝑀

𝑒−𝑀
2𝑇𝑣 (34)

Note that Terzaghi’s 1-D consolidation theory assumes the solid and fluid to be incompressible. In order to compare the simulation
esults with the analytical solution, the elastic deformation of the poroelastic body obtained in numerical model, which occurs
mmediately after load application, is not taken into account in the subsequent comparisons.

A quantitative comparison of excess pore water pressure dissipation between the PD simulation results and theoretical solution
s shown in Fig. 6. The depth is normalized by 𝑧∕𝐻 where 𝑧 refers to the vertical coordinate and 𝐻 is the total height of the column.

Similarly, the pore pressure is normalized by the initial pore pressure. The gradual dissipation of excess pore water pressure with
time in the poroelastic material can be clearly observed. The simulation results align consistently with the theoretical solution at all
times examined. Fig. 7 shows the degree of consolidation variation over time. Good agreement is observed between the simulation
and the theoretical solution derived from classical 1-D consolidation theory.

3.2. Mandel’s problem

The classical poroelasticity theory [69,78] assumes that a porous medium consists of both a porous solid phase and a pore fluid
phase and they interact with each other. The theory enables modeling of solid medium deformation, pore fluid flow, and their
interactions. The Terzaghi’s consolidation theory used in the previous example assumes that both the solid and fluid phases are
incompressible, focusing primarily on the change of pore space induced by external loading. In contrast, Biot’s poroelasticity theory
considers a linearly elastic, porous solid coupled with a slightly compressible viscous fluid. This provides a more comprehensive
framework for assessing the consolidation processes. For a homogeneous and isotropic medium, the governing equation for the
poroelasticity media [79] is expressed by

− (𝜆 + 𝜇)∇(∇ ⋅ 𝒖(𝑥, 𝑡)) − 𝜇 𝛥𝒖(𝑥, 𝑡) + 𝛼∇𝑝(𝑥, 𝑡) = 𝒇 (𝑥, 𝑡) (35)

where 𝜆 and 𝜇 are the Lamé constants, 𝛼 is the Biot coefficient, 𝒇 is the external force, 𝒖 is the displacement, and 𝑝 is the pore fluid
pressure. The complexity of this differential equation makes it challenging to find general solutions, and thus, only a limited number
of specific solutions are known. One such solution is Mandel’s problem [80,81], which was initially applied to incompressible solids
nd fluids, focusing on pore pressure distribution. Mandel’s problem was later extended to compressible materials, accompanied by
 thorough investigation and a complete solution that provides analytical results for both displacement and stress [82,83]. Since

Mandel’s problem provides an easy fetching analytical solution for poroelasticity theory, it is considered suitable for validating
poroelastic model [84–86].

Mandel’s problem models a rectangular, fully saturated porous medium with unconfined permeable lateral boundaries on two
ides, and is sandwiched by two rigid impermeable plates, as shown in Fig. 8. The model is assumed to have infinite length along

the 𝑧-direction (perpendicular to the paper). If a vertical load of 2𝐹 (force per unit length in the 𝑧-direction) is applied to the upper
10
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Fig. 7. Degree of consolidation over time.

Fig. 8. Model of Mandel’s problem with sampling location.

and lower boundaries, the initial excess pore water pressure 𝑝0 and displacement 𝑢𝑥,0, 𝑢𝑦,0 induced by the vertical load are given by

𝑝0 =
1
3𝑎

𝐵(1 + 𝑣𝑢)𝐹 (36)

𝑢𝑥,0(𝑥) =
𝐹 𝑣𝑢𝑥
2𝜇 𝑎 (37)

𝑢𝑦,0(𝑦) = −𝐹 (1 − 𝑣𝑢)𝑦
2𝜇 𝑎 (38)

where 𝐵 = 𝛼 𝑀∕𝐾𝑢 is the Skempton’s coefficient, 𝑣𝑢 =
[

3𝑣+𝛼 𝐵(1−2𝑣)
3−𝛼 𝐵(1−2𝑣)

