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A B S T R A C T

Artificial intelligence (AI) has played a transformative role in accelerating scientific discovery and driving en-
gineering innovations. Here we examine the primary applications of AI in computational granular materials over 
the past decades, focusing on three key objectives: (i) what machine learning (ML) can do in computational 
granular mechanics, (ii) how ML is integrated into routine computational simulations of granular media, and (iii) 
the opportunities and challenges that ML presents in this domain. The review highlights the key objectives of 
computational granular mechanics and the role of ML in bridging these critical research gaps. It systematically 
covers three aspects: (i) ML-accelerated computational modelling, (ii) ML-enabled pattern recognition and 
knowledge discovery, and (iii) ML-assisted inverse analysis in granular mechanics. Pertinent challenges are 
thoroughly discussed from the perspective of data and models. To promote the development of data-driven 
computational granular mechanics, we launched “Clear Data Bay”, a metadata website tailored for domain 
data sharing and management. Despite ongoing challenges, data-driven approaches offer great potential in 
enabling computational granular mechanics models to tackle previously unattainable challenges.

1. Introduction

Granular materials, such as sand and food grains, are ubiquitous in 
engineering, industry, and nature. Although individual grains may seem 
simple, an assembly of granular particles can exhibit rich and intricate 
mechanical phenomena. Various computational granular mechanics 

(CGM) models have been developed as powerful tools to describe, 
explain, and predict the behaviour of granular materials across diverse 
environments and applications. The discrete element method (DEM) is a 
prominent technique for modelling granular materials which represents 
particles as discrete elements that interact through contact forces 
(Cundall and Strack, 1979). In contrast, the finite element method (FEM) 

Abbreviations: AD, Automatic Differentiation; AE, Autoencoder; AI, Artificial Intelligence; AoR, Angle of Repose; BGNN, Boundary Graph Neural Network; BVPs, 
Boundary Value Problems; CFD, Computational Fluid Dynamics; cGANs, Conditional Generative Adversarial Networks; CGM, Computational Granular Mechanics; 
CNN, Convolutional Neural Network; DCGAN, Deep Convolutional GANs; DDCM, Data-Driven Constitutive Modelling; DDMM, Data-Driven Multiscale Modelling; 
DDP, Differential Dynamic Programming; DDPM, Denoising Diffusion Probabilistic Models; DE, Differential Evolution; DEM, Discrete Element Method; DGECNN, 
Dynamic Graph Edge Convolution Neural Network; FDEM, Combined Finite-Discrete Element Method; FEM, Finite Element Method; FI-GAN, Fractal Informed-GAN; 
GA, Genetic Algorithm; GAN, Generative Adversarial Model; GBDT, Gradient Boosting Decision Trees; GCNNs, Graph Convolutional Neural Networks; GNN, Graph 
Neural Network; GNS, Graph Network-Based Simulators; GRU, Gated Recurrent Unit; GSD, Grain Size Distribution; HMM, Hierarchical Multiscale Modelling; LDM, 
Latent Diffusion Model; LightGBM, Light Gradient Boosting Machine; LLM, Large Language Model; LSTM, Long Short-Term Memory; LVM, Large Vision Model; 
MFRNN, Multi-Fidelity Residual Neural Network; ML, Machine Learning; MLP, Multilayer Perceptron; MPM, Material Point Method; NNs, Neural Networks; OCR, 
Over-Consolidation Ratio; ODEs, Ordinary Differential Equations; OOD, Out-of-Distribution; PBEs, Population Balance Equations; PCA, Principal Component 
Analysis; PD, Peridynamics; PDEs, Partial Differential Equations; PFEM, Particle Finite Element Method; PINN, Physics-Informed Neural Network; POD, Proper 
Orthogonal Decomposition; R-CNN, Region Convolutional Neural Network; RF, Random Forests; RL, Reinforcement Learning; RNN, Recurrent Neural Network; 
RNNSR, Recurrent Neural Network with Stochastically Calculated Random Motion; ROMs, Reduced Order Models; RVEs, Representative Volume Elements; SA, 
Simulated Annealing; SAM, Segment Anything Model; SGN, Signed Distance Function-Based Graph Neural Network; SH, Spherical Harmonics; SHAP, SHapley 
Additive exPlanations; SPH, Smoothed Particle Hydrodynamics; SVM, Support Vector Machines; TCN, Temporal Convolutional Network; TGNNS, Temporal Graph 
Neural Network-Based Simulator; UCS, Uniaxial Compressive Strength; UDEC, Universal Distinct Element Code; VAE, Variational Autoencoder-Decoder; VFMs, 
Vision Foundation Models; ViT, Vision Transformer; XGBoost, Extreme Gradient Boosting; μCT, X-Ray Micro-Computed Tomography.

* Corresponding authors.
E-mail addresses: tongmingqu@ust.hk (T. Qu), jzhao@ust.hk (J. Zhao). 

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

https://doi.org/10.1016/j.compgeo.2025.107310
Received 28 February 2025; Received in revised form 10 April 2025; Accepted 24 April 2025  

Computers and Geotechnics 185 (2025) 107310 

Available online 7 May 2025 
0266-352X/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:tongmingqu@ust.hk
mailto:jzhao@ust.hk
www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2025.107310
https://doi.org/10.1016/j.compgeo.2025.107310


treats large-scale granular materials as continuous media and discretizes 
them into mesh elements for analysis (Zienkiewicz et al., 1977). The 
material point method (MPM) (Sulsky et al., 1994) and the particle finite 
element method (PFEM) (Oñate et al., 2004) are particularly effective 
for modelling large deformations in granular materials. Smoothed par-
ticle hydrodynamics (SPH) (Liu and Liu, 2010) excels at simulating the 
flow behaviour of granular materials, while Peridynamics (PD) (Silling, 
2000) and the combined finite-discrete element method (FDEM) 
(Munjiza et al., 1995) are suitable for modelling cemented granular 
materials involving particle crushing or discontinuities (Chen et al., 
2020).

