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A B S T R A C T

Nonlocal modelling has achieved notable progress in resolving mesh dependence but remains constrained by two 
persistent challenges: sensitivity to characteristic length parameters and high computational costs. This study 
presents a scaled nonlocal integral formulation coupled with an optimized computational framework to simul
taneously address two limitations. We first analytically demonstrate that variations in characteristic length 
induce proportional scaling of load–displacement curves, revealing that apparent changes in structure softening 
rate are artifacts of this scaling. Building on this insight, a dimensionless scaling factor is derived to systemat
ically eliminate characteristic length dependence, enabling consistent predictions across parameter choices. The 
proposed method is integrated with a Mohr-Coulomb plasticity damage model, employing a return mapping 
algorithm for plasticity and a novel hybrid local-nonlocal solver accelerated by octree spatial partitioning for 
damage evolution. Three benchmark boundary value problems, evaluated across diverse element sizes, char
acteristic lengths, and softening laws, validate the robustness of the method. The results demonstrate that the 
proposed nonlocal method achieves mesh- and length-invariant load–displacement responses while accommo
dating arbitrary softening functions. The presented nonlocal computation method also shows a remarkable 
computational efficiency compared to the traditional nonlocal computation method.

1. Introduction

Numerical simulation of material failure due to strain softening has 
long been a major challenge in the field of computational solid me
chanics. Local continuum models encounter difficulties in simulating 
material failure because of the problem of ill-conditioned mesh depen
dence. This issue primarily manifests in the fact that, with mesh 
refinement, the slope of the softening segment in the load–displacement 
response becomes steeper, the localization zone narrows infinitely, and 
the energy dissipated within this zone approaches zero. The localization 
zone is identified as the shear band in ductile materials or the fracture 
process zone in brittle materials (Wu et al., 2024; Yu et al., 2024). 
Mathematically, this phenomenon can be explained by the loss of 
ellipticity in governing equations during the strain softening (Anand 
et al., 2012; Mazzucco et al., 2019), leading to pathological boundary 
value problems where numerical solutions depend on element size.

Several nonlocal methods have been proposed in the literature to 
address this limitation, including the gradient-dependent method 
(Engelen et al., 2003; Zhao et al., 2005), the Cosserat method (de Borst, 
1991), and the nonlocal integral method (Bažant and Jirásek, 2002; Lü 
et al., 2023). These nonlocal methods assume that the response of a 
material point is influenced by both its own state and the state of 
neighbourhood points (Cui et al., 2023; Ren et al., 2020; Yu and Sun, 
2021). The degree of strain localization is controlled by a scale param
eter known as the characteristic length (Karapiperis et al., 2021). Among 
the various nonlocal methods, the phase field method (Miehe et al., 
2010) and Peridynamics (Silling and Lehoucq, 2010) have garnered 
significant attention from researchers in recent years (Yang et al., 2024). 
The phase field method, sometimes regarded as a special gradient 
damage method (de Borst and Verhoosel, 2016), employs a continuous 
phase field variable to describe sharp crack topology. The evolution of 
the phase field variable is based on minimizing the system’s total en
ergy. Therefore, crack propagation is automatically tracked, eliminating 
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the need for tedious crack-tracking tasks (Wu, 2017). For instance, Chen 
et al. (2025) developed a high-accuracy phase field model that can 
accurately reproduce arbitrary cohesive laws. Furthermore, Feng and 
Hai (2025) proposed a unified directional energy decomposition method 
to incorporate cohesive laws into the phase field model in a 3D setting. 
Peridynamics uses governing integral equations instead of partial dif
ferential equations (PDEs) in continuum mechanics (Dorduncu et al., 
2024), avoiding the singularity caused by the absence of spatial de
rivatives at discontinuities such as cracks. It describes material damage 
and cracking through the breakage of “bonds”, making it highly suitable 
for solving discontinuous deformation and failure problems.

Generally, the nonlocal models have successfully regularized the ill- 
posed mesh dependence problem; however, they also present the 
following challenges: (i) the simulation results depend on the charac
teristic length; (ii) the numerical implementation incurs high computa
tional costs. This paper focuses on the nonlocal integral method, as it 
does not require modification to governing PDEs compared to the local 
model, is more easily implemented numerically, and has received 
considerable attention in recent research (Li and Gao, 2024; Su et al., 
2023). It is well-recognized that the characteristic length significantly 
influences the global response of a structure after strain localization. 
Generally, as the characteristic length increases, the localization zone 
width predicted by the nonlocal model increases (Mallikarachchi and 
Soga, 2020), while the softening rate of the load–displacement response 
decreases. Typically, two approaches exist for determining the charac
teristic length. The first scheme treats the characteristic length as a 
material parameter that influences the load–displacement response. The 
characteristic length is determined through inverse calibration based on 
structural results, as demonstrated by Bažant and Pijaudier-Cabot 
(1989), Le Bellégo et al. (2003), Jirásek et al. (2004), and Iacono et al. 
(2006). However, as noted by Xenos et al. (2015), an accurate alignment 
with structural findings may result in an excessively exaggerated 
localization zone width. For example, by fitting experimental data on 
nominal fracture energy and nominal strength of concrete, Jirásek et al. 
(2004) obtained a nonlocal radius of approximately 75 mm, which 
significantly exceeded the one observed in experiments. The localization 
zone width measured in experiments is about 2.5–4 times the maximum 
aggregate size dmax for concrete materials (Denarie et al., 2001; Otsuka 
and Date, 2000) and about 8–20 times the mean diameter d50 for 
granular materials (Mohamed and Gutierrez, 2010; Rattez et al., 2022). 
It is often not easier to adjust the characteristic length by matching it to 
the localization zone observed in the experiment. This is because the 
nonlocal model is generally valid only when the characteristic length 
exceeds the element size, meaning that accurate modelling of the 
localization zone requires extremely fine meshes, making the cost of 

numerical analysis for large-scale engineering problems extremely high.
Another approach is to treat the characteristic length as a numerical 

parameter that describes the localization zone width. The influence of 
characteristic length on the load–displacement response is attempted to 
be eliminated by appropriately adjusting the material parameters that 
control the softening rate. This method, called the softening modulus 
modification method, was introduced by Marcher (2003) and has since 
been widely adopted in subsequent nonlocal modelling, such as by 
Galavi and Schweiger (2010), Mánica et al. (2018), Singh et al. (2021), 
and Shi et al. (2023). Numerical simulation results from these studies 
suggest that a unique load–displacement response may be obtained by 
fixing the ratio of model parameters controlling the softening rate to the 
characteristic length. However, strictly speaking, the scaling softening 
rate method is a semi-empirical approach based on numerical simulation 
laws. It has not been proven to be valid for all types of softening func
tions. Indeed, the impact of model parameters on softening behaviour 
depends on the specific form of the softening function (Sun et al., 2021). 
In some constitutive models, multiple parameters may even influence 
the softening rate (Zhou et al., 2020). It is imperative to recognize that 
eliminating the characteristic length sensitivity requires a fundamental 
understanding of how characteristic length affects the global response. 
This is also the primary research motivation of this paper. In this study, 
we will demonstrate analytically that the load–displacement curve is 
substantially scaled by the change in characteristic length, and changes 
in structural softening rate are merely a superficial phenomenon. Based 
on this fundamental understanding, we propose a novel nonlocal 
method that is insensitive to material characteristic length by scaling the 
nonlocal variable instead of the softening parameter, making it valid for 
any softening function.

High computational costs pose another challenge that hinders the 
application of nonlocal models in practical engineering problems. This 
issue arises from the computational rules governing the nonlocal vari
ables(s). In numerical computation, the relevant local variable at each 
integration point in the vicinity of the present integration point is weight 
averaged to obtain the nonlocal variable. This necessitates initially 
identifying neighbourhood integration points and calculating the cor
responding weight coefficients for nonlocal computations. Numerous 
efforts have been made to enhance nonlocal models’ computational ef
ficiency. Jirásek (2007) proposed initially computing the weight co
efficients and storing them for subsequent calculations. However, this 
approach overlooks potential changes in the number and position of 
neighbourhood integration points during the calculation process. Chen 
et al. (2023) suggested performing nonlocal calculations every T incre
ment steps. As T increases, the nonlocal computational cost decreases. 
Selecting an appropriate value for T is essential to balance 

Nomenclature

Notation
σ nominal stress tensor
σ,s effective stress tensor, effective deviatoric stress tensor
J2,J3 second and third invariants of σ
p, q,θ mean stress, generalized shear stress, and Lode angle of σ
ε, εe,εp total, elastic, and plastic strain tensors
εp

d equivalent plastic shear strain
dϕ,κp plastic multiplier, plastic internal variable
κd,κ̂d local and nonlocal damage internal variables
ω damage variable
H softening function
As softening parameter
D0 undamaged elastic stiffness matrix
E Young’s modulus

lc,R characteristic length, neighbourhood radius
lFE element size
m interpolation coefficient in the over-nonlocal formulation
w width of the localization zone
w∞ weight function
η scaling factor
f ,g yield function, plastic potential function
Rmc shape function of f on the meridian plane
Rmw shape function of g on the meridian plane
c0, φ,ψ initial cohesive strength, internal friction angle, dilation 

angle
β smooth parameter in the Rmc
∊ meridional eccentricity
Φ merit function
ρ,ϛ algorithm parameters in the line search method
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computational accuracy and efficiency. Moreau et al. (2015) proposed a 
nonlocal computing scheme that integrates a thick-level set approach, 
which limits nonlocal computation to a scope marginally greater than 
the shear band. In the algorithm proposed by Tang et al. (2021), the 
search scope is limited to a smaller region, as opposed to considering all 
integration points. Specifically, it focuses on the neighbourhood inte
gration points of the target integration point, along with those of 
neighbourhood integration points from the preceding time step. The 
core idea of the above computing schemes is to reduce the scope of 
nonlocal calculations spatially or to reduce the frequency of nonlocal 
calculations temporally. Alternatively, the computational efficiency of 
nonlocal models can be further improved by combining efficient 
neighbourhood search algorithms such as the r-tree algorithm, k-d tree 
algorithm, or the octree algorithm. Compared to the widely used 
traversal algorithm in nonlocal computing, these algorithms theoreti
cally have lower time complexity and are more suitable for performing 
large-scale data search tasks. For instance, Fernández-Fernández et al. 
(2022) improved the neighbourhood search efficiency of SPH 
(Smoothed Particle Hydrodynamics) simulation by employing the octree 
algorithm. Compared to the well-established Cell-Linked-List method, 
their method achieves up to a 1.9 × speedup in the numerical simula
tions involving millions of particles. Through numerical analyses 
involving varying numbers of material points, Vazic et al. (2020) eval
uated the performance of several family search algorithms in Peridy
namics simulations, including traverse search, region partitioning, 
enhanced r-tree with packing, and balanced k-d tree algorithms. The 
results indicate that traverse search exhibits the poorest performance, 
whereas the boosted r-tree algorithm emerges as the most efficient 
among the four evaluated. This paper presents an efficient nonlocal 
computational framework that combines the octree algorithm with a 
local-nonlocal hybrid computing strategy to enhance nonlocal models’ 
computational efficiency in large-scale numerical analyses.