]

is the undrained Poisson’s ratio. 𝑀 =
[

𝜙
𝐾𝑓

+ 𝛼−𝜙
𝐾𝑠

]−1
is the Biot

modulus, 𝐾𝑓 and 𝐾𝑠 are the bulk modulus of fluid and solid grain, respectively. 𝐾𝑢 = 𝜆+ 2𝜇
3 + 𝛼2𝑀 is the undrained bulk modulus,

𝑣 is the drained Poisson’s ratio. The analytical solution for excess pore pressure dissipation and displacement history during the
consolidation process are given by

𝑝(𝑥, 𝑡) = 2𝑝0
∞
∑ sin 𝛽𝑛

(

cos
𝛽𝑛𝑥 − cos 𝛽𝑛

)

exp

(

−
𝛽2𝑛 𝑐 𝑡

)

(39)
11
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Table 1
Parameters for Mandel’s problem.

Parameter Value Parameter Value

𝐾𝑠 (Pa) 1 × 1010 𝛼 1.0
𝐾𝑓 (Pa) 2 × 109 𝜙 0.3
𝜆 (Pa) 4 × 108 𝐾̄ (m∕s) 1 × 10−4
𝜇 (Pa) 4 × 108 𝜌 (k g∕m3) 1 × 103

𝑢𝑦(𝑦, 𝑡) =
[

−
𝐹 (1 − 𝑣)
2𝜇 𝑎 +

𝐹 (1 − 𝑣𝑢)
𝜇 𝑎

∞
∑

𝑛=1

sin 𝛽𝑛 cos 𝛽𝑛
𝛽𝑛 − sin 𝛽𝑛 cos 𝛽𝑛

exp

(

−
𝛽2𝑛 𝑐 𝑡
𝑎2

)]

𝑦 (40)

where 𝑐 = 𝐾̄
𝜌𝑔(𝑀−1+𝛼2𝑐𝑀 ) is the consolidation coefficient, 𝐾̄ is the hydraulic conductivity, 𝑐𝑀 = (𝜆 + 2𝜇)−1 is the vertical uniaxial

compressibility. 𝛽𝑛 is the positive root of the nonlinear characteristic function given by

t an 𝛽𝑛 = 1 − 𝑣
𝑣𝑢 − 𝑣

𝛽𝑛 (41)

The Mandel’s problem is modeled by the PD poroelastic formulation proposed in this paper. The model has a dimension 𝑎× 𝑏 of
0 × 20 m. In view of the symmetry in Mandel’s problem, only a quarter of the domain is considered in the simulation. Therefore,

except for the right boundary, all other boundaries in the numerical model are impermeable. A vertical load of 1 × 104 N/m is applied
at the upper and lower boundaries, compressing the porous medium. Material properties used in the simulation are summarized in
Table 1.

The comparison between the simulation results and the theoretical solution is presented in Fig. 9. The pore pressure at four
bservation points located at 1/4, 1/2, 3/4, 1 of the distance 𝑎 from the center 𝑥 = 0 (illustrated in Fig. 8), are plotted. The results

generally indicate a decrease in pore pressure over time. Closer location to the drainage boundary is associated with faster pressure
dissipation. The point at the drainage boundary does not possess excess pore pressure. The pore pressure in the analytical solution
is observed to exceed the initial pore pressure 𝑝0 immediately after load application and reduces afterwards. This non-monotonic
behavior of pore pressure is known as the Mandel-Cryer effect [85,87], which is caused by the contraction of loading plate at the
rainage boundary. The peak in the pore pressure is a transient phenomenon resulting from the communal effect of both mechanical
nd hydraulic behavior. The simulation results generally align well with the analytical solution and captures the Mandel-Cryer