Over the past decades, efforts in CGM can be broadly categorized 
into three main aspects: (1) Improving Accuracy: This involves 
developing reliable models and algorithms to predict the behaviour of 
granular materials under various mechanical, hydraulic, and thermal 
conditions (Vargas and McCarthy, 2007). Key advancements include 
modelling realistic grain shapes (Feng, 2023), particle breakage (de 
Bono and McDowell, 2016), large deformation (Chen and Qiu, 2012), 
fluid-particle interaction (Feng et al., 2007, Zhao and Shan, 2013), and 
phase transitions (Vidyapati and Subramaniam, 2012). (2) Boosting 
Efficiency: The goal is to design computational algorithms that accel-
erate numerical simulations. Techniques include coarse-graining 
(Nasato et al., 2015), parallel computations using CPU or GPU (Guo 
and Zhao, 2016b, Zhao et al., 2021), and reduced-order modelling 
(Zhong and Sun, 2018, Li et al., 2023b). (3) Application of CGM: Nu-
merical simulations are utilized to examine phenomena related to 
granular materials, industrial processes and engineering challenges, 
intending to gain new insights and optimized solutions for practical 
problems (Zeng et al., 2025).

Despite these significant advancements in CGM, several crucial 
challenges remain unresolved in the field. Specifically, direct simula-
tions of particle-scale interactions for large-scale problems are compu-
tationally expensive, while homogenization-based or phenomenological 
approaches often fail to accurately reproduce the particle-scale physics 
and underlying mechanisms of granular materials. Furthermore, 
measuring and calibrating particle-scale properties can be challenging 
(Qu et al., 2022b). Addressing these long-standing issues necessitates the 
exploration of new research paradigms.

Data-driven approaches represent a new research paradigm in the 
era of Artificial Intelligence (AI) and big data. The past decade has 

witnessed tremendous progress in applying AI models across various 
scientific and engineering domains, notably in areas such as image 
recognition, natural language processing, and material discovery. 
Recently, the potential of AI in CGM has garnered increasing attention, 
with innovative machine learning (ML)-based strategies introduced to 
enhance traditional CGM methods (Wang et al., 2024b). However, a 
comprehensive comprehension of how ML can transform CGM is still 
lacking, and the specific scenarios where ML can provide benefits 
remain unclear. This review aims to address these questions by sys-
tematically summarizing the applications of ML in CGM, identifying 
limitations, and exploring future trends in ML-enhanced CGM.

2. Overview of ML applications in CGM

2.1. Brief revisit to machine learning

Machine learning (ML) is a subfield of AI focusing on developing 
algorithms and statistical models that enable computers to learn from 
data without explicit programming. As shown in Fig. 1, ML can be 
broadly classified into three categories: (1) Supervised Learning: This 
approach is trained on a labelled dataset where each input is paired with 
corresponding outputs. Classification and regression are two types of 
supervised learning algorithms, where the goal of classification is to 
predict the categorical or discrete class labels for new, unseen instances 
based on input features, while regression seeks to learn underlying 
patterns or relationships to predict continuous outputs. These data pairs 
include one-to-one state mapping data, time series data, spatial structure 
data, and even non-structured data. Most ML models, such as multilayer 
perceptron (MLP), random forests (RF), and support vector machines 
(SVM), can adapt both classification and regression tasks. (2) Unsuper-
vised Learning: It aims to uncover hidden patterns, structures, or re-
lationships within unlabeled data. Examples include clustering analysis, 
dimension reduction, and generative models. Particularly, generative 
models, such as the Generative adversarial model (GAN) and Variational 
autoencoder-decoder (VAE), learn to create new data by discovering 
underlying distributions in unlabeled training data without requiring 
explicit target outputs. (3) Reinforcement Learning (RL): This approach 
involves an agent learning to make sequential decisions through inter-
action with an environment. Its distinctive strength lies in providing 
efficient solutions for combinatorial optimization problems with vast 

Fig. 1. A basic classification of machine learning (Note: i. Generative models are mainly unsupervised but can be supervised when using labelled data. ii. Abbre-
viations that are not mentioned in the aforementioned text are listed in alphabetical order. CNN: Convolutional neural network; DDPM: Denoising Diffusion 
Probabilistic Models; GNN: Graph neural network; GRU: Gated recurrent unit; LLM: large language model; LSTM: Long short-term memory; LVM: Large Vision 
Model; TCN: Temporal Convolutional Network; ViT: Vision Transformer).
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potential combinations.

2.2. Overview of ML for CGM

As shown in Fig. 2, ML provides useful tools for data mining, sur-
rogate modelling, , uncertainty quantification, and inverse analysis. 
These capabilities offer distinct advantages over physics-based compu-
tational models, empowering ML to address certain limitations in nu-
merical simualtions. For instance, ML-based surrogate modelling can 
enhance computational efficiency, identify underlying patterns, and 
accelerate inverse analysis. Fig. 3 highlights three key applications of 
ML in CGM:

(1) Accelerate CGM Computation: ML serves as a surrogate model 
to replace part or all of certain processes during numerical computa-
tions. There are approximately seven types of ML-assisted acceleration 
approaches: (a) data-driven multiscale or material modelling; (b) MLP- 
based contact resolution in DEM; (c) CNN-enabled contact-based 
computation; (d) GNN-based simulators; (e) recurrent neural network 
(RNN)-based simulators, (f) ML-enhanced computational fluid dynamics 
(CFD)-DEM coupling simulations, and (g) case-specific surrogate 
modelling applications.

(2) Uncover Hidden Physical Laws and Patterns: ML helps reveal 
underlying physical laws and patterns in CGM simulation data. Typical 
applications include: (a) automatic recognition of grain shape and size 
distribution of granular materials; (b) AI-assisted 3D reconstruction of 
granular specimens; (c) AI-enabled generation of granular materials; (d) 
force chain network predictions; (e) description of granular material 
behaviour; (f) pattern recognition for granular dynamics; and (g) AI- 
assisted discovery in granular physics.

(3) Solve Inverse Problems in CGM: ML is utilized to address in-
verse problems in CGM, with three key applications: (a) efficient cali-
bration of particle-scale parameters in DEM, (b) optimization problems 
in granular mechanics, and (c) physics-informed neural network (PINN) 
for inverse problems in granular mechanics.