The remainder of this paper is organized as follows: In Section 2, we 
first briefly review the fundamentals of the nonlocal integral method 
and then reveal the influence mechanism of characteristic length on the 
load–displacement response from an analytical perspective. A scaled 
nonlocal method is proposed to eliminate the characteristic length 
sensitivity of the nonlocal model. In Section 3, we apply the proposed 
method to a Mohr-Coulomb plasticity damage model. Two acceleration 
strategies are employed in the numerical implementation of the model. 
In Section 4, numerical examples with varying element sizes and char
acteristic lengths are used to evaluate the effectiveness of the proposed 
methods. The main conclusions are presented in Section 5.

2. Scaled nonlocal integral method

The fundamental concepts of the nonlocal method are briefly 
reviewed. Building upon the over-nonlocal formulation (Di Luzio and 
Bažant, 2005), an analytical solution is derived for a 1D boundary value 
problem, elucidating the intrinsic relationship between characteristic 
length and load–displacement response. Finally, a scaled nonlocal 
method, insensitive to the material characteristic length, is proposed.

2.1. Nonlocal integral method

The over-nonlocal formulation is defined as the linear interpolation 
between the standard nonlocal constitutive variable and the local 
constitutive variable. Previous studies (Huang et al., 2018; Lu et al., 
2009) have demonstrated that the over-nonlocal formulation effectively 
preserves the PDEs’ well-posedness when using the strain-softening 
model. The over-nonlocal formulation is expressed as: 

κ̂(x) = (1 − m)κ(x)+m
∫

Vw∞(x, ξ)κ(ξ)dξ
∫

Vw∞(x, ξ)dξ
(1) 

where κ and κ̂ respectively represent the local variable and the corre

sponding nonlocal variable. m is an interpolation coefficient. Eq. (1)
degenerates into a local formula when m = 0 and into a standard 
nonlocal formula when m = 1. V denotes the integral domain. w∞(x, ξ)
is a spatial weight function centred around the coordinate x. In this 
work, the weight function of the bilinear exponential type shown in 
Fig. 1(a) is adopted, defined as follows: 

w∞(x, ξ) =
1
aw

e−
‖ξ− x‖

lc (2) 

where lc is the characteristic length. aw is a constant used to normalize 
the weight function, aw = 2lc for the 1D conditions, aw = 2πl2c for the 2D 
conditions, and aw = 8πl3c for the 3D conditions.

Generally, the weight function will adopt a truncated form to 
enhance the computational efficiency of the nonlocal model. 

w∞(x, ξ) =
{

w∞, ‖ξ − x‖ ≤ R
0, ‖ξ − x‖ > R (3) 

where R denotes the neighbourhood radius, as shown in Fig. 1(b). A 
default value of R = 2lc (Galavi and Schweiger, 2010) is adopted in this 
paper.

2.2. Localization analysis and scaled nonlocal method

To explore the essential influence of characteristic length on the 
global response, we first narrow the research scope to the 1D condition 
to simplify the analysis. As depicted in Fig. 2, the bar has a fixed left end 
and a right end that is subjected to a tensile load. The length of the bar is 
denoted as L, and the displacement at the right end is represented by u. 
Without loss of generality, the strain localization is assumed to start at 
the neutral axis x = 0 of the bar. When the stress reaches the yield stress, 
the plastic deformation occurs within a localization zone of width w, 
while elastic unloading occurs outside the localization zone.

During the plastic deformation stage, the governing equations of the 
1D local elastoplasticity model is expressed as: 

σ = E(ε − εp) (4) 

f(σ, εp) = σ − σ0H(εp) = 0 (5) 

where σ, ε, and εp represent the stress, total strain, and plastic strain, 
respectively. H(⋅) represents the normalized softening function. E rep
resents Young’s modulus. σ0 denotes the yield stress.

The key to developing a nonlocal model from a local model lies in 
replacing the constitutive variable controlling the strain-softening 
behaviour with the nonlocal variable. The nonlocal plasticity model 
corresponding to Eq. (4) and Eq. (5) is represented by: 

σ = E(ε − ε̂p
) (6) 

f(σ, ε̂p
) = σ − σ0H(ε̂p

) = 0 (7) 

where ε̂p is the nonlocal plastic strain.
Eq. (7) can be written as: 

ε̂p
(x) = H− 1

(
σ
σ0

)

(8) 

where H− 1(⋅) represents the inverse function of H(⋅).
Substituting Eq. (1) and Eq. (2) into Eq. (8), we can obtain: 

εp(x)+
m

2lc(1 − m)

∫ w/2

− w/2
e
− |ξ− x|

lc εp(ξ)dξ =
H− 1(σ/σ0)

(1 − m)
(9) 

The form of Eq. (9) satisfies the Fredholm integral equation of the 
second kind (Polyanin and Manzhirov, 2008). According to the deriva
tion in Appendix A, the solution of εp(x) within the strain localization 
zone is given with the limitation condition of m > 1 as follows: 
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εp(x) = H− 1
(

σ
σ0

)[ ̅̅̅̅̅̅̅̅̅̅̅̅̅
m

m − 1

√

cos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ 1
]

, −
w
2
≤ x ≤

w
2

(10) 

where the expression for the localization zone width w can be found in 
Eq. (A39).

By integrating Eq. (10) over the interval [ − w/2 ≤ x ≤ w/2], the 
displacement up of the right end of the bar induced by the plastic strain is 
obtained by: 

up = wH− 1
(

σ
σ0

)

(11) 

In what follows, we first present the relationship between load (F) 
and plastic displacement (up), as the characteristic length primarily af
fects the plastic deformation behaviour of the bar. Eq. (11) can be easily 
rewritten as: 

σ = σ0H
(

up

w

)

(12) 

Substituting the expression of w presented in Eq. (A39) into Eq. (12)
and multiplying both sides by the cross-sectional area S of the bar, one 
can obtain the relationship between the load and the plastic displace
ment as follows: 

F = σS = σ0SH
(

1
dm

up

lc

)

(13) 

where dm = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ (
π − arctan

(
1/

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ ) )
. From Eq. (A39), we 

know that w = dmlc. m is required to be greater than 1 for the locali
zation analysis. Details can be found in Appendix A.

From Eq. (13), it is evident that lc appears in the denominator, 
implying that modifying lc essentially scales the load–displacement 
response on the plastic displacement axis. The apparent changes in 
structure softening rate are artifacts of this scaling, as shown in Fig. 3.

Based on this insight, let’s assume that the influence of lc on load 
displacement response can be counteracted by introducing a dimen
sionless scaling factor η into the softening function of Eq. (7). 

σ − σ0H
(
ηε̂p

m
)
= 0 (14) 

By using Eq. (14) instead of Eq. (7), Eq. (9) can be re-written as 
follows: 

εp(x)+
m

2lc(1 − m)

∫ w/2

− w/2
e
− |ξ− x|

lc εp(ξ)dξ =
1
η

H− 1(σ/σ0)

(1 − m)
(15) 

Repeating the solving process of the Fredholm integral equation in 
Appendix A and Appendix C, we can yield: 

εp(x) =
H− 1(σ/σ0)

η

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅
m

m − 1

√

cos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ 1
]

, −
w
2
≤ x ≤

w
2

(16) 

It is worth emphasizing that in the derivation process of Eq. (16), 1/η 
can be regarded as a constant multiplied by H− 1(σ/σ0), which does not 
affect the solution of the shear band width w. By integrating Eq. (16)

Fig. 1. Nonlocal integral method: (a) weight function curves; (b) integration points and interaction domain.

Fig. 2. Geometry and boundary conditions of the bar.

Fig. 3. Influence of characteristic length change on the load–displace
ment curve.
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over the interval [ − w/2 ≤ x ≤ w/2], we can yield: 

up =
w
ηH− 1

(
σ
σ0

)

(17) 

By analogy with the derivation process of Eq. (11) to Eq. (13), the 
analytical relationship between load and plastic displacement can be 
obtained again as follows: 

F = σ0SH
(

1
dm

η
lc

up
)

(18) 

When lc changes to lsc, η is required to be adjusted to ηs to ensure the 
unique load–displacement response during the softening stage. Then, 
Eq. (18) can be rewritten as: 

F = σ0SH
(

1
dm

ηs

lsc
up
)

(19) 

It’s not hard to see that the scaling factor and characteristic length 
satisfy the following constraint equation: 

η
lc
=

ηs

lsc
(20) 

Eq. (20) is the core formula of the proposed scaled nonlocal method, 
which applies a scaling factor to adjust the nonlocal variable, compen
sating for the influences of characteristic length variations on the 
load–displacement response. The proposed method is valid for any 
softening law, as the derivation process does not assume a specific form 
of the softening function. It is also simple, requiring only the multipli
cation of a scaling factor with the nonlocal variable, without any other 
adjustments. When the characteristic length changes, the scaling factor 
is adjusted proportionally. In practical applications, we can simply make 
lc/lFE = constant > 1 to obtain the load–displacement responses insen
sitive to both element size (lFE) and characteristic length. See the 
following Section 4.3 for details.