effect. However, the simulation results are seen slight deviated from the analytical solution. The error may potentially be attributed
to the difference between the Mandel’s problem and the setup of the numerical model. The original Mandel’s problem consists of
impermeable boundaries at top and bottom of the specimen with a smooth contact to the porous medium (refer to Fig. 8) whereas
in the numerical model, the upper and lower boundary is modeled by a layer of material points with a finite thickness directly
bonded with the material points in the porous medium. Another potential source of error may be associated with the numerical
stabilization measures used in the simulation, which is believed to hinder the ability of the model to accurately capture transient
response of material. The distribution of pore water pressure along the x-direction within the porous medium at different times
is exhibited in Fig. 10 with comparison to the analytical solution. As expected, the pore pressure near the drainage boundary is
bserved lower compared to that in the center, and the pore pressure dissipates with time. The results from the PD simulation in
eneral replicate the analytical solution for the behavior of porous flow. However, slight mismatch is evident at locations near the
rainage boundary. This is likely a result of the numerical pressure oscillations and relevant numerical stabilization measures.

The vertical displacement at four sampling lines, located at 1/4, 1/2, 3/4, and the full distance 𝑏 from the center 𝑦 = 0, is
exhibited in Fig. 11. Given that the porous medium is linear elastic, the displacements of these four layers are proportional with
heir height from the bottom of the model. The displacement shows a decelerating trend. Good agreement is observed between
he simulation results and analytical solution. The results demonstrates the capability of the PD model in accurately capturing the
echanical deformation of poroelastic solid subject to drainage of pore water.

Based on the Mandel’s problem, convergence study of the proposed poroelastic model is performed under decreasing peridynamic
horizon (𝛿-convergence) and under uniform grid refinement (𝑚𝑝𝑑 -convergence). In the 𝛿-convergence study, the effect of horizon 𝛿
s studied with fixed 𝑚𝑝𝑑 = 2 and varied 𝛥𝑥 of 0.5, 1.0, and 2.0 (unit: m), which yields 𝛿 = 1.0, 2.0, and 4.0, respectively, where
𝑝𝑑 = 𝛿∕𝛥𝑥 represents the ratio between horizon 𝛿 and discretized element size 𝛥𝑥. Fig. 12 presents the simulated excess pore water
ressure dissipation history at 𝑥 = 1∕4𝑎 for 𝛿 = 1, 2 and 4 with comparison to theoretical solution. Evidently, with reducing 𝛿, the

model can better capture the Mandel-Cryer effect, and the error in normalized pressure (i.e., the difference between theoretical
solution and numerical result) is reduced. Then, the 𝑚𝑝𝑑 -convergence study is carried out with fixed 𝛿 = 2.0 while 𝛥𝑥 is taken to
be 0.5, 1.0, 2.0 (unit: m) with results shown in Fig. 13. Overall, the case with larger 𝑚𝑝𝑑 exhibits smaller error at the beginning
nd is better capable to capture the Mandel-Cryer effect. After sufficient time, the cases with 𝑚𝑝𝑑 = 2 and 𝑚𝑝𝑑 = 4 appear to have
imilar performance. The study confirms the 𝛿-convergence and the 𝑚𝑝𝑑 -convergence of the model. An 𝑚𝑝𝑑 ranging between 2 to 4
s recommended under the consideration of both precision and computation demands.
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Fig. 9. Excess pore water pressure dissipation history.

Fig. 10. Excess pore water pressure profile at selected times.

3.3. Constant head test

In this example, a simulation of the constant head test is carried out to validate the proposed fluid-solid interface (FSI) model.
The FSI couples the semi-Langrangian PD formulation and the poroelastic PD model by allowing mass exchange from free-flowing
fluid into porous flow. Constant head test [77] is a commonly used laboratory method to measure the permeability of coarse-grained
soils with analytical solution available. In the test, water flow is enabled through a soil column subject to a constant head difference,
and the total volume of water 𝑄 flowing through the soil specimen is given by