3. Machine learning accelerates granular simulations

3.1. Data-driven multiscale modelling of granular materials

The macroscopic mechanical behaviour of granular media is funda-
mentally rooted in its microstructural evolution and particle-scale 
properties. Hierarchical multiscale modelling (HMM) that couples 
FEM and DEM is a well-recognized framework for simulating macroscale 

boundary value problems (BVPs) while preserving particle-scale infor-
mation (Guo and Zhao, 2014). In this framework, FEM is used for BVP 
simulation, while DEM replaces traditional constitutive models through 
online simulations. During each loading step, FEM transmits deforma-
tion or strain gradients to DEM-based representative volume elements 
(RVEs) as boundary conditions, which then computes stress responses 
and tangent operators to send back to FEM (Guo and Zhao, 2016a, Qu 
et al., 2021c). This hybrid computational scheme allows for large-scale 
BVP simulation while capturing material responses from lower-scale 
interparticle interactions, thus bypassing the phenomenological as-
sumptions inherent in conventional constitutive modelling (Wang and 
Sun, 2018). In addition to coupled FEM/DEM HMM, the MPM and PFEM 
offer alternative coupling approaches with DEM for multiscale model-
ling of large deformation problems (Liang and Zhao, 2019, Guo et al., 
2021, Chen et al., 2023). However, as each Gauss point involved in the 
simulated continuum domain requires a corresponding DEM solution, a 
significant number of DEM RVEs must be computed simultaneously in a 
BVP, leading to substantial computational costs.

ML offers a strategy to accelerate the multiscale modelling of gran-
ular materials. This approach, referred to as data-driven multiscale 
modelling (DDMM), involves creating surrogate material models that 
link strain sequences to corresponding stress responses and tangent 
operators (Qu et al., 2023b), thereby eliminating the need for compu-
tationally intensive DEM computations.

Although the efficiency gains from data-driven approaches in multi- 
scale modelling depend on factors such as particle-scale parameters in 
DEM and neural network architecture, previous studies have generally 
demonstrated one or two orders of magnitude accelerations in contrast 
to traditional FEM-DEM simulations.

The primary challenge in implementing DDMM is developing reli-
able surrogate material models using particle-scale simulation data. A 
related challenge is data-driven constitutive modelling (DDCM), which 
aims to use ML to build surrogate material models without relying on 
phenomenological assumptions. However, laboratory experiments often 
do not provide enough strain–stress data, leading both DDMM and 
DDCM approaches to depend on analytical or numerical data rather than 
experimental measurements. Given these common challenges and so-
lutions, this section reviews advances in both DDMM and DDCM of 
granular media.

Granular media exhibits path-dependent and state-dependent 
behaviour. Path dependence indicates that the material’s response de-
pends not only on its current stress or strain state but also on its loading 
history. State dependency means that the material’s response is 

Fig. 2. Machine learning and computational granular mechanics.
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influenced by its current state, such as void ratio, confining pressure, or 
fabric structure. To tackle the path dependency of granular material, 
three strategies are commonly employed: (i) time-sequence ML models 
(Qu et al., 2021b), (ii) non-temporal ML models with extra inputs of 
previous strain states (Guan et al., 2024); and (iii) non-temporal ML 
models incorporating internal variables to encode loading history.

Time-sequence ML models, including LSTM networks and their 
variants (Zhang et al., 2020, Li et al., 2023a, Zhang et al., 2023b), GRU 
(Cho, 2014), and TCN (Wang et al., 2022), are effective at capturing 
patterns and relationships within sequential data over time. While these 
time-series models can effectively capture history-dependent behaviour, 
they typically require a large number of parameters for training, which 
can result in inefficient inference processes. In contrast, non-temporal 
ML models tend to be lighter and more efficient.

When using non-temporal ML models for stress–strain modelling of 
granular materials, one early-stage solution involves adding previous 
strain states as additional inputs (Ghaboussi et al., 1991). However, it 
remains unclear how many prior strain states are necessary to 
adequately capture stress responses. The other scheme is to introduce 
several variables to encode loading histories (Guan et al., 2023a). A 
challenge with non-temporal ML models is their difficulty in learning 
time-series relations, as the target relation represents a “one-to-many” 

mapping, lacking unique solutions for a given input. By introducing 
extra variables, this “one-to-many” mapping can be transformed into a 
unique “one-to-one” mapping, as illustrated in Fig. 4. Representative 
external variables may include the accumulation of absolute strain in-
crements (Huang et al., 2020, Guan et al., 2023b) and the Frobenius 
norm of the strain tensor (Wang et al., 2024a). In addition, state de-
scriptions can be tackled either by directly incorporating state param-
eters, such as initial void ratio (Ghaboussi and Sidarta, 1998), over- 
consolidation ratio (OCR) (Ellis et al., 1995), and anisotropic micro-
structure (Guan et al., 2024), or by using modified network architecture 
to store initial states of materials (Ma et al., 2022a).

The strain-based internal variables previously mentioned can be 
considered measurable and serve as direct inputs in model training to 
characterize external loading conditions. In contrast, some internal 
variables employed in constitutive modelling are not easily measurable 
using standard experimental setups. Directed graphs offer a solution by 
implicitly incorporating these hard-to-measure internal variables into 
stress–strain prediction. For example, by formulating constitutive 
models as information flow in directed graphs that connect critical in-
ternal variables related to stress–strain relations (see Fig. 5a), a deep 
reinforcement learning strategy can identify the optimal information 
flow that maximizes prediction accuracy (Wang and Sun, 2019). The 

Fig. 3. A simple summary of applications of ML in computational granular mechanics (Credit: The figures on the left and right are adapted from references (Mayr 
et al., 2023) and (Mandal et al., 2022), respectively).

Fig. 4. Loading-history dependent stress–strain behaviour for granular materials: (a) “one-to-many” mapping where a strain state may correspond to multiple stress 
responses; (b) “one-to-one” mapping where an internal variable is used to encode loading history.

T. Qu et al.                                                                                                                                                                                                                                       Computers and Geotechnics 185 (2025) 107310 

4 



contact-scale microstructure is linked to macroscopic stress and force 
responses in granular media (Mital and Andrade, 2022). Directed graphs 
can leverage the evolution of microstructures in sheared granular ma-
terials to predict stress responses without requiring explicit inputs about 
the microstructures (see Fig. 5b) (Qu et al., 2021a).