In what follows, the analytical relationship between the load (F) and 
the total displacement (u) is derived. The total strain of the bar can be 
expressed as follows: 

ε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

εp(x) +
σ
E

−
w
2
≤ x ≤

w
2

σ
E

−
L
2
≤ x < −

w
2
,

w
2
< x ≤

L
2

(21) 

Integrating Eq. (21) over the interval [ − L/2 ≤ x ≤ L/2] yields: 

u = up +
σL
E

=
w
ηH− 1

(
σ
σ0

)

+
σL
E

(22) 

It is difficult to derive the analytic F(u) without giving the specific 
form of H(⋅). Let’s assume H(ε̂p

) = 1 − As ε̂p, where As is the softening 
parameter. Then, Eq. (22) can be expressed as follows: 

u =
w
η
(σ0 − σ)

Asσ0
+

σL
E

(23) 

Performing some manipulations yields: 

σ =
u − w

ηAs
L
E −

w
ηAsσ0

(24) 

Substituting Eq. (A39) into Eq. (24) and multiplying both sides by S, 
we can obtain the relationship between the load and the total 
displacement as follows: 

F =
uS − Sdm

As

lc
η

L
E −

dm
Asσ0

lc
η

(25) 

It can be found that the influence of lc on the load-total displacement 
response can still be eliminated by using the scaling formula Eq. (20). 

Remark 1. The softening rate scaling method compensates for the 

influence of changing lc on the load–displacement response by adjusting the 
material parameter that controls the softening rate in the constitutive model. 
Although this method does not inherently reveal the relationship between lc 
and the load–displacement response, they may still be valid in certain cases. 
When the softening parameter is the coefficient of the nonlocal variable, 
adjusting the softening coefficient essentially scales the nonlocal variable. But 
this is just a coincidence. Not all softening functions satisfy this condition.

Remark 2. The derivation process presented above assumes a uniform 
stress distribution along the 1D bar. However, it is important to emphasize 
that when a stress gradient is present, the size of the localization zone becomes 
load-dependent and is not solely governed by the material characteristic 
length (Challamel et al., 2008a; Challamel et al., 2008b). In the proposed 
scaled nonlocal method, the load-total displacement response is not sensitive 
to the material characteristic length. Instead, it remains dependent on 
structural dimensions, such as the length scale of the bar, as shown in Eq. 
(25).

Remark 3. In particular, in order to prevent scaled nonlocal method from 
modifying the model response in the homogeneous case, a judgment condition 
can be considered by η = 1 if |κ̂ − κ| ≤ Te where Te denote a small threshold. 
Its meaning is that when the structure is in the stage of uniform deformation 
there is no need to perform the scaling operation because the change in 
characteristic length will not change the load–displacement response.

3. Application of scaled nonlocal method in the Mohr-Coulomb 
plasticity damage model

The proposed scaled nonlocal approach is applied to a Mohr- 
Coulomb plasticity damage model, which is based on the concept of 
effective stress which refers to the stress acting on the undamaged 
configuration of the material. The nominal softening behaviour of the 
damaged configuration is controlled by the damage variable. The gov
erning equations for the plastic component can be summarized as fol
lows: 
⎧
⎪⎪⎨

⎪⎪⎩

dσ=D0 :(dε − dεp) Hooke’s law
dεp =dϕr Flowrule
dκp=dϕhp Hardening law

dϕ≥0,f(σ,κp)≤0, anddϕf(σ,κp)=0 Karush − Kuhn − Tucker conditions
(26) 

where D0 is the undamaged elastic stiffness matrix. ε and εp denote the 
total and plastic strain tensors, respectively. σ represents the effective 
stress tensor. dϕ is the plastic multiplier. In the non-associated flow rule, 
the plastic flow direction denoted by r is determined by the gradient ∂g/
∂σ of the plastic potential function g. κp is the plastic internal variable. hp 

is the gradient of κp, and its functional form is related to the selected 
internal variable form. f(σ, κp) denotes the yield function.

The nominal stress tensor can be obtained by the strain equivalence 
hypothesis: 

σ = (1 − ω)σ = (1 − ω)D0 : (ε − εp) (27) 

where σ is the nominal stress tensor acting on the damaged configura
tion of the material. ω

(
κ̂d) and κ̂d denote the damage variable and the 

nonlocal damage internal variable, respectively. In the following con
tent, details about the constitutive model are first elucidated. Then, the 
model implementation is introduced from both plasticity and damage 
aspects.

3.1. Mohr-coulomb plasticity damage model

In the numerical implementation, the Mohr-Coulomb yield function 
is typically expressed as a function of the following stress invariants: 

f = Rmc(θ)q+Mp − K (28) 
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where q, p, and θ are generalized shear stress, mean stress, and Lode 
angle defined by the effective stress. 

p =
1
3

σ : 1 (29) 

q =

̅̅̅̅̅̅̅̅

3J2

√

(30) 

θ =
1
3

arccos

(
3
̅̅̅
3

√
J3

2J3/2
2

)

(31) 

where J2 = 1
2 s : s and J3 = det(s) represent the invariants of stress 

deviator s = σ − p1 where 1 is the 2nd-order unit tensor. The introduc
tion of Rmc(θ) can be found in Appendix B.

M and K are expressed as: 

M = 6sinφ/
( ̅̅̅

3
√

(3 − sinφ)
)

(32) 

K = 6ccosφ/
( ̅̅̅

3
√

(3 − sinφ)
)

(33) 

where φ denotes the internal friction angle. c is the effective cohesion, 
which is considered as the hardening parameter: 

c = c0Hp(κp) (34) 

where c0 is the initial cohesive strength. Hp is the hardening function. In 
the presented model, ideal plasticity is adopted, i.e., c = c0. The 
equivalent plastic shear strain εp

d is considered as the plastic internal 
variable, i.e., κp = εp

d, and thus Eq. (26)2 can be reformulated as: 

κp = dϕ
∂g
∂q

(35) 

where g denotes the plastic potential function. The form of the plastic 
potential function suggested by ABAQUS software is adopted in this 
paper. 

g =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∊c0)
2
+ (Rmwq)2

√

+ ptanψ − c0 (36) 

where ∊ is the meridional eccentricity. The default value of ∊ is 0.1. ψ is 
the dilatancy angle. Rmw is the shape function of g, the details of which 
are also introduced in Appendix B.

The following three common forms of damage variable will be 
considered in the numerical examples of Section 4 to evaluate the 
effectiveness of the scaled nonlocal method. 

ω =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − As κ̂d Linear type

1 − exp
(
As κ̂d) Exponential type

1 −
κ̂d

+ 1
As(κd)

2
+ κ̂d

+ 1
Rational fraction type

(37) 

where κ̂d denotes the nonlocal damage internal variable, i.e., κ̂d
= ε̂p

d. 
In the presented model, the equivalent plastic shear strain is considered 
as both the damage and plastic internal variables simultaneously. Here, 
we adopt the suggestion by Grassl and Jirásek (2006) that only κ̂d is 
nonlocal while κp remains local. The advantage of this consideration lies 
in the consistency condition that needs to be satisfied during the plastic 
calculation process, which is independent of the nonlocal calculation 
and helps to improve the stability of numerical calculations.

Under the 1D condition, Eq. (27) can yield: 

σ = (1 − ω)σ (38) 

For ideal plasticity, the effective stress equals the initial yield stress 
during loading, i.e., σ = σ0. Eq. (38) can be written as: 

σ = (1 − ω)σ0 (39) 

Considering Eq. (39) and Eq. (5), it can be found that the damage 
variable has the following relationship with the softening function: 

H = 1 − ω (40) 

Substituting Eq. (40) into Eq. (39), Eq. (39) can be transformed into 
Eq. (8), which indicates that the scaled nonlocal method is also appli
cable to the plasticity damage model.

3.2. Plastic calculation

Using the backward Euler method, Eq. (26) is transformed as: 
⎧
⎪⎪⎨

⎪⎪⎩

σn+1 − σn − D0 : (Δεn+1 − rn+1Δϕn+1) = 0
κp

n+1 − κp
n − Δϕn+1hp

n+1 = 0
Δϕn+1 ≥ 0, fn+1 ≤ 0,Δϕn+1fn+1 = 0

(41) 

In the plastic calculation, the variables at step n + 1, including σn+1, 
κp

n+1, and Δϕn+1, are obtained by solving Eq. (41), where the known 
conditions are the values of these variables at step n, as well as the strain 
increment Δεn+1 of the current loading step. Following the return 
mapping stress update algorithm (Yu et al., 2024), the solution pro
cedure of Eq. (41) is divided into two steps: elastic prediction and plastic 
correction, as shown in Fig. 4(a). First, the elastic trial stress is calculated 
through Hooke’s law: σtrial

n+1 = σn + D0 : Δεn+1. If σtrial
n+1 lies inside the 

current yield surface, i.e., f
(
σtrial

n+1, κp
n
)
≤ 0, only elastic deformation oc

curs during the current loading step. σtrial
n+1 is accepted as the true stress 

σn+1 at step n + 1. The values of variables at step n + 1 are obtained by 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σn+1 = σn + D0 : Δεn+1

κp
n+1 = κp

n

εp
n+1 = εp

n

Δϕn+1 = 0

(42) 

If σtrial
n+1 exceeds the current yield surface, i.e., f

(
σtrial

n+1, κp
n
)
> 0, it in

dicates that the material has undergone plastic flow. The following 
nonlinear equations need to be solved to conduct the plastic correction: 

{f}n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

σn+1 − σn − D0 : (Δεn+1 − rn+1Δϕn+1)

κp
n+1 − κp

n − Δϕn+1hp
n+1

f(σn+1, κp
n+1)

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
(43) 

Generally, the Newton-Raphson method is commonly employed to 
solve nonlinear systems of equations during plastic correction due to its 
quadratic convergence rate. However, the Newton-Raphson method 
may encounter convergence difficulties when the load increment is too 
large or the nonlinearity of the constitutive model is too strong. Herein, 
the line search method is employed to replace the Newton-Raphson 
method for solving Eq. (43). The fundamental concept of this method 
is to enhance the solution’s convergence by making the search step size 
as optimal as possible. The iterative formula of the line search method is: 

{x}k+1
n+1 = {x}k

n+1 +αk{d}k
n+1 (44) 

where {x}n+1 =
{

σn+1 κp
n+1 Δϕn+1

}T. {d} = − [J]− 1
{f(x) } is the 

search direction. [J] is the Jacobian matrix and [J] = [∂f/∂x]. The 
determination of [J] requires derivatives of the nonlinear stress integral 
equation system with respect to the independent variables. For the 
Mohr-Coulomb model, details of these derivative terms can be found in 
the literature (Zhou et al., 2023). α is the search step size, which is ob
tained through the following iterative formula (Zhou et al., 2022): 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Accept αk
j and exit IF Φ

(
αk

j

)
<
(

1 − 2ραk
j

)
Φ(0)

αk
j+1 = max

⎡

⎣ϛαk
j ,

Φ(0)

Φ(0) + Φ
(

αk
j

)

⎤

⎦ ELSE

(45) 

where ρ and ϛ are both algorithm parameters. Recommended values 
from the literature (Scherzinger, 2017) are 10− 4 and 0.1, respectively. Φ 
is the merit function corresponding to the nonlinear system of equations 
Eq. (43). 