𝑄 = 𝐴(𝐾̄ ℎ
𝐿
)𝑡 (42)

where 𝐴 is the area of cross section of the soil specimen, 𝑡 is the duration of test, 𝐿 is length of specimen, 𝐾̄ is the hydraulic
conductivity, ℎ is head difference. By measuring the flow volume and time, the permeability can be obtained from the above
equation. To maintain the constant head difference, water tanks, which contains free flowing water, are often used at the upstream
nd downstream side of the specimen. The test therefore involves constant flow of water from the tank into the porous medium,

which offers an opportunity to benchmark the proposed FSI model where the mass exchange between fluid and porous flow is
imulated.
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Fig. 11. Development of vertical displacement: comparison between simulation and theoretical solution.

Fig. 12. 𝛿-convergence: normalized excess pore pressure history at 𝑥 = 1∕4𝑎 with varied 𝛿.

For the purposes of the simulation, a simplified equivalent model of the constant head test is created as illustrated in Fig. 14
(left). The model consists of three material domains with two interfaces, namely, a dead weight block at the top, underlain by a
omain of free flowing water which locates on top of the porous medium (i.e., the specimen). The bottom of the porous medium is
odeled with a drainage boundary layer where the excess pore pressure is kept at zero. The dead weight block is modeled using

he classical LPS model and interacts with the water underneath it via an ordinary FSI which couples the classical elastic PD model
ith the semi-Lagrangian PD model. A constant body force density of 𝜌𝑤𝑔 is assigned to the dead weight block where 𝜌𝑤 is water
ensity and 𝑔 is gravity constant. With a dead weight height of 10 m, an equivalent water head ℎ of 10 m is being applied on the
op of fluid. Note that the sole purpose of modeling a dead weight block is to create a constant pressure inside the water which is
quivalent to a constant head difference in the porous medium. Gravity is not considered in the simulation. The interface between
he water and the porous medium is critical as it simulates the process that free water enters porous flow. This serves the primary
ocus of this simulation. The porous medium and the drainage boundary layer are fixed in both 𝑥 and 𝑦 directions, while the dead
eight block and the water are allowed to move along the 𝑦 direction and are fixed in 𝑥 direction.

In the simulation, hydraulic conductivity of the porous media 𝐾̄ is 1 × 10−4 m/s, length of the porous medium 𝐿 is 50 m, and the
width of the specimen is 20 m. As shown in Fig. 14 (middle), the pore pressure uniformly decreases along the vertical direction from
14
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Fig. 13. 𝑚𝑝𝑑 -convergence: normalized excess pore pressure history at 𝑥 = 1∕4𝑎 with varied 𝑚𝑝𝑑 .

Fig. 14. Constant head test model (left), simulated pressure distribution (middle), simulated flux distribution (right).

a maximum 10-m water head to zero. A stable volumetric flux rate 𝑞 = 𝐾̄ 𝑖 = 2 × 10−5 m/s is observed in the porous medium as shown
in Fig. 14 (right). Note that the density smoothing algorithm expressed in Eq. (32) is necessary to produce stable flow flux crossing the
fluid-poroelastic solid interface and near the drainage boundary. Otherwise the flux can be ill-posed at the interface/boundary since
there is no pressure difference within the free flowing fluid or drainage boundary layer. The coefficient 𝐶 in Eq. (32) is suggested
to be 1.0 for the best performance. Fig. 15 shows the water flow volume through the simulated specimen. This volume is obtained
by monitoring the loss of fluid mass in the fluid material points at the FSI and assuming a constant density for water. As expected,
the flow volume increases with time which is consist with the theoretical result calculated using Eq. (42). Also, the pressure in the
fluid domain is kept constant during the simulation by applying the dead weight. The above simulation of the constant head test
demonstrates the effectiveness of the proposed FSI in capturing the mass exchange from the free fluid into the porous flow.
15
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Fig. 15. The time variation of volume of water flowed through the specimen and pressure of water above the specimen.