Leveraging physics or domain knowledge to enhance DDMM is 
crucial for improving the model’s predictive capability. There are four 
main strategies for incorporating physical knowledge: (i) Physics- 
constrained soft constraints: Examples include thermodynamic con-
straints (such as the non-convexity of the yield function and non- 
negative plastic work) used as penalty terms in the objective function 
(Vlassis and Sun, 2021, Su et al., 2024). (ii) Physics or knowledge- 
inspired hard constraint: For example, the positive-definite assumption 
of the stiffness matrix of material and the formulation of thermody-
namics can be used to tailor network architectures as hard constraints 
(Xu et al., 2021b, Masi and Stefanou, 2023). (iii) Using physics to 
manage training data: For example, the principle of frame indifference 
(Fig. 5c) simplifies the general stress and strain tensor to their invariants 
(Ling et al., 2016, Heider et al., 2020), while the symmetry assumption 
of materials can reduce the dimensionality of the training data (Vlassis 
and Sun 2021). (iv) Integrating ML into established phenomenological 
models (Wang et al., 2025a): For example, within the framework of 
plasticity, ML can replace certain components, such as the yield surface 

(Vlassis and Sun, 2022, Nascimento et al., 2023), hardening laws (Li 
et al., 2019, Wen et al., 2021), internal state variables (Eghbalian et al., 
2023), and stress-integration schemes (Fazily and Yoon, 2023). In 
thermodynamics-based constitutive models, energy potential and dissi-
pation pseudo-potential can be direct outputs of neural networks, with 
final stress responses obtained by differentiating the neural network 
outputs with respect to their inputs using automatic differentiation 
(Masi et al., 2021, Zhang et al., 2025b). In addition, under the 
assumption of hyperelasticity, stress is derived from the strain energy 
density with respect to strain. These gradient relationships can be 
incorporated into model training using Sobolev training (Vlassis and 
Sun, 2021, Zhang et al., 2022d).

Data is essential for training reliable data-driven material models. 
One key effort is to ensure that the data closely reflects genuine material 
behaviour, such as by considering realistic particle morphology in 
discrete element modelling (Wu and Wang 2022a, Xiong et al., 2023). 
Additionally, there is a growing focus on developing algorithms that 
maximize data utilization. For instance, deep active learning can iden-
tify the most informative data for training ML models. By training a 
committee of ML models simultaneously, the variance in these pre-
dictions can provide a measure of uncertainty, aiding in interactive 
model training and identifying unreliable predictions (Qu et al., 2023a, 
Zhang et al., 2023d), as seen in Fig. 5d. Furthermore, transfer learning 

Fig. 5. Representative learning strategies in data-driven multiscale modelling. Note: Subfigures (a) and (f) adapted from (Wang and Sun 2019) and (Gorgogianni 
et al., 2023), respectively.
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techniques (Qu et al., 2023b, Xiong and Wang, 2024) and multi-fidelity 
networks (Zhang et al., 2022b, He et al., 2023, Su et al., 2023) can 
leverage phenomenological models or existing material data to assist in 
training new material models (see Fig. 5e).

Data-driven multiscale modelling also includes model-free ap-
proaches (Kirchdoerfer and Ortiz, 2016). This approach assigns stress 
responses to each Gauss point without using any ML models by identi-
fying the closest strain sequence in a strain–stress pair dataset that sat-
isfies conservation laws and constraints. This framework has been 
applied to the multiscale modelling of granular media, with material 
data sourced from discrete element modelling (Karapiperis et al., 2021). 
To improve prediction accuracy, a goal-oriented data sampling strategy 
is introduced to identify the most valuable data for model-free modelling 
(see Fig. 5f), where BVPs are formulated as distance minimization 
problems (Gorgogianni et al., 2023). A similar model-free approach has 
been adapted to account for the evolution of particle size distribution 
(PSD) due to particle breakage in granular materials (Ulloa et al., 2023). 
In addition, DDMM is applied to the thermal analysis of granular media 
using MLP to relate microstructure properties (porosity and fabric) to 
the dimensionless thermal conductivity tensor (Rangel et al., 2024b). 
Data-driven thermo-mechanical simulations of BVPs are also conducted 
using the Finite Volume Method (FVM), with trained data simulated 
from offline DEM computations (Rangel et al., 2024a).

3.2. MLP-based contact resolution for discrete element modelling

Fig. 6 shows a typical computation cycle for conventional DEM 
simulations, involving four key steps: (1) detecting and resolving con-
tacts, (2) determining contact forces, (3) calculating particle motion, 
and (4) updating particle positions. In the first step, contact detection 
identifies if two particles or a particle and a boundary are in contact. 
Contact resolution involves calculating the geometric properties neces-
sary to evaluate contact forces, including contact overlap δn, contact 
normal, and contact point (Fig. 6a). These contact geometric features are 
used to calculate contact forces following a chosen contact model 
(Fig. 6b). Kinematical information of particles is solved with New-
ton–Euler equations (Fig. 6c). The central difference time integration 
scheme is further used to update particle positions and orientations 
(Fig. 6d).

Non-spherical particle-based DEM is computationally intensive, 
primarily due to the contact detection and resolution steps. Since the 
solutions for steps (2)–(4) are well-established and already efficient for 
conventional DEM, researchers proposed using neural networks (NNs) 
to detect particle contacts and resolve contact geometric features 
(Hwang et al., 2022, Lai et al., 2022b), aiming to reduce computational 
costs for non-spherical particle-based DEM simulations. In the ML-based 
contact resolution framework, all standard computational procedures in 
DEM are retained, except that two NNs are designed for contact detec-
tion and resolution. As illustrated in Fig. 7, the first NN performs a 
classification task to determine whether two elements (particle–particle 
or particle–wall) are in contact. The second NN is a regression model 
used for computing contact geometric features. Both networks receive 
particle geometric descriptors as inputs. The classification network 
outputs a binary contact status (true or false), while the resolution 

network calculates contact geometric features such as contact overlap, 
contact normal, and contact point.

The geometric descriptors of a particle or boundary can be catego-
rized as three components: size, shape, and position. The size descriptor 
is defined by the diameter of a circle that has an equivalent area to the 
particle. The position descriptor includes the particle’s centroid co-
ordinates and its rotation angle from the initial alignment. The shape 
descriptors consist of a series of parameters derived from the associated 
shape function that defines the particle surface. In 2D DEM, boundary 
elements can be represented as open polylines or curves in a Cartesian 
coordinate system. A line can be described by the equation 
xsinα − ycosα − do = 0, where α and d0 serve as position descriptors.