Φ
(

αk
j

)
=

1
2

{
f
(

xn + αk
j {d}k

n+1

)}T{
f
(

xn + αk
j {d}k

n+1

)}
(46) 

Eq. (45) employs an inexact line search technique that does not 
require the search step size to be the optimal value but rather a relatively 
optimal range for the current search direction, as shown in Fig. 4 (b). 
The standard Newton-Raphson method is a special case of the line search 
method when α = 1.

3.3. Nonlocal damage calculation

In the damage calculation, the nonlocal damage internal variable 
defined by Eq. (1) is computed using the discrete form: 

κ̂d
n+1 = (1 − m)κd

n+1,i + m
∑NIP

j=1,j∕=ivjwjκd
n,j + viwiκd

n+1,i
∑NIP

j=1vjwj
(47) 

where NIP represents the total number of neighbourhood integration 
points. vj and wj represent the element volume and weight value, 
respectively. The value of m needs to be greater than 1 to ensure the 
effectiveness of regularization, and should not be too large to cause 
potential numerical instability. The default value of m = 1.1 is used 
herein.

κ̂d
n+1 obtained by Eq. (47) will be further used to calculate the 

damage variable ω
(

κ̂d
n+1
)
. The nominal stress at n + 1 step is obtained by 

putting ω
(

κ̂d
n+1
)

into Eq. (27): 

σn+1 =
(
1 − ω

(
κ̂d

n+1

) )
σn+1 (48) 

Computing the nonlocal variable requires information about neigh
bourhood integration points. Generally, the traversal algorithm is 
widely used to search neighbourhood integration points due to its simple 
structure. However, the traversal algorithm is not suitable for large-scale 
numerical examples since its time complexity is O(N). To improve the 
computational efficiency, we employ an Octree-nonlocal computation 

method, which consists of two acceleration approaches: (i) a local- 
nonlocal hybrid computing strategy. Nonlocal computation is initiated 
only during the softening stage, while those during the hardening stage 
adheres to the local computation. The threshold condition for nonlocal 
computation is set to εp

d ≥ 10− 4. A similar acceleration strategy can be 
found in the literature (Mánica et al., 2018). (ii) The Octree algorithm. 
When performing radius neighbourhood search operations, its time 
complexity is O(logN+M) (Bédorf et al., 2012; Ram and Sinha, 2019), 
meaning that as the data size increases, the algorithm’s running time 
grows more slowly. Here, N and M denote the total number of data 
points and the number of data points within the query radius, respec
tively. It is worth noting that in worst-case scenarios involving large 
search radius or unbalanced trees, octree may degrade to O(N), while k- 
d tree maintains O(N1− 1/d +M) (de Berg et al., 2008; Samoladas et al., 
2022) in the d-dimensional space. Theoretically, the k-d tree algorithm 
may hold an advantage due to its lower time complexity in the worst 
case. However, for the segmentation and search of 3D data, the octree 
algorithm is simpler to implement and offers greater performance po
tential in practice. The research by Behley et al. (2015) demonstrates 
that by pruning irrelevant subtrees, the optimized octree algorithm 
achieves speedups of 1.2–2.7 × compared to the best k-d tree imple
mentations across different datasets. Consequently, the octree algorithm 
was adopted in this work to handle neighbourhood search tasks in 
nonlocal computations.

The Octree, also known as the quadtree in 2D conditions. The octree 
algorithm’s search procedure comprises two stages. Step 1: Constructing 
a tree data structure. First, construct a root node space (a cube for 3D 
cases or a square for 2D cases) that covers the entire computational 
domain. Then, recursively divide each node space into 4 equal parts for 
2D cases (or 8 equal parts for 3D cases). The termination condition for 
division is defined arbitrarily. For example, in Fig. 5, the termination 
condition is that each node space accommodates no more than five 
integration points. Node spaces that are not further divided are called 
leaf node spaces, which store all the information of the integration 
points.

Step 2: Searching for the neighbourhood integration points. As shown 
in Fig. 6, the search initiates from the root node space to identify the leaf 
node spaces that intersect with the vicinity of the point of interest, 
known as the near-leaf node spaces. If a node space has no overlap with 
the neighbourhood of the current integration point, such as node spaces 
① and ② in Fig. 6, then this node space and its child node spaces will be 
directly excluded. In practical calculations, to facilitate the determina
tion of whether the neighbourhood overlaps with the node space, the 
circular neighbourhood can be replaced with a square that is adjacent to 
it. Finally, the neighbourhood integration points are acquired by 

Fig. 4. Line search based-return mapping algorithm: (a) elastic prediction and plastic correction; (b) line search method.
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evaluating the distances between the current integration point and 
integration points in near-leaf node spaces. It is worth noting that in the 
octree search algorithm, we first determine if the node-space overlaps 
with the neighbourhood of the interest point. If so, further judgment is 
performed to confirm if its child node spaces and corresponding inte
gration points indeed fall into the neighbourhood of interest point. 
Although node space ③ does not contain nodes within the neighbour
hood of the current integration point directly, there is a minor overlap 
between the two. Therefore, a search task needs to be executed for node 
space ③.

3.4. Numerical implementation

The nonlocal Mohr-Coulomb plasticity damage model and octree- 
nonlocal computation method have been implemented into the ABA
QUS software via the UMAT subroutine. Unlike the numerical imple
mentation of local models, nonlocal models require accessing 
information from neighbourhood integration points to calculate the 
nonlocal variable, as shown in Eq. (47). To enable this nonlocal calcu
lation, we have customized two FORTRAN modules, named GlobalVar 
and OctreeAlg, as shown in Fig. 7(a).

Fig. 5. Construction of the tree data structure.

Fig. 6. Neighbourhood search process based on the tree data structure.
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The octree algorithm used to search neighbourhood integration 
points is encapsulated in the OctreeAlg module. It encapsulates the 
necessary data types and core functionalities for the algorithm. Inside 
the OctreeAlg module, we utilize FORTRAN’s Type statement to 
customize two data types: “point” and “node”. The “point” type stores 
essential information for a single integration point, such as coordinates 
and local variable. The “node” type describes the node space of the 
octree, containing the spatial domain it represents (dimensions, posi
tion), pointers to its child node spaces and parent node spaces (estab
lishing the hierarchical structure), and a list of integration points 
residing within its spatial bounds. In addition, the module defines three 
internal subroutines using the Contains keyword. Subroutine allocate_
points_in_range(…) and build_octree(…): These two subroutines are 
responsible for constructing the octree data structure. It recursively 
partitions the computational domain space into smaller cubes for the 3D 
cases or squares for the 2D cases and distributes the integration points 
into their final leaf node spaces, continuing until predefined termination 
criteria are met. It is worth emphasizing that octree reconstruction oc
curs at each increment’s start, using integration point coordinates from 
the current configuration if NLGEOM=ON (otherwise, initial co
ordinates). Thus, this method is not only applicable to small strains but 
also to finite strains. Subroutine search_octree(…): This subroutine 
performs an efficient search for the neighbourhood integration points. 
Starting from the root node space, it leverages the spatial relationship 
between the target neighbourhood and the node spaces to rapidly 
exclude vast regions of irrelevant node spaces. It ultimately returns only 
the leaf nodes that intersect with the target neighbourhood. The final 
neighbourhood points are then determined by examining the integration 
points stored within these few relevant leaf nodes, dramatically 
reducing the search costs compared to a global traversal algorithm. 
Within the UMAT subroutine, this encapsulated module is accessed via 
the Use OctreeAlg statement. Specifically, the allocate_points_in_range 
and build_octree subroutines are called, typically at the start of an 
increment or as needed, to build or update the octree structure. The 
search_octree subroutine is called to perform the efficient spatial search. 
Both the construction logic and the search queries are fully encapsulated 
within the OctreeAlg module and invoked directly by UMAT.

In the GlobalVar module, three global arrays (with the SAVE attri
bute by default) are declared: GPold(NEL, NIP, 4) stores the information 
(coordinates and local variables) for all integration points in the whole 
computation domain at step n; GPnew(NEL, NIP, 4) is used to record the 
information for these points at step n + 1; and Volint(NEL, NIP, 1) stores 
the element volume associated with each integration point, obtained via 
the USDFLD subroutine. Here, NEL is the total number of elements, and 
NIP is the number of integration points per element. At the start of each 
new increment step, the operation GPold = GPnew is performed once. 
This updates the reference state to the converged state from the end of 
the previous increment. During subsequent UMAT calls within the 
increment, the GPnew array is progressively updated for the currently 
processed integration point with its value of the local variable at step n 
+ 1. When computing the nonlocal variable by Eq. (47), only the local 
variable of the current integration point utilizes the value at step n + 1. 
In contrast, the local variables of all other neighbourhood integration 
points utilize values at step n, accessed via the GPold array. It can be 
found that there is a temporal discrepancy for the semi-implicit inte
gration scheme employed in Eq. (47). This design is a deliberate choice 
made to balance computational efficiency with accuracy – a common 
consideration in implementing nonlocal integral models. Crucially, it 
avoids the tedious interaction between different integration points 
caused by iterative updates of local variables within one time step. The 
resulting error is manageable and acceptable given that its magnitude 

Fig. 7. Numerical implementation of the nonlocal model: (a) general flow; (b) 
stress update process.
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scales with the size of the time step, especially when the small time 
increments are used. This approach has been successfully applied in 
implementations of nonlocal models, as seen in references (Mánica 
et al., 2018; Rolshoven, 2003). Fig. 7(a) illustrates the main functions, 
data flow, and call sequence of the subroutines and modules described 
above. Fig. 7(b) details the stress update process of the nonlocal Mohr- 
Coulomb plasticity damage model.