3.4. Hydraulic fracturing in porous medium

A series of simulations are carried out to test the ability of the proposed computational approach in modeling hydraulic fracture
ropagation in porous medium with concurrent consideration of leak-off effect. The simulations are validated with the Kristianovich-

Geertsma-de Klerk (KGD) [88] model for plane strain hydraulic fracturing in conjunction with the Carter’s equation [89] which
models the fluid leak-off dynamics. The KGD model is a classical model offering analytical solutions for fluid-driven crack
propagation. It assumes an infinite elastic brittle solid characterized by Young’s modulus 𝐸, Poisson’s ratio 𝑣, toughness 𝐾𝐼 𝐶 , intrinsic
permeability 𝑘, porosity 𝜙, and fracturing fluid with viscosity 𝜇̄, while the gravity effect is not considered. The fracturing fluid is
injected with a constant volumetric flow rate 𝑄0 into the solid, which generates a radially symmetric fracture. Carter’s equation
provides an analytical solution to 1D fluid flow leak-off into porous media, assuming Darcy’s law is applicable to the porous flow.
The Carter’s leak-off velocity 𝑣𝐿 and leak-off coefficient 𝐶𝐿 [90] are given by:

𝑣𝐿 =
𝐶𝐿

√

𝑡 − 𝑡0
(43)

𝐶𝐿 = 𝛥𝑝

√

𝑘𝜙𝐶𝑡
𝜇̄ 𝜋 (44)

where 𝛥𝑝 is the pressure drop from the surface of fracture to a remote location, and 𝐶𝑡 is the total compressibility of the porous
edium.

A plane-strain hydraulic fracturing problem is simulated as illustrated in Fig. 16. The fracture propagation is assumed to be
oughness-dominated, meaning that the fluid’s viscosity induced energy dissipation is negligible and the fracturing is governed by

the toughness of the solid. The analytical solution for toughness-dominated hydraulic fracturing with leak-off is given in [91] which
ombines the classical KGD solution with the Carter’s equation. The solution for crack length 𝑙 is given by:

𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
(

𝐸′𝑄0
𝜋 𝐾′

)
2
3 𝑡

2
3 𝐸′4𝐶′6

𝐾′4𝑄2
0
𝑡 ≪ 1

𝑄0
𝜋 𝐶′ 𝑡

1
2 𝐸′4𝐶′6

𝐾′4𝑄2
0
𝑡 ≫ 1

(45)

where 𝐸′ = 𝐸
1−𝑣2 , 𝐾 ′ = 4

(

2
𝜋

)
1
2 𝐾𝐼 𝐶 , and 𝐶 ′ = 2𝐶𝐿. In Eq. (45), the first equation corresponds to a storage-dominated regime, where

leak-off is assumed to have negligible effect on crack development (i.e., with a relatively small permeability of the porous medium,
the fracture extends with limited leak-off). The second one correspond to a leak-off dominated regime where the toughness is small.

orrespondingly, two simulations are carried out, one for the storage-dominated scenario and one for leak-off dominated scenario.
he simulation results are compared with the above analytical solutions.

The setup of the numerical model is illustrated in Fig. 17. The porous solid is created with a dimension of 150 mm by 200 mm
with an existing crack at the top boundary where fluid is injected in. The existing crack has a depth of 10 mm and a width of
4 mm. The fluid particles are pushed towards the crack with a constant injection rate. The size of material points in this model is
16
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Fig. 16. Illustration of plane strain hydraulic fracturing problem with leak-off.

Fig. 17. Setup of hydraulic fracturing model.

Table 2
Parameters for porous solid.

Parameter Value Parameter Value

Young’s modulus 𝐸 (MPa) 700 Density (kg/m3) 1.61
Poisson’s ratio 𝑣 0.25 Initial porosity 0.1
Permeability 𝑘 (mm2) 1.02 × 10−9 Energy release rate 𝐺𝑐 (MPa mm) 0.005

set to 1 mm. The porous solid is modeled with poroelastic PD formulation while the injected fluid is modeled with material points
governed by the semi-Lagrangian PD formulation with Tait equation of state.