The data for training the NNs come from an artificial generation by 
considering all possible “particle–particle” and “particle–wall” contact 
scenarios. In the particle size aspect, a particle is set to be a unit size 
(object particle), whereas the other contacting particle (cue particle) is 
of random size in the specified range of relative particle size (e.g. 1–10). 
The range of shape descriptors is contingent upon the specified particle 
shape templates. For example, elliptical particles have a shape param-
eter represented by the aspect ratio (major axis divided by the minor 
axis), which is randomly selected within a specified range. For the po-
sition descriptor, different position scenarios are created by rotating 
different angles of particles and walls, and the distance from the particle 
to wall element.

Several demonstration cases show that MLP-based 2D DEM produces 
results comparable to conventional DEM while reducing computation 
time by 50 %. This method has recently been extended to 3D DEM 
scenarios (Huang et al., 2024). In contrast to traditional 3D DEM 
simulation methods, the 3D ML-based DEM can achieve around five 
times greater computational efficiency than the conventional DEM 
model in terms of the Cundall number.

Instead of predicting contact geometry, an MLP with residual 
structure is employed to directly output resultant interparticle forces 
based on particle positions and velocities (Zhou et al., 2025b). The loss 
function includes a physics term that enforces the zero-sum constraint of 
particle interaction forces. The approach achieves a 7–10 times speedup 
over traditional DEM models in 2D wall-bounded swirling flow scenarios 

Fig. 6. A typical computation cycle for DEM.

Fig. 7. MLP-based contact detection and resolution in DEM.
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with hundreds of particles. However, its applicability to more complex 
particle systems remains unexplored. MLP-based contact resolution can 
accelerate computations in DEM, but its effectiveness heavily depends 
on the quality and diversity of training data. Since contact interactions 
are inherently linked to particle shapes, any change in shape requires 
retraining the model with new data to account for new contact sce-
narios. Natural particle shapes vary significantly, resulting in a vast 
range of contact scenarios. To prevent unacceptable extrapolation er-
rors, this method may need to be restricted to a limited number of 
particle shapes in simulation studies.

3.3. CNN-assisted discrete element modelling

CNNs are a type of ML method which employs the convolution 
operator to capture local geometrical patterns. They are a natural choice 
for learning local collision-related mechanical problems. A CNN-based 
numerical framework initially developed for fluid simulations 
(Ummenhofer et al., 2019) was subsequently extended to simulate DEM 
scenarios (Lu et al., 2021). Since DEM primarily involves collision-based 
interactions, the contact forces on a particle can be determined once the 
positions of its neighbouring particles are known. In this CNN-based 
DEM framework, simulated particles are termed “dynamic particles”, 
while boundary conditions are treated as “static particles”. Representing 
boundaries as static particles allows the NNs to extrapolate to new 
scenarios and learn collision interactions within a unified framework. 
Unlike traditional DEM simulations, this approach does not require 
contact detection, resolution, or the computation of contact forces.

Note that only collision-related interactions are considered while the 
non-contact forces, e.g. gravity force, are dealt with alternatively. There 
are two different processing measures. One strategy introduces the 

concepts of intermediate positions x*
i and velocities Ẋ*

i of particles (Lu 
et al., 2021). These two intermediate variables are updated as shown in 
Eqs (1–2) by only considering gravity forces (without incorporating 
contact interactions): 

Ẋ*
i = Ẋn

i +gΔt (1) 

x*
i = xn

i +Δt
v*

i + vn
i

2
(2) 

where n denotes time steps; i represents the ith particle in the system; xn
i 

denotes the position of the ith particle at the nth time step; g is gravita-
tional acceleration, and Δt is the time step.

A neural network further is trained to establish the relation between 

the intermediate velocities Ẋ*
i and the position correction terms Δxi, 

which are added to the intermediate positions x*
i to obtain final particle 

positions at the next time step. 

xn+1
i = X*

i +Δxi (3) 

Then the final velocities are approximated via the backward finite 
difference method based on particle positions: 

Ẋn+1
i =

xn+1
i − xn

i
Δt

(4) 

This method is criticized for being inconsistent with Newton’s sec-
ond law of motion, which states that overall particle acceleration should 
be determined first, followed by calculating the corresponding particle 
velocities and positions. The alternative strategy addresses this down-
side by predicting acceleration directly based on particles and their 
neighbouring positions (Xu and Shen, 2022). 

Ẋn+1
i = Ẋn

i +gΔt +ΔtẌn+1
ext (5) 

xn+1
i = xn

i +Δt
Ẋn+1

i + Ẋn
i

2
(6) 

where the extra acceleration Ẍn+1
ext is the sum of the acceleration other 

than gravity. Note that, the particle–particle and particle–wall collisions 
can be considered separately in this approach via: 

Ẍn+1
ext = Ẍn+1

p− p + Ẍ
n+1
p− w (7) 

where Ẍn+1
p− p and Ẍn+1

p− w represent the acceleration induced by parti-
cle–particle and particle–wall collisions, respectively.

As shown in Fig. 8(a) and (c), the inputs for these two CNN-based 
strategies are different. The first category involves continuous convo-
lutions that process the features of static boundary particles and moving 
particles. The input parameters consist of the normal direction for static 
particles and the velocities of the moving particles. The second category 
comprises a fully connected layer that takes the features of each particle 
(e.g., density, diameter) as inputs. After several layers of convolution 
computations, the outputs are either the position correction terms Δx 
(for the first strategy) or the extra acceleration (for the second strategy).

Three key techniques are employed in the above CNN-assisted 
computational framework. First, 3-D continuous convolution 
(Ummenhofer et al., 2019) is employed to build NNs. Second, a function 
Λ(xi-x) maps a unit sphere to a unit cube, to accommodate unstructured 
particle assemblies within a spherical domain and enable the values of 
the filter function to be stored on regular lattices in the original CNN 
framework. Finally, a multiscale and multistep loss function is utilized to 
improve the generalization of CNNs in capturing physical granular flow. 
“Multiscale loss” refers to both the particle-scale loss (the discrepancy 
between the predicted and ground-truth positions) and macro-scale loss 
(the difference between the geometry centres of the predicted and actual 
particle assemblies), as shown in Eq. (8). 