FORTRAN provides two ways to define global variables, namely 
COMMON blocks and Modules. Modules were chosen over COMMON 
blocks for defining these global arrays primarily due to their support for 
allocatable arrays and encapsulation, which significantly enhance code 
maintainability. The SAVE attribute of module variables ensures their 
persistence between UMAT and other subroutine calls. The UMAT code 
for any given integration point accesses the global data via Use 
GlobalVar.

It should be emphasized that the softening curve is a post-bifurcating 
branch. Mathematically, bifurcation signifies the emergence of multiple 
solutions satisfying the equilibrium equations and boundary conditions. 
In practice, material imperfections or other inhomogeneities lead to the 
selection of a single solution from these possibilities (Varas et al., 2005). 
Consequently, from the perspective of bifurcation theory, the softening 
curve depends on initial imperfections and perturbations (de Borst, 
1987). This work does not challenge these physical foundations nor 
claim “constitutive reality” for softening behaviour. Given the 
complexity and path-dependent microstructural evolution of geo
materials, developing universal first-principles constitutive equations 
currently remains impractical. Within this context, phenomenological 
softening models embed the softening branch into governing equations 
as a pragmatic and relatively simple approach. Widely adopted models, 
e.g., Sanisand model (Taiebat and Dafalias, 2008) and Concrete 
damaged plasticity model (Lee and Fenves, 1998), validate the practical 
utility of this methodology. It provides tractable computational models 
for describing macroscopic behaviours of geomaterials, serving engi
neering analyses such as foundation bearing capacity, slope failure 
analysis, and tunnel stability assessment.

The core contribution of this work lies in enhancing the numerical 
reliability and computational efficiency of these practical phenomeno
logical models. While conventional nonlocal methods mitigate mesh 
dependency, the regularization parameter (i.e., the characteristic length 
lc) still significantly biases predictions of structural softening responses. 
The proposed scaled nonlocal method directly addresses this issue. 
During our investigation of the 1D nonlocal response in a rod under 
tension, we observed that the distribution of plastic strain satisfies a 
Fredholm integral equation of the second kind, which furnishes a solid 
analytical foundation for exploring how the characteristic length in
fluences the nonlocal response. From the derived 1D analytical solution, 
we found that variations in characteristic length induce proportional 
scaling of load–displacement response along the plastic displacement 
axis. Exploiting this insight, we proposed a scaling expression (i.e., Eq. 
(20)) to eliminate the influence of the characteristic length on the pre
dicted structural softening response, thereby ensuring uniqueness and 
objectivity regardless of mesh size or characteristic length. Subse
quently, this scaled nonlocal method is applied to a Mohr–Coulomb 
plasticity damage model. The model is further implemented numerically 
via an efficient nonlocal computation method, which integrates an 
octree-based neighbourhood search technique and a local–nonlocal 
hybrid computation strategy to overcome the computational bottlenecks 
inherent in nonlocal models. Although the scaled nonlocal method is 
grounded on analytical derivations under 1D conditions, its effective
ness in 2D and 3D settings will be thoroughly validated via numerical 
examples presented in Section 4. It is important to emphasize that the 
purpose of this study is not to define a physical meaning for the char
acteristic length, but rather to mathematically eliminate its interference 
with the structural softening response. This approach can significantly 
enhance the practicality of nonlocal models for failure analysis of en
gineering structures, freeing researchers from concerns related to mesh 

resolution and characteristic length selection.

4. Numerical examples

This section systematically evaluates the performance of the scaled 
nonlocal method through three benchmark boundary value problems: 
(1) 3D bar tension, (2) plane strain compression, and (3) slope instability 
analysis. These examples consider different element sizes, characteristic 
lengths, and forms of softening functions. Particular emphasis is placed 
on evaluating the efficiency of the Octree-nonlocal computation method 
in the last two examples. All numerical experiments were conducted on 
the same workstation with an AMD Ryzen 9 7950X 16-core Processor 
(4.50 GHz) and 64 GB of RAM, with model parameters detailed in 
Table 1.

4.1. Tension problem of a 3D bar

The first benchmark case examines a 3D bar (length 150 mm, cross- 
section 1 mm × 1 mm) under uniaxial tension, where the left end is 
horizontally constrained and the right end undergoes 1 mm prescribed 
displacement, as shown in Fig. 8. To induce strain localization, a cubic 
material imperfection zone with 99.5 % reduced cohesive strength is 
strategically embedded. The finite element model employs uniformly 
distributed 8-node linear brick elements (C3D8) with a mesh size lFE =

1 mm. In this example, three softening laws: linear softening, expo
nential softening, and rational fraction softening, as well as three 
characteristic lengths lc = 5 mm, 10 mm, and 15 mm, are considered. 
The scaling factor is set to η = lc/(10 mm), which ensures that the scaled 
nonlocal model’s load–displacement responses across different charac
teristic lengths will match the original nonlocal model’s solution at lc =

10 mm.
Fig. 9 compares the load–displacement responses of both nonlocal 

models under linear softening. The original model exhibits strong 
characteristic length dependence. As lc increases, the load–displacement 
curves’ softening rate continuously drops. In contrast, the 
load–displacement response from the scaled nonlocal model is insensi
tive to lc. All curves (lc = 5/10/15 mm) collapse onto the original 
model’s solution at lc = 10 mm.

Fig. 10(a) and (b) compare the damage distribution nephogram be
tween both nonlocal models, with the strain localization boundary 
(defined by ω = 10− 4) marked by dark blue dashed lines. It is observed 
that strain localization phenomena are distributed near the weak area. 
The localization zone width predicted by both nonlocal models is 
essentially the same under the same lc and increases proportionally with 
lc. This result is consistent with the conclusion of Eq. (A39): the locali
zation zone width is controlled by the characteristic length. Addition
ally, within the localization zone, the damage degree predicted by the 
original nonlocal model is higher at lc = 5 mm and lower at lc = 15 mm 
than that calculated by the scaled nonlocal model. The difference in the 
damage distribution also suggests that the load–displacement response 
with the original nonlocal model softens faster at lc = 5 mm and slower 
at lc = 15 mm than that with the scaled nonlocal model.

Fig. 11 and Fig. 12 systematically demonstrate the scaled nonlocal 
method’s effectiveness under exponential and rational fraction softening 
laws. Similar to the results presented in Fig. 9, as lc increases, the 

Table 1 
Model parameters used in the boundary problems.

Boundary value problems E/MPa ν c0/kPa φ/◦ ψ/◦ As

Tension problem of a 3D bar 30,000 0.3 20000 20 0.1 20, 20, 
2000

Plane strain compression of 
a rectangle plate

60,000 0.3 10000 20 0.1 4000

Stability analysis of strip 
footing on the slope

20 0.3 8 10 3 8
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softening response obtained by the original nonlocal model gradually 
decreases, showing severe characteristic length sensitivity. Conversely, 
under different characteristic length conditions, all curves obtained by 
the scaled nonlocal model completely overlap. Presented in the 

simulation results of Fig. 9, Fig. 11, and Fig. 12 also indicate that the 
proposed scaled nonlocal method is valid for any form of softening law. 
The influence of the characteristic length on the load–displacement 
response is effectively counteracted by inverse scaling the nonlocal 
variable κ̂d, preserving solution objectivity without empirical 
regularization.

4.2. Plane strain compression test

The compression problem of a rectangular plate under the plane 
strain condition is a benchmark example for evaluating the effectiveness 
of the nonlocal model. As shown in Fig. 13, the plate is 60 mm long and 

Fig. 8. Tension problem of a 3D bar.

Fig. 9. Load displacement curves of the bar with linear softening law: (a) original nonlocal model; (b) scaled nonlocal model.

Fig. 10. Nephogram of damage variable of bar: (a) original nonlocal model; (b) scaled nonlocal model.
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40 mm wide. The bottom end of the plate is constrained vertically. The 
bottom-right corner is constrained horizontally to prevent overall 
movement of the plate. The top of the plate is subjected to a 0.2 mm 
vertical displacement load. A 6 mm × 6 mm weak area at the bottom left 
of the plate initiates strain localization. For simplification, only the 
rational fraction softening law is used in this example.

Fig. 14 and Fig. 15 show simulation results from the local and 
nonlocal models. Spatial discretization uses 4-node plane strain ele
ments (CPE4) across four mesh densities (600–6700 elements). The 
characteristic length of the nonlocal model is set to lc = 2.5 mm. Inev
itably, with mesh refinement, local simulations exhibit a continuous 
reduction in shear band width and an increase in softening response, 
exhibiting pathological mesh dependence. Conversely, the nonlocal 
formulation maintains a very small variation in both shear band width 
and load–displacement curves across all discretization levels, demon
strating consistent regularization capability. In what follows, let’s 
discuss the shear band orientation under different mesh densities. Based 
on the force equilibrium analysis, Coulomb theory defines the upper 
bound of the shear band angle relative to the minor principal stress di
rection (θC = 45◦ + φ/2) suitable for fine-grained materials. Roscoe 
theory establishes the lower bound (θR = 45◦ + ψ/2) suitable for 
coarse-grained materials through the plastic flow rule. Vermeer (1990)
further demonstrated that under plane strain conditions, actual shear 
band angles lie between these theoretical bounds, modulated by particle 
size distribution and boundary constraints. Fig. 14 results show that the 
shear band orientation predicted by the local model changes from 45◦ to 
47◦ for different mesh densities, while the one predicted by the nonlocal 
model remains around 45◦. This simulation result closely approaches the 
Roscoe bound and aligns with DEM (Discrete Element Method) obser
vations by Hazeghian and Soroush (2022) and predictions from the 
nonlocal plasticity model presented by Mánica et al. (2017). However, 
compared to the local model, the shear band orientation predicted by 
the nonlocal model is less sensitive to method size.