For the storage-dominated case, the injection rate of fluid is set to of 0.16 mm3∕ms and the lateral confining pressure is 0.21 MPa.
Similar to the models presented in earlier sections, the confining pressure is applied to a boundary layer in the form of a body
force density. The boundary layer is set with a thickness of the size of horizon. Material parameters used for the porous solid are
ummarized in Table 2. For the fluid, an initial density of 1 × 103 kg/m3 and viscosity at 1 MPa s are adopted. The horizon of all

the particles, including those at FSI, is 2.5 times of particle size.
17
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Fig. 18. Simulated fluid pressure distribution at 5 ms (a), 25 ms (b), 50 ms (c) and 100 ms (d) for the storage-dominated case.

Fig. 19. Damage progress at 5 ms (a), 25 ms (b), 50 ms (c) and 100 ms (d) for the storage-dominated case.

The fluid is injected into the existing crack from an uncompressed state, and its pressure increases until the crack begins to
propagate. The distributions of fluid pressure inside the crack and pore pressure in the porous medium at 5 ms, 25 ms, 50 ms, and
100 ms after the beginning of crack propagation are shown in Fig. 18. The simulation reveals several common phenomena observed
in hydraulic fracturing. Notably, there is a lag between the fluid front and the fracture tip, with the pressure at the fluid front being
lower than the injection pressure. During the hydraulic fracturing process, the fluid continuously infiltrates into the surrounding
porous solids. However, due to the low permeability of the porous solid, the infiltration is limited to the vicinity of the crack. As
fluid injection continues, the crack propagates in the vertical direction, corresponding to the direction of minimum principal stress,
as exhibited in Fig. 19.
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Fig. 20. Average leak-off velocity variation and fracture extension over time for the storage-dominated case.

The Carter’s leak-off velocity is calculated using Eq. (43) and is used for comparison with numerical simulation results. As the
leak-off velocity is pressure-dependent, the average fluid pressure inside the crack is used for obtaining the analytical solution. In
the numerical simulation, the leak-off velocity is calculated by dividing the leak-off volumetric rate by twice the wet fracture length.
The result is therefore an average leak-off velocity at the fracture. In each calculation step, the leak-off volumetric rate is obtained
by dividing the mass reduction in the fracturing fluid by the fluid density and time step size. A comparison of the analytical solution
and the simulation result with respect to the average leak-off velocity is shown in Fig. 20, where reasonable agreement is seen. For
the purpose of comparison, the artificial mass transfer resulted from the density smoothing algorithm is disregarded. Note that such
artificial effect can be effectively mitigated by taking a small value of the coefficient C in Eq. (32). The fluctuations in the leak-off
velocity are resulted from varying fluid pressure and are more apparent in the early stage of fracturing. The drops in the leak-off
velocity implies pressure reduction in the fluid. This is believed to be caused by the movement of fluid material points into the
fractured zone when fracture advances. It should be noted that such effect may be dependent of the element size used for modeling
fluid. Adopting relatively small fluid element size (relative to the aperture of the fracture) may mitigate such effect and render a
less fluctuating response of the leak-off velocity.

The extension of fracture length is plotted in Fig. 20 with reference to the right axis. The fracture length refers to the distance
between the bottom of the initial crack and the tip of fracture (herein defined as the furthest point with damage exceeding 0.4).
Evidently, the fracture extension begins at 28 ms after injection. The simulated fracturing process is characterized by the alternating
stages of fracture growth and stress build-up. The growth of fracture is compared with the analytical solution derived from Eq. (45).
Note that the value of 𝐸′4𝐶′6

𝐾′4𝑄2
0

is on the order of 10−4, indicating that storage effects dominates and the leak-off is relatively small.
Therefore, the solution corresponds to the storage-dominated regime is utilized for comparison. The simulation results align closely
with the analytical solution, with slightly slower fracture propagation possibly due to the effect of the limited leak-off.