Ln+1 = α 1
N

∑N

i=1

⃦
⃦Xn+1

i − X̂
n+1
i

⃦
⃦

2 +(1 − α)

⃦
⃦
⃦
⃦
⃦

1
N

∑N

i=1

(
Xn+1

i − X̂
n+1
i

)
⃦
⃦
⃦
⃦
⃦

2

(8) 

where α is a weighting factor between 0 and 1 to adjust the contributions 
of both terms. The multi-step loss function involves using a weighted 
sum of the loss functions Lsum from multiple frames during training, as 
shown in Eq. (9): 

Lsum =
∑F

i=1
wiLn+i (9) 

where F is the total number of frames utilized for the loss calculation; wi 

denotes the weighting factor of the loss computed from the frame n + i.
The training data for the CNN-based framework comes from DEM 

simulation frames. The first strategy reportedly achieved a speedup of 
78 times compared to traditional MFiXDEM with little loss of accuracy 
when modelling a hopper system. By contrast, the second strategy 
achieves a speedup of about 7 times faster than DEM. Although the 
acceleration from the second strategy is less pronounced, its predicted 
accuracy is generally higher than that of the first strategy, especially in 
capturing the granular flow patterns by considering both parti-
cle–particle and particle–wall collisions.

However, CNN-assisted surrogate DEM modelling suffers from some 
drawbacks, including sensitivity to hyperparameters and the need for 
retraining when particle geometry and gradation change. To develop a 
universally applicable model for various scenarios, a large number of 
input cases with diverse geometries and particle characteristics are 
necessary.

3.4. GNN-based simulators for particle-based computations

The MLP-based contact resolution introduced in Section 3.2 and the 
CNN-assisted DEM in Section 3.3 aim to replace several steps in standard 
DEM procedures. The graph network-based simulators (GNS) can sub-
stitute the entire DEM simulation process. The fundamentals of GNS 
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start from the concept of graph. In computer science, a graph G is a data 
structure consisting of vertices and edges, i.e. G ¼ (V, E), where V and E 
are sets of nodes and edges that connect nodes, respectively. GNN is a 
class of ANNs, originally developed for handling data that can be rep-
resented as graphs (Scarselli et al., 2008). As shown in Fig. 9, the basic 
structure of Graph Neural Networks (GNNs) follows a “graph-in, graph- 
out” architecture. It can make predictions at the node, edge, and entire 
graph levels. The embedding vectors for graph attributes (nodes, edges, 
global) can be updated by using trained MLPs.

GNS is an application of GNN originally designed to represent the 
state of a granular physical system (Sanchez-Gonzalez et al., 2020). In 
the framework of GNS, nodes represent the physical states of particles 
and learned message-passing through edges serves to depict interpar-
ticle interactions (Choi and Kumar, 2024a). As shown in Fig. 10, a 
typical GNS consists of a dynamics approximator dθ for computing 
spatial interaction (including an encoder, a processor, and a decoder) 

and an updater for time integration.
(a) The encoder serves to preprocess particle-based state represen-

tation as a graph structure G0 by assigning a node to each particle and 
adding an edge between any two particles close enough below a 
threshold called connectivity radius. This connectivity radius represents 
the local interactions of particles and remains constant for each simu-
lation. The raw input data are each particle’s state vector St

i , which in-
cludes: the particle position at the tth step Xt

i , a sequence of previous 

velocities (c is the number of time steps involved) 
{

Ẋt− c+1
i , ⋯, Ẋt

i

}

and 

features, f i, representing material properties (e.g. Young’s modulus), 
and the global properties of the system (e.g. gravity). 

St
i =

[

Xt
i , Ẋ

t− c+1
i , ⋯, Ẋt

i , f i

]

(10) 

The velocities of particles involved in Eq. (10) are computed via the 
finite difference of the position sequences as below: 

Ẋt
i =

(
Xt

i − Xt− 1
i

)
/

Δt (11) 

(b) The processor is a GNN which simulates the node interactions via 
multiple steps of learned message-passing, to establish interactions for 
each edge in the graph, aggregate messages from all interacting edges 
for each node, and update both node and edge features. Normally, MLPs 
are used to learn these interactions. Note that the number of message- 
passing steps is a hyperparameter controlling the spatial information 
propagation within a single time step, and it differs from time dis-
cretization steps used in numerical integration.

(c) The decoder uses an MLP to predict accelerations Ẍt
i of particles 

using the updated node/edge embeddings from the processor. This 
decoder can be regarded as a postprocessor for the GNN.

When the spatial dynamics of the granular system are computed, 

Fig. 8. CNN-assisted DEM simulations: (a) the first type of CNN-based DEM; (b) Comparison of traditional DEM and the first type of CNN-based DEM in rotating 
drum simulations; the image credits to (Lu et al., 2021); (c) the second type of CNN-based DEM; (d) Comparison of traditional DEM and the second type of CNN-based 
DEM in particle settlement simulations; the image credits to (Xu and Shen 2022). Note: FC and Conv represent fully connected and convolutional layers, respectively.

Fig. 9. Illustration of a single layer of a GNN. V represents vertex (or node) 
attributes, e.g., node identity, number of neighbours; E denotes edge (or link) 
attributes and direction, e.g., edge identity, edge weight; U is global (or master 
node) attributes, e.g., number of nodes, longest path. The nth layer graph is used 
as input with each component (V, E, U) being updated with MLPs to produce 
the (n + 1)th layer graph. (Image is adapted from https://distill. 
pub/2021/gnn-intro/).
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time integration is conducted to update the physical state at the next 
time step. For example, the predicted accelerations are then used to 
update velocities and displacements of the particles via Euler integration 
as shown in Eqs (12)-(13): 

Ẋt+1
i = Ẋt

i + Ẍt
iΔt (12) 

Xt+1
i = Xt

i + Ẋt+1
i Δt (13) 

The key advantage of GNS is its ability to significantly reduce the 
computational costs of conventional particle-based physical simulators 
(up to 10-100x faster) while maintaining comparable accuracy. Addi-
tionally, the fundamental concept behind GNS bears similarities to that 

of physics-based particle simulations, making it an attractive and widely 
accepted approach (Zhang et al., 2023a). However, as a supervised 
surrogate model, GNS requires a substantial amount of data from 
various granular flow scenarios to ensure reliable generalizability. 
Furthermore, the original GNS framework faces challenges in accurately 
simulating boundary conditions and demanding high training costs.