The characteristic length sensitivity analysis employs four values: 
lc = 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. The original nonlocal 
model’s result with lc = 1.0 mm is considered as the baseline by setting 
the scaling factor η = lc/(1.0 mm). A mesh density of 6700 elements is 

Fig. 11. Load displacement curves of the bar with exponential softening law: (a) original nonlocal model; (b) scaled nonlocal model.

Fig. 12. Load-displacement curves of the bar with rational fraction softening law: (a) original nonlocal model; (b) scaled nonlocal model.

Fig. 13. Geometry and boundary conditions of 2D plate.
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selected to guarantee that the element size is smaller than the minimum 
characteristic length. Fig. 16 shows the shear bands characterized by 
damage localization. As lc increases, the widths of the shear bands 
predicted by both nonlocal models gradually increase. For the original 
nonlocal model, the degree of damage localization inside the shear band 
gradually decreases with increasing characteristic length, while it re
mains essentially unchanged for the scaled nonlocal model.

Fig. 17 illustrates the load–displacement curves from both nonlocal 
models. The simulation results of the original nonlocal model signifi
cantly depend on lc. As lc increases, the softening response gradually 
decreases, consistent with the changing trend of damage degree inside 
shear bands illustrated in Fig. 16(a). When the scaled nonlocal model is 
used, the predicted load–displacement curves are insensitive to lc and 
overlap with that of the original nonlocal model under the condition of 
lc = 1.0 mm.

In what follows, the computational efficiency of the proposed octree- 
nonlocal method is compared against the traditional nonlocal method 
using the Mohr-Coulomb plasticity damage model presented in Section 
3. CPU time consumption for both methods is recorded across numerical 
examples with varying numbers of elements. There are two key dis
tinctions between the two nonlocal computation methods: (i) Neigh
bourhood search: The traditional method employs a traversal algorithm 
to search neighbourhood points, whereas the proposed method employs 
an octree algorithm. The octree algorithm partitions the computational 
domain into node spaces and evaluates their spatial relationships with 
the target neighbourhood, efficiently excluding irrelevant integration 
points during neighbourhood searches. (ii) Computation Strategy: The 
proposed method adopts a local-nonlocal hybrid computation strategy, 
activating nonlocal computations only within material damage soft
ening zones. In contrast, the traditional method performs nonlocal 

°

°

Fig. 14. Shear bands under different element sizes: (a) local model; (b) scaled nonlocal model.

Fig. 15. Load displacement curves under different element sizes: (a) local model; (b) scaled nonlocal model.
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computations throughout the entire computational domain.
Fig. 18 shows the CPU times consumed by two methods as well as 

their ratio under different numbers of elements. The results show that 
the efficiency advantage of the proposed method is less significant for 
smaller element numbers due to the octree construction overhead. 
However, as the number of elements increases, its efficiency gain be
comes markedly pronounced. The CPU time ratio between the two 
nonlocal methods increased from 1.41 to 4.67 times across meshes 
ranging from 600 to 6700 elements, indicating that the Octree-nonlocal 
computation method significantly improves nonlocal models’ compu
tational efficiency, especially for large-scale numerical examples.

4.3. Slope stability with strip footing

As the last example, we consider an instability problem of strip 
footing on a slope. As shown in Fig. 19, the slope is 12 m in length, 3.5 m 
in width, and has a slope ratio of 2.5. A 2 m wide rigid strip footing is 
positioned at the top of the slope. Although it is a plane strain problem, 
we still employ 3D finite element modelling to demonstrate the effec
tiveness of the proposed methods under 3D circumstances. The bottom 
of the slope is fully constrained, with horizontal displacements fixed on 
both sides. The initial stress in the slope is generated by the gravitational 
load, with a soil weight of γ = 20kN/m3. During the loading process, the 

Fig. 16. Shear bands under different characterize lengths: (a) original nonlocal model; (b) scaled nonlocal model.

Fig. 17. Load displacement curves under characteristic lengths: (a) original nonlocal model; (b) scaled nonlocal model.
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bottom of the rigid footing is subjected to a vertical displacement of u =

0.06 m, simulating the load applied by buildings on the slope.
In this example, only exponential softening laws are considered. Both 

the characteristic length and the element size are simultaneously varied, 
maintaining a constant ratio, i.e., lc/lFE = 1.5. The scaling factor is set to 
η = lc/(0.12 m). Fig. 20 shows the shear bands obtained by both the 
local and scaled nonlocal models. Shear bands develop at the base of the 
rigid foundation on both sides, with those originating from the right side 
predominating and leading to the instability failure of the slope and 
footing. As lFE decreases, the widths of the shear bands predicted by the 
two models decrease. However, the underlying causes differ: in the local 
model, this reduction is attributed to mesh dependence, whereas in the 
scaled nonlocal model, it results from the decrease of lc. It should be 
emphasized that, in the current scaled nonlocal method, lc acts merely as 
a numerical parameter influencing shear band width, rather than an 
intrinsic material property. On the other hand, experimental studies 
(Rechenmacher, 2006) and DEM simulations (Zhuang et al., 2014) have 
revealed that the shear bands of granular materials depend on density, 
particle shape/size, loading paths, and boundaries, as well as their 
widths and orientations developed and evolved during shearing 
(Amirrahmat et al., 2019; Finno et al., 1997), meaning that lc may not a 
fixed parameter. For the scaled nonlocal method, when lc is required to 
describe the width of shear bands observed in experiments, it may be 
considered to establish an intrinsic connection between lc and these 
influencing factors and evolutionary mechanisms.

Fig. 21 shows the corresponding load–displacement curves. In the 
local simulations, the predicted peak load gradually decreases, and the 
post-peak softening curve becomes steeper as the mesh gets finer. 
Therefore, the local model cannot provide objective prediction results 
for failure analysis at the structural level. The load–displacement curves 
obtained from the scaled nonlocal model are insensitive to both element 
size and material characteristic length, demonstrating excellent consis
tency across different conditions.

Fig. 22(a) compares CPU time consumption between the proposed 
Octree-based nonlocal method and the traditional nonlocal method 
across varying numbers of elements. In this analysis, the total loading 
time and increment size were set to 1 s and 0.005 s, respectively, 
resulting in 200 load increments. As the number of elements increased 
from 2,583 to 36,057, the CPU time ratio of the traditional nonlocal 
computation method to the Octree-nonlocal computation method 
increased from 2.59 to 14.14. This demonstrates that the Octree- 
nonlocal computation method offers superior acceleration perfor
mance, even achieving an one order-of-magnitude improvement for 
large-scale simulations. A further comparison of computational effi
ciency between nonlocal and local models is provided in Fig. 22(b). 
Interestingly, for the case with 2583 elements, the CPU time for the 
nonlocal model exceeds that of the local model. However, as the element 
number increases, the CPU time ratio between local and nonlocal 
models increases from 0.86 to 1.40. This result challenges the conven
tional belief that local models typically offer significantly higher 
computational efficiency compared to nonlocal models. This counter
intuitive outcome is further clarified by the analysis of the global 
equilibrium iterations for both the local and nonlocal models, as shown 
in Fig. 23.

At the beginning of the loading process, the total number of global 
equilibrium iterations for both the local and nonlocal models is about 
the same. As deformation progresses, the number of global equilibrium 
iterations for local models rapidly increases, significantly exceeding 
those required for nonlocal models. Specifically, as the number of ele
ments increases, the local model demands more iterations to achieve 
convergence of the global equilibrium equations. This is primarily due to 
the intensification of strain concentration within the shear band, which 
becomes more pronounced with mesh refinement. In contrast, the 
number of iterations for the nonlocal model remains relatively stable 
across different element counts. Therefore, although the local model has 
higher computational efficiency than the nonlocal model in each indi
vidual iteration step, the larger total number of global equilibrium it
erations causes the local model to consume more CPU time compared to 
the proposed scaled nonlocal model. It is worth emphasizing that the 
nonlocal model in Fig. 23 adopts the Octree-nonlocal computation 
method presented in Section 3. The CPU time required by the traditional 
nonlocal computation method is still much higher than that of the local 
model.

5. Conclusions

This study presents a scaled nonlocal method that successfully de
couples load–displacement predictions from both mesh density and 
characteristic length parameters. By deriving an analytical solution for a 
1D bar problem, we rigorously demonstrate that characteristic length 
variations proportionally scale the load-plastic displacement curves, 
artificially altering the apparent softening rate of the structures. 
Leveraging this insight, we introduce a dimensionless scaling factor into 

Fig. 18. Efficiency comparison of two computation methods in the plane strain 
compression test.

Fig. 19. Boundary condition and geometry profile of the slope.
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constitutive relations to neutralize characteristic length dependence and 
further integrate this theoretical advancement into ABAQUS UMAT 
implementation of a Mohr-Coulomb plasticity damage model.

Numerical validation across three boundary value problems, tested 
under diverse discretizations, characteristic lengths, and softening 
functions, confirms the robustness of the proposed method. Our results 
reveal that conventional nonlocal models exhibit characteristic length- 
dependent softening rates, whereas the scaled formulation achieves 
mesh- and length-insensitive responses regardless of softening law spe
cifics. Critically, the characteristic length retains sole control over 
localization zone width, preserving its physical interpretability. To 
address computational bottlenecks, we develop an Octree-nonlocal 

computation method combining the local-nonlocal computation strat
egy (nonlocal computation activated only at softening integration 
points) with an octree-based neighbourhood search technique. This 
computation method achieves 2.59 to 14.14 times speedups over the 
traditional nonlocal method as element counts scale from 2,583 to 
36,057, with efficiency gains surpassing even local models in large-scale 
simulations due to reduced global equilibrium iterations.