Fig. 20 also illustrates the interplay between leak-off velocity and crack propagation. The leak-off velocity is believed to be
influenced by two competing mechanisms - the injection induced pressure rise and the pressure release due to fracture extension.
In early stage of fracturing, both effects are apparent. In the fracture extension curve, when stress builds up (e.g., characterized
by the flat part of the curve between fracture extension events), the fracture does not grow and hydraulic pressure is accumulated
in the fracture which is implied by the increasing leak-off velocity. The fracture grows when the damage criterion is satisfied,
and this process is accompanied by the hydraulic pressure release and reduction in leak-off velocity. In a later stage of fracturing
(e.g., after 60 ms) when the fracture has extended for some distance, the stress build-up stage is no longer associated with apparent
accumulation of hydraulic pressure, and the leak-off velocity shows a continues dropping trend. The behavior is different from the
early stage of fracturing, possibly because the injection-induced hydraulic pressure becomes much lower than that in the early stage
of fracturing [60].

As a verification of the fluid mass conservation property of the presented formulation, the variations of the pore fluid mass
and fracturing fluid mass throughout the simulation are shown in Fig. 21. The pore fluid mass increases continuously during the
simulation, while the mass of the fracturing fluid decreases accordingly during leak-off. The total fluid mass in the simulation
(i.e., the sum of the fracturing fluid and pore fluid), remains constant which verifies that the proposed formulation well maintains
fluid mass conservation.
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Fig. 21. Mass exchange between fluid and porous media.

Fig. 22. Simulated fluid pressure distribution at 5 ms (a), 25 ms (b), 50 ms (c) and 100 ms (d) for the leak-off dominated case.

The second case simulates the hydraulic fracturing under a leak-off dominated condition. Material properties and model settings
are adjusted to ensure the leak-off domination. For the porous solid, the Young’s modulus is 4000 MPa, energy release rate is 0.002
MPa⋅m, and the permeability is 1.02 × 10−8 mm2. The injection rate is set to 0.08 mm3/s for this simulation. For the purpose of
validation with analytical solution, a lateral confining pressure of 0.9 MPa is applied on the left and right boundaries to minimize the
fluid lag. Note that confining pressure commonly exists in underground stress conditions. Hydraulic fracturing of a brittle material
without any confining pressure could develop in a rather fast manner with a large lag between fluid front and crack tip, which is not
the purpose of the present simulation. After crack initiation, the value of 𝐸′4𝐶′6

𝐾′4𝑄2
0

is on the order of 102, indicating the dominance of
the leak-off effect. The pressure distribution in the fracture and the porous medium throughout the simulation is shown in Fig. 22.
The pressurized fluid infiltrates into the surrounding porous media and permeates to a much broader area compared to the previous
20
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Fig. 23. Variation of average leak-off velocity in the leak-off dominated case.

Fig. 24. Fracture growth in leak-off dominated case and comparison with analytical solution.

simulation. The injection-induced fracture propagates in the vertical direction, however, at a slower rate compared to the toughness-
ominated case. This is expected since the leak-off leads to loss of fluid inside the fracture which tends to reduce the fluid pressure
nd creates an unfavored condition for fracture propagation.

The obtained leak-off velocity is shown in Fig. 23 with comparison to the solution of Carter’s equation. The fluid pressure
fluctuates as the crack propagates, this can be possibly attributed to the brittle nature of the porous solid which brings dynamic
effect when fracture develops. Overall, the simulation results align with the analytical solution. In Fig. 24, the fracture length
is plotted and compared with the analytical predictions for both storage dominated and leak-off-dominated conditions. As the
ressurized fluid constantly leaks into the surrounding porous media, the fracture develops apparently slower than the analytical