To enhance GNS’s ability to simulate arbitrarily shaped boundaries, 
the boundary graph neural network (BGNN) was proposed to improve 
the learning of particle–wall interactions, as shown in Fig. 11. This is 
achieved by dynamically inserting virtual particle nodes when the dis-
tance between particles and walls falls below a specified threshold 
(Mayr et al., 2023). Additional features, such as wall normal vector in-
formation, are included in the GNN inputs. Each particle can interact 

Fig. 10. The basic computational workflow of GNS: (a) GNS serves as a learned dynamics model, dθ, to predict future granular state; (b) the dθ uses an “encoder- 
process-decoder” architecture to compute dynamic information Y using input state X; (c) the encoder constructs a latent graph from the input state; (d) the processor 
performs message-passing over latent graphs; and (e) the decoder gives dynamic predictions based on the final latent graph [Image sourced from (Sanchez-Gonzalez 
et al., 2020)].

Fig. 11. BGNN-based simulations: (a) the virtual nodes method for simulating particle–wall interactions; (b) qualitative and (c) quantitative forecast performance 
comparisons of rotating drum simulations between BGNN and DEM (Mayr et al., 2023).
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with at most one virtual particle, which is the closest to the real particle, 
representing the boundary surface. The other work to improve the 
simulation of boundaries is by using a signed distance function-based 
graph neural network (SGN). In this framework, particle dynamics are 
represented through graph structures, with arbitrarily shaped wall 
boundaries modelled using signed distance function fields. The SGN has 
demonstrated acceleration exceeding 100x in several simulations (Li 
and Sakai, 2024).

GNS typically requires substantial computational resources during 
training, particularly for cases involving a massive number of particles. 
To reduce its computational costs, principal component analysis (PCA) is 
utilized to perform dimensionality reduction on the trained graph data. 
GNS is trained and used in reduced data space. Subsequently, the pre-
dicted data is mapped back to the original full space. This type of PCA- 
assisted subspace graph network is found to improve 700x acceleration 
than general MPM-based machine-terrain interaction simulations (Haeri 
et al., 2024).

Another noteworthy advancement in GNS is the Temporal Graph 
Neural Network-based Simulator (TGNNS) (Zhao et al., 2025). In 
contrast to traditional GNS, TGNNS incorporates three improvements: 
(1) a node historical state to store the embedding information of particle 
dynamics; (2) dynamic graphs to capture the evolving nature of granular 
flow; and (3) the omission of edge information in inter-graph message 
passing, aligning with the computational procedures of MPM methods. 
The TGNNS is approximately 100x faster than GPU-based hierarchical 
MPM-DEM simulations.

3.5. RNN-accelerated DEM simulator

A recurrent neural network with stochastically calculated random 
motion (RNNSR) is developed to accelerate DEM simulations (Kishida 
et al., 2023). The main idea of this method includes: (1) DEM simulation 
data of individual particle trajectory is decomposed into local mean and 
local variability components; (2) RNN is used to learn the evolution of 
local mean particle dynamics; (3) the simulation system is divided into 
fixed Cartesian grids, and a Gaussian random (SR) model is used to 
predict the local variability component of particle trajectory within each 
grid; and (4) the time evolution of an individual particle motion is 
calculated by using the addition of local mean and local variability 
components. In contrast to the DEM simulations of powder mixing 
processes, RNNSR can achieve 355 times faster computational speed 
with comparable accuracy. This acceleration can be attributed to two 
factors: (1) RNNSR reads the current frame of particle positions to pre-
dict the positions at the next frame, bypassing complex computational 
procedures of DEM as outlined in Fig. 6; and (2) the time step in RNNSR 
can be much larger than the one used in DEM. Further research shows 
that the mean period of the original particle trajectory data can be used 
to determine an appropriate time step for the RNNSR (Kishida et al., 
2024).

3.6. ML-accelerated CFD-DEM simulations

CFD-DEM is a prevailing method for simulating fluid-particle sys-
tems, with CFD modelling continuous fluid flow and DEM handling the 
motion and collision of particles. As shown in Fig. 10, CFD-DEM simu-
lations can be roughly categorized into unresolved (Vidyapati and 
Subramaniam, 2012) and resolved approaches (Hager et al., 2014), 
based on the relative sizes of fluid grids and particles. The resolved CFD- 
DEM directly simulates fluid-particle interactions on fluid meshes that 
are much smaller than the particles (Hu et al., 2001). While theoretically 
rigorous and accurate, the resolved CFD-DEM is computationally 
demanding. In contrast, the unresolved CFD-DEM framework typically 
uses an empirical drag force model to represent the force exerted by the 
fluid on a particle, while the force exerted by particles on the fluid is 
calculated based on reaction forces or approximated using Darcy’s law. 
Although the unresolved approach offers significant acceleration 

compared to the resolved CFD-DEM, it remains inefficient for engi-
neering applications. Consequently, ML is explored to enhance the ef-
ficiency of both resolved and unresolved CFD-DEM simulations.

In the unresolved approach, the fluid cell should be about 3 to 5 
times the particle size to ensure sufficient accuracy (Wang et al., 2019b). 
However, achieving realistic results often requires a smaller mesh, 
which increases computational demands. To address the challenges of 
using a large mesh in modelling and to take advantage of faster com-
putations, ML models are employed to develop a mesh-independent drag 
force model for particles. Research has shown that ML-assisted coarse- 
scale coupling significantly improves efficiency and closely resembles 
fine-scale modelling, outperforming classical coarse-scale simulations 
(Davydzenka and Tahmasebi, 2022).

In the resolved approach, calculating drag force is computationally 
intensive. To improve computational efficiency, an MLP-based drag 
force model can be trained using data from a sufficient number of 
particle-resolved simulations (He and Tafti, 2019). A physics-guided 
model architecture (PhyNet) was designed based on the understanding 
that the pressure field and the velocity field around a particle directly 
affect the pressure component and shear component of the drag force. 
The pressure field and the velocity field, as two physical intermediate 
variables, can be incorporated into the PhyNet to enhance generaliz-
ability (Muralidhar et al., 2020). Additionally, the interaction between 
non-spherical particles and fluid has also been explored (Ashwin et al., 
2022).