Derived from a 1D analytical solution, the scaled nonlocal method 
currently applies only to scalar-valued internal variables, with gener
alization to tensor-valued variables and rigorous proofs to higher di
mensions requiring further investigation. However, its consistent 
accuracy in 2D/3D benchmarks highlights its potential for broader 

Fig. 20. Shear bands of slope under different element sizes: (a) local model; (b) scaled nonlocal model.
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applicability. Future work will therefore prioritize the generalization to 
tensors and higher-dimensional proofs to unlock the method’s full po
tential for advanced softening models and complex geotechnical prob
lems. To facilitate reproducibility and further research, the UMAT 
subroutine associated with this work will be made open-source on 
GitHub (https://github.com/zhouxin615/scaled-nonlocal-model).
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Appendix A. . Derivation of the solution to the integral equation

Eq. (9) can be rewritten as: 

εp(x)+
m

2lc(1 − m)

[∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ +

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

]

=
H− 1(σ/σ0)

(1 − m)
(A1) 

The solution of Eq. (A1) depends on the value of m. When m = 1, by simultaneously multiplying both sides of Eq. (A1) by 2lc(1 − m), one can 
obtain: 
∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ+

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ = 2lcH− 1

(
σ
σ0

)

(A2) 

Eq. (A2) is the Fredholm integral equation of the first kind, where the 1st derivatives of the two integrals with variable limits, 
∫ x
− w/2 e

ξ− x
lc εp(ξ)dξ and 

∫ w/2
x e

x− ξ
lc εp(ξ)dξ, with respect to the variable x can be expressed as follows: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
∫ x
− w/2 e

ξ− x
lc εp(ξ)dξ

dx
= εp(x) −

1
lc

∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ

d
∫ w/2

x e
x− ξ
lc εp(ξ)dξ

dx
= − εp(x) +

1
lc

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

(A3) 

Based on Eq. (A3), the 1st derivative of Eq. (A2) with respect to x can be obtained by: 

εp(x) −
1
lc

∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ − εp(x)+

1
lc

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ = 0 (A4) 

Eq. (A4) simplifies to: 
∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ −

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ = 0 (A5) 

Differentiating Eq. (A5) with respect to x yields: 

εp(x) −
1
lc

∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ+ εp(x) −

1
lc

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ = 0 (A6) 

After performing some manipulations, the following result can be obtained: 

εp(x) =
1

2lc

[∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ +

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

]

(A7) 

Substituting Eq. (A2) into Eq. (A7) yields the solution for εp(x) when m = 1, as follows: 

εp(x) = H− 1
(

σ
σ0

)

(A8) 

It should be noted that, for m = 1, the resulting εp(x) is a uniform solution, which is not suitable for the localization analysis. Next, we proceed to 
derive the solutions for εp(x) under the conditions of m < 1 and m > 1.

Differentiating Eq. (A1) with respect to x yields: 

∂εp(x)
∂x

+
m

2l2c (1 − m)

[

−

∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ +

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

]

= 0 (A9) 

Then, differentiating Eq. (A9) once more with respect to x and applying Eq. (A3) leads to: 

∂2εp(x)
∂x2 +

m
2l2c (1 − m)

[
1
lc

∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ − εp(x) +

1
lc

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ − εp(x)

]

= 0 (A10) 

Eq. (A10) can be rewritten more concisely as follows: 

∂2εp(x)
∂x2 −

mεp(x)
l2c (1 − m)

+
m

2l3c (1 − m)

[∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ +

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

]

= 0 (A11) 

To eliminate the integral term in Eq. (A11), we first perform a simple transformation on Eq. (A1): 

m
2l3c (1 − m)

[ ∫ x

− w/2
e

ξ− x
lc εp(ξ)dξ +

∫ w/2

x
e

x− ξ
lc εp(ξ)dξ

]

=
1
l2c

[
H− 1(σ/σ0)

(1 − m)
− εp(x)

]

(A12) 

Then, submitting Eq. (A12) into Eq. (A11) yields: 

∂2εp(x)
∂x2 −

mεp(x)
l2c (1 − m)

+
1
l2c

[
H− 1(σ/σ0)

(1 − m)
− εp(x)

]

= 0 (A13) 
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Furthermore, Eq. (A13) can be rewritten as the following second-order non-homogeneous ordinary differential equation: 

∂2εp(x)
∂x2 +

εp(x)
l2c (m − 1)

=
1
l2c

H− 1(σ/σ0)

(m − 1)
(A14) 

The characteristic equation, also referred to as the auxiliary equation, for Eq. (A14) is: 

r2 +
1

l2c (m − 1)
= 0 (A15) 

For the case where m < 1, Eq. (A15) has two different real roots: 

r1 =
1

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√ , r2 = −
1

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√ (A16) 

Then, the general solution of the second-order homogeneous ordinary differential equation corresponding to Eq. (A14) is obtained as: 

εp(x) = C1e
x

lc
̅̅̅̅̅̅̅
1− m

√

+C2e−
x

lc
̅̅̅̅̅̅̅
1− m

√

(A17) 

where C1 and C2 are arbitrary constants.
For convenience in subsequent analysis, Eq. (A17) may be rewritten in terms of hyperbolic functions: 

εp(x) = C1

[

cosh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+ sinh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)]

+C2

[

cosh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

− sinh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)]

(A18) 

where cosh(x) = ex+e− x

2 and sinh(x) = ex − e− x

2 are the hyperbolic cosine function and the hyperbolic sine function, respectively. Eq. (A18) simplifies to: 

εp(x) = Ccosh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+Dsinh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

(A19) 

where C = C1 +C2 and D = C1 − C2.
For m > 1, Eq. (A15) has a pair of complex conjugate roots: 

r1 =
i

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ , r2 = −
i

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ (A20) 

where i represents the imaginary unit.
Then, the general solution of the second-order homogeneous ordinary differential equation corresponding to Eq. (A14) for m > 1 is given by: 

εp(x) = Ccos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+Dsin
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

(A21) 

It can be observed that εp∗(x) = H− 1(σ/σ0) is a specific solution of Eq. (A14). 

εp∗(x) = H− 1
(

σ
σ0

)

(A22) 

Combing Eq. (A19), Eq. (A21), and Eq. (A22), we can yield the general solutions of Eq. (A14) under the conditions of m < 1 and m > 1: 

εp(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ccosh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+ Dsinh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+ H− 1
(

σ
σ0

)

m < 1

Ccos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ Dsin
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ H− 1
(

σ
σ0

)

m > 1
(A23) 

Due to the symmetry of the localization phenomenon, only the symmetric part of Eq. (A23) is reserved. 

εp(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ccosh
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+ H− 1
(

σ
σ0

)

m < 1

Ccos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ H− 1
(

σ
σ0

)

m > 1
(A24) 

The function εp(x) satisfies the following Dirichlet and Neumann boundary conditions: 

εp
(
±

w
2

)
= 0,

∂εp(x)
∂x

⃒
⃒
⃒
⃒
x=±

w
2

= ±
1
lc

H− 1(σ/σ0)

(1 − m)
(A25) 

where Eq. (A25)1 denote that at the edge of the localization zone (x = ±w/2), the plastic strain εp(x) must be equal to zero. The boundary conditions 
presented in Eq. (A25)2 are nontrivial, derived from the properties of the Fredholm integral equation of the second kind, as discussed in the literature 
(Polyanin and Manzhirov, 2008). Appendix C presents a detailed derivation of Eq. (A25)2. In this section, we directly present the results to maintain 
the readability of the paper.

First, we discuss the case where m < 1. Substituting Eq. (A24)1 into Eq. (A25) yields: 
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εp
(
±

w
2

)
= Ccosh

(
±w

2lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

+H− 1
(

σ
σ0

)

= 0 (A26) 

∂εp(x)
∂x

⃒
⃒
⃒
⃒
x=±

w
2

=
C

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√ sinh
(

±w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

= ±
1
lc

H− 1(σ/σ0)

(1 − m)
(A27) 

Because εp(x) is an even function and ∂εp(x)/∂x is an odd function, after some manipulations, Eq. (A26) and Eq. (A27) simplify to: 

cosh
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

= −
H− 1(σ/σ0)

C
(A28) 

sinh
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

=
1
C

H− 1(σ/σ0)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√ (A29) 

Eq. (A29) divided by Eq. (A28) gives: 

tanh
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√

)

= −
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − m

√ < 0 and m < 1⇒w < 0 (A30) 

Eq. (A30) means that the solution of εp(x) has no physical meaning due to w < 0. Next, we consider the case where m > 1. Substituting Eq. (A24)2
into Eq. (A25) yields: 

εp
(
±

w
2

)
= Ccos

(
±w

2lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+H− 1
(

σ
σ0

)

= 0 (A31) 

∂εp(x)
∂x

⃒
⃒
⃒
⃒
x=±

w
2

= −
C

lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ sin
(

±w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

= ±
1
lc

H− 1(σ/σ0)

(1 − m)
(A32) 

Considering the Odevity of trigonometric functions, Eq. (A31) and Eq. (A32) simplify to: 

cos
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

= −
H− 1(σ/σ0)

C
(A33) 

sin
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

=
H− 1(σ/σ0)

C
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ (A34) 

By combining Eq. (A33) and Eq. (A34) and using the trigonometric identity cos2(x) + sin2
(x) = 1, we obtain: 

cos2
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ sin2
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

=
1
C2

[

H− 1
(

σ
σ0

)]2( m
m − 1

)
= 1 (A35) 

The expression for the integral constant C is obtained by solving Eq. (A35): 

C =

̅̅̅̅̅̅̅̅̅̅̅̅̅
m

m − 1

√

H− 1
(

σ
σ0

)

(A36) 

Dividing Eq. (A34) by Eq. (A33) yields: 

tan
(

w
2lc

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

= −
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ (A37) 

The expression for the localization zone width w is obtained by solving Eq. (A37): 

w = 2lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√
[

nπ − arctan
(

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)]

(A38) 

where n = 1, 2, 3, ... denote the wave number. As the strain localization belongs to the case of short wave length, we take n = 1 (Zhao et al., 2005). 
The localization zone width w is expressed as follows: 

w = 2lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√
[

π − arctan
(

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)]

(A39) 

As arctan
(
1/

̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ )
is a monotonically decreasing function with respect to m, we have: 

arctan
(

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

< lim
m→1+

arctan
(

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

=
π
2

(A40) 

Substituting Eq. (A40) into Eq. (A39) yields: 

w > lcπ
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√
> 0,m > 1 (A41) 

Eq. (A41) shows that the solution for the localization zone width w obtained under the condition of m > 1 has physical meaning. Substituting Eq. 
(A36) into Eq. (A24)2 yields the solution for the plastic strain εp(x) within the localization zone. 