solution for the storage-dominated case. Nevertheless, the simulation results are consistent with the leak-off dominated solution.
or simulation of hydraulic fracturing in high-permeability solid media, the consideration of leak-off in the simulation is therefore
ndispensable, as the storage-dominated model will largely overestimate the fracture propagation. The above two simulations provide
 quantitative validation of the proposed computational approach for modeling fracture propagation in porous medium under both
torage-dominated and leak-off-dominated conditions.
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Fig. 25. Pressure, damage, and major principal stress distribution during fracturing (from top to bottom: time = 5, 17, 29, 141 ms). The location of the domain
shown in the right column is indicated by the dashed line in the middle column. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

In the last example, we showcase the simulation of fracture development in conjunction with a pre-existing natural crack. The
natural crack is positioned 20 mm below the initial crack, measuring 10 mm in length and inclined at 45 degrees towards the lower
left. All bonds along this natural crack are initially set to broken. The poroelastic material parameters and loading conditions match
those in the storage-dominated case, but the lateral confining pressure is set to 1.5 MPa to minimize the fluid lag. The evolution of
the hydraulic pressure, fracture, and major principal stress field are shown in Fig. 25. In the third column of the figure, the colored
line segments indicate the direction of major principal stress, with colors representing its magnitude and positive values for tension.
The fracture is found propagating perpendicular to the major principal stress direction (i.e., mode I) near the tip. The hydraulic
fracture grows and connects with the natural crack, followed by infiltration of fluid into the natural fracture. As fluid injection
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continues, the fracture continues to propagate downward due to the horizontal tensile stress. In this case, the fracture propagates
along a path slightly deviates from the vertical direction, possibly due to the influence of the existing fracture. Further study and
alidation on hydraulic fracturing with more complex configuration of pre-existing natural fractures is beyond the scope of current
tudy, as contact at the fractured surfaces may play a more significant role and should be addressed with care.

4. Conclusions and discussions

This paper introduces a unified PD-based computational approach for modeling hydraulic fracturing in poroelastic medium with
consideration of the leak-off effect. The injected fluid is simulated by a semi-Lagrangian formulation of PD and the porous medium
is modeled by a non-local poroelastic PD formulation. The porous flow equation suited for state-based peridynamics is derived
based on the non-local differential operator and Darcy’s law. A novel FSI model is proposed to couple the semi-Lagrangian and
poroelastic models of PD. The proposed computational approach is first validated with the 1-D Terzaghi consolidation problem and
he 2-D Mandel’s problem for its capacity in modeling porous flow and mechanical deformations. Simulation is further carried out
or a constant-head test to validate the FSI model especially for its capacity in modeling fluid mass exchange between fluid in the
racture and porous flow. Finally, simulations of 2-D plane strain hydraulic fracturing in porous media is offered and validated by
he analytical solution from classical KGD model and Carter’s equation. The example simulations demonstrate the applicability of
roposed approach for modeling porous flow, fluid exchange at FSI, and hydraulic fracturing with leak-off effect.

The present work also bears certain limitations, which should be noted when applying or developing the computational
pproach. When modeling stiff solids, the fracture may appear to be thin and explicit modeling of the fluid inside fracture can be
omputationally demanding. Furthermore, the simulations presented herein assumes a pseudo-static condition where both fluid flow
nd fracture propagation is slow. For highly dynamic fracturing processes (e.g., [47]), the energy conservation properties of the fluid
low and fracturing process, the performance of the FSI model, and the wave dispersion properties of the poroelastic model, should
ll be further examined. Although outside the current scope of work, the proposed computational approach can be further developed
o incorporate different FSI conditions accounting for the roughness of the fracture surface [92,93] and thermal field modeling [94]

to cater for various scenarios encountered in engineering operations. It is also worth mentioning that other numerical approaches,
such as phase-field [95] and coupled methods [96] were also reported capable in modeling fracturing in poroelastic media. It would
be interesting and meaningful to study and compare the performance between different numerical methods in future studies.
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