εp(x) = H− 1
(

σ
σ0

)[ ̅̅̅̅̅̅̅̅̅̅̅̅̅
m

m − 1

√

cos
(

x
lc
̅̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√

)

+ 1
]

, −
w
2
≤ x ≤

w
2

(A42) 
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It is important to note that the derivation above imposes no restrictions on the form of the softening function, implying its validity for any softening 
law.

Appendix B. . Shape functions of yield function and plastic potential function

The plasticity damage model presented in Section 3.1 adopts a modified Mohr-Coulomb yield function and non-associated flow rule in its plastic 
component. The standard Mohr-Coulomb function is often expressed in the form of principal stresses (σ1 ≥ σ2 ≥ σ3) as follows: 

f =
1
2
(σ1 − σ3)+

1
2
(σ1 + σ3)sinφ − ccosφ = 0 (B1) 

where the effective stress is used since the plastic deformation is assumed to occur in the undamaged configuration of the material.
In numerical analysis of boundary value problems, the Mohr-Coulomb yield function expressed in the form of invariants (p, q, and θ) may be more 

common, as it avoids the tedious transformation between principal stress space and general stress space. The maximum principal stress σ1 and the 
minimum principal stress σ3 in Eq. (B1) can be expressed by: 

σ1 = p+
2
3

qcosθ, σ3 = p+
2
3

qcos
(

θ +
2π
3

)

(B2) 

Substituting Eq. (B2) into Eq. (B1) yields: 

f =
1
3
qcosθ −

1
3
qcos

(

θ +
2π
3

)

+ psinφ+
1
3
qcosθsinφ+

1
3
qcos

(

θ +
2π
3

)

sinφ − ccosφ = 0 (B3) 

Performing some simple manipulations yields: 

f = RMC(θ)q+Mp − K = 0 (B4) 

where the expressions for M and K have been given in Eq. (32) and Eq. (33). RMC(θ) is the shape function of the Mohr-Coulomb criterion on the 
deviatoric plane, expressed as: 

RMC(θ) =
2

(3 − sinφ)
sin
(

θ +
π
3

)
+

2sinφ
̅̅̅
3

√
(3 − sinφ)

cos
(

θ +
π
3

)
(B5) 

The Mohr-Coulomb yield curve defined by Eq. (B5) is contained at six corner points on the deviatoric plane, which means that the derivative of the 
yield function in the vicinity of the corner points rapidly changes, potentially causing numerical instability. To this end, the smooth function Rmc(θ)
proposed by Zhang et al. (2021) is used to replace Eq. (B5). The expression for Rmc(θ) is: 

Rmc =

̅̅̅
3

√

3
αwcos

[
1
3

arccos(βcos3θ) −
π
6

γ
]

(B6) 

where β ∈ [0,1] is a smoothing parameter. Fig. 24(a) illustrates the influence of β on the curves of shape function. As β increases, the shape of the yield 
curve gradually changes from a circle to an irregular hexagon. Eq. (B6) will degenerate into Eq. (B5) in the condition of β = 1. In this work, we set the 
default value β = 0.999 to ensure that the modified Mohr-Coulomb yield function remains sufficiently close to the standard criterion while eliminating 
the non-smoothness associated with the corner points. Parameters αw and γ are functions of the internal friction angle: 

αw =
1

cos
[
(γw + 1) π

6

], γ = 1 − γw, γw =
6
π arctan

(
sinφ
̅̅̅
3

√

)

(B7) 

Fig. 24. Shape functions on the deviatoric plane: (a) yield curves; (b) plastic potential curves.
The deviatoric curve of the plastic potential function adopts the smooth elliptic function proposed by Menetrey and Willam (1995), which was also 

recommended by the ABAQUS software embedded Mohr-Coulomb model. The shape function of plastic potential function on the deviatoric plane is: 

Rmw =
4(1 − e2)cos2θ + (2e − 1)2

2(1 − e2)cosθ + (2e − 1)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4(1 − e2)cos2θ + 5e2 − 4e
√ Rmc

(π
3
,φ
)

(B8) 
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where e represents the eccentricity parameter. Fig. 24(b) illustrates the influence of e on the plastic potential shape curve. As e increases, the plastic 
potential curve gradually transitions from triangular to circular shape. Rmc(π/3,φ) is the value of Rmc in the condition of θ = π/3 and β = 1. The 
expressions for Rmc(π/3,φ) and e are given as follows: 

Rmc

(π
3
,φ
)
=

1
2cosφ

−
1
6

tanφ, e =
3 − sinφ
3 + sinφ

(B9) 

Due to the intricate mathematical structure of the modified Mohr-Coulomb yield function and Menétrey-Willam plastic potential function, 
rigorously proving the thermodynamic admissibility of this model is highly challenging. Nonetheless, the conclusions regarding the thermodynamic 
admissibility of the standard Mohr-Coulomb model can serve as useful references. Hobbs and Ord (2014) analytically derived the rate of plastic work 
for non-associated Mohr-Coulomb materials during deformation (refer to pages 165 to 170 of the literature). Their findings indicate that the ther
modynamic admissibility of the Mohr-Coulomb model depends on the material parameter values. Specifically, when ψ ≤ φ, the rate of the plastic work 
in Mohr-Coulomb materials is always non-negative, making it thermodynamically admissible. However, when ψ > φ, the rate of plastic work can 
become negative under certain conditions, potentially rendering Mohr-Coulomb materials thermodynamically inadmissible. In this case, the ther
modynamic admissibility of the model depends on the current stress state and cohesive strength. Therefore, it is recommended to ensure ψ ≤ φ for the 
Mohr-Coulomb model, which aligns with the deformation behaviour of geomaterials. Although the parameter range for thermodynamic admissibility 
in the standard Mohr-Coulomb model may not directly apply to the modified Mohr-Coulomb model discussed in this paper, the insights gained from 
the former still offer valuable guidance for parameter selection in the latter.

Appendix C. . Neumann boundary conditions of Eq. (A25)

By setting x = − w/2 and x = w/2 in Eq. (A1), two results can be obtained: 

εp
(
−

w
2

)
+

me−
w
2lc

2lc(1 − m)

∫ w/2

− w/2
e
− ξ
lc εp(ξ)dξ =

H− 1(σ/σ0)

(1 − m)
(C1) 

εp
(w

2

)
+

me−
w
2lc

2lc(1 − m)

∫ w/2

− w/2
e

ξ
lc εp(ξ)dξ =

H− 1(σ/σ0)

(1 − m)
(C2) 

For simplicity in the derivation, we use λ = − 1/lc, G = m
2lc(1− m)

, F =
H− 1(σ/σ0)
(1− m)

, a = − w/2, and b = w/2. Then, Eq. (C1), Eq. (C2), and Eq. (A13)can be 
rewritten as follows: 

εp(a)+Ge− λa
∫ b

a
eλξεp(ξ)dξ = F (C3) 

εp(b)+Geλb
∫ b

a
e− λξεp(ξ)dξ = F (C4) 

∂2εp(x)
∂x2 +2λGεp(x)+ λ2[F − εp(x) ] = 0 (C5) 

From Eq. (C5), we can express εp(ξ) as: 

εp(ξ) =
1

2Gλ

[

λ2εp(ξ) − λ2F −
∂2εp(ξ)

∂ξ2

]

(C6) 

Submitting Eq. (C6) into Eq. (C3) and performing some manipulations yields: 
∫ b

a
λ2εp(ξ)eλξdξ −

∫ b

a
λ2Feλξdξ −

∫ b

a

∂2εp(ξ)
∂ξ2 eλξdξ = 2λeλa[F − εp(a) ] (C7) 

Performing integration by parts on 
∫ b

a
∂2εp(ξ)

∂ξ2 eλξdξ, as shown in Eq. (C7), yields: 
∫ b

a

∂2εp(ξ)
∂ξ2 eλξdξ = eλb∂εp(ξ)

∂ξ

⃒
⃒
⃒
⃒

ξ=b
− eλa∂εp(ξ)

∂ξ

⃒
⃒
⃒
⃒

ξ=a
− λ
[

εp(b)eλb − εp(a)eλa − λ
∫ b

a
εp(ξ)eλξdξ

]

(C8) 

Submitting Eq. (C8) into Eq. (C7) yields: 

eλb∂εp(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=b
− eλa∂εp(ξ)

∂ξ

⃒
⃒
⃒
⃒

ξ=a
= λeλa[εp(a) − F ] + λeλb[εp(b) − F ] (C9) 

Similarly, submitting Eq. (C6) into Eq. (C4) and simplifying gives: 

e− λb∂εp(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=b
− e− λa∂εp(ξ)

∂ξ

⃒
⃒
⃒
⃒

ξ=a
= λe− λa[εp(a) − F ] + λe− λb[εp(b) − F ] (C10) 

Furthermore, by combing Eq. (C9) and Eq. (C10) and performing some manipulations, this gives the following result: 

∂εp(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=a
= λ[F − εp(a) ],

∂εp(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=b
= λ[εp(b) − F ] (C11) 

Substituting λ = − 1/lc, F =
H− 1(σ/σ0)
(1− m)

, a = − w/2, b = w/2, and εp( ± w/2) = 0 into Eq. (C11), we obtain the desired boundary conditions: 
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∂εp(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=−
w
2

= −
H− 1(σ/σ0)

lc(1 − m)
,
∂εp(ξ)

∂ξ

⃒
⃒
⃒
⃒

ξ=w
2

=
H− 1(σ/σ0)

lc(1 − m)
(C12) 

It is evident that Eq. (C12) is equivalent to Eq. (A25)2. A more general but somewhat less detailed derivation can be found in Section 4.9.37 of the 
literature (Polyanin and Manzhirov, 2008).

Data availability

Data will be made available on request.
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