A significant challenge in ML-assisted particle–fluid flow scenarios is 
effectively describing the intricate shape and orientation of non- 
spherical particles using a limited number of digital descriptors. 
Spherical harmonics (SH) is a common method to reconstruct particle 
shapes (Xiong and Wang, 2021). The primary energy spectra of SH 
frequencies describe particle shape, while Euler angles specify particle 
orientation (Hu et al., 2024). These indicators, along with flow condi-
tions, are directly input into an MLP to predict the drag coefficient. 
Alternatively, given the challenge of characterizing particle shapes using 
hand-crafted parameters, the ML-based data dimension reduction 
method can be a viable strategy for describing complex grain shapes. For 
example, in Fig. 12, a VAE model was used to extract latent geometric 
features (Hwang et al., 2021).

Although existing research has shown that ML models can predict 
particle drag force with accuracy comparable to the resolved approach 
while reducing computation time significantly, the incorporation of ML- 
based drag force models in resolved CFD-DEM simulations remains an 
emerging area. The inputs and outputs for predicting drag forces vary 
based on distinct training strategies. Table 1 gives an overview of cur-
rent ML-based drag force prediction models in CFD-DEM simulations. In 
addition to ML models, other mathematical methods, such as proper 
orthogonal decomposition (POD), can be utilized for dimensionality 
reduction and data analysis to accelerate CFD-DEM simulations 
(Hajisharifi et al., 2023). However, the discussion of these statistical 
techniques is beyond the current scope and will not be included in this 
review.

3.7. State-based mapping of ML for accelerating predictions of granular 
flow

The previous sections reviewed the integration of ML models with 
process-based granular simulations. While incorporating complete 
physical processes improves an ML model’s ability to generalize across 
various scenarios, it also significantly increases computational costs. 
Unlike process-based simulations of DEM, some studies employ ML for 
end-to-end state predictions (Wu et al., 2024) or for establishing direct 
mapping relationships among variables (Mahdi and Holdich, 2017). 
These approaches are limited to specific training scenarios but are often 
more computationally efficient. For example, one study used an MLP to 
predict the mass discharge rate from conical hoppers based on DEM 
simulation data, utilizing particle properties and hopper angle as inputs 
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(Kumar et al., 2018), without considering individual particle trajectories 
and the flow process. Another study applied ML to predict the passing 
flow rate of a vibrating screen, based on particle and screen information 
derived from DEM simulations (Arifuzzaman et al., 2022). As shown in 
Fig. 13, a hybrid CNN and LSTM network was utilized to capture spa-
tial–temporal discharge patterns of granular flow in a wedge-shaped 
hopper, with the CNN part focusing on extracting image features, 
while the LSTM component for time-sequence predictions (Liao et al., 
2021). The same CNN-LSTM model was also employed to predict mixing 
and segregation behaviours in a bidisperse solid − liquid fluidized bed 
(Xie et al., 2022). Furthermore, ML was used to predict the radial 
segregation of granular materials in a heap, demonstrating that incor-
porating the initial configuration of the mixture and DEM parameters in 
inputs can enhance prediction accuracy (Hadi et al., 2024).

3.8. A summary of ML-accelerated granular simulations

The application of ML to accelerate granular simulations is a rela-
tively new topic, but the concept of reducing computational complexity 
to improve efficiency in physical simulations has been explored for de-
cades. Similar to traditional reduced order models (ROMs), which are 
classified as intrusive or non-intrusive, the application of AI can also be 
categorized this way. Intrusive ROMs integrate the AI model directly 
into traditional computational workflow, as seen in DDMM (Section 
3.1), MLP-based contact resolution (Section 3.2), CNN-based contact 
force determination in DEM (Section 3.3), and surrogate models of drag 
force in CFD-DEM coupling (Section 3.6). Non-intrusive ROMs use 
purely data-driven approaches for surrogate modelling, such as GNS 
(Section 3.4) and RNN-based granular simulations (Section 3.5). To 
facilitate a comparison of different ML acceleration methods, a summary 
is listed in Table 2. Note there is always a trade-off between computa-
tional efficiency and accuracy, but the combination of AI with physics- 
based simulations has the potential to improve efficiency while main-
taining accuracy.

4. Machine learning enabled pattern recognition and granular 
physics discovery

Pattern recognition extracts meaningful structures from data to 
identify, categorize, and understand underlying patterns. The goal of 
using AI in pattern recognition is to uncover regularities within the data, 
providing insights that traditional methods alone may not achieve. In 
granular media applications, pattern recognition includes particle shape 
and size analysis, 3D reconstruction of granular materials, force-chain 
network prediction, and characterization of macroscopic behaviour. 

This section also reviews recent advances in AI applications for 
discovering granular physics.

4.1. Shape and gradation recognition for granular materials

Particle shape and size significantly influence the mechanical prop-
erties of granular materials (Zhang and Yin, 2021). The grain size dis-
tribution (GSD) of granular media is typically characterized by 
cumulative percentages passing through specific sieve sizes (e.g. d1, d10, 
…, d100) (Zhang et al., 2021). Particle morphology is typically charac-
terized using a range of global and local descriptors, as shown in Fig. 14. 
Common terms used to describe the shape of particles are defined below: 

(1) Elongation: The ratio of the longest length (Rmax) to the shortest 
length (Rmin) from the particle centroid to its edge.

(2) Slenderness: The ratio of the major axis length (LF) to the minor 
axis length (SF) of a fitted ellipse of the particle.

(3) Sphericity (or eccentricity): A measure of the overall shape of a 
particle, indicating the similarity between the particle’s length, 
height, and width.

(4) Convexity: The degree of concaveness of a particle, defined as 
the ratio of the particle’s area to the combined area of the particle 
and its convex hull (see Fig. 14b).

(5) Roundness (or angularity): The sharpness of a particle’s edges 
and corners.

(6) Roughness (or smoothness): A measure of the smallest surface 
irregularities on a particle.

Instance segmentation in computer vision offers an effective strategy 
for determining the shape and size of particles (Gao et al., 2024). ML 
models including U-net (Chow et al., 2022), Mask R-CNN (Lai et al., 
2022a), and Inception-ResNet (Kim et al., 2022), are common choices 
for grain segmentation tasks. In addition to predicting shape and size 
distribution (Fan et al., 2022), ML models are also trained to automat-
ically analyze grain angularity (Zheng et al., 2022) to enhance our un-
derstanding of granular behaviour. To identify particle shapes in 2D 
RGB images of packed specimens with unavoidable particle occlusion, a 
self-supervised scene de-occlusion model named PCNet-M (Zhan et al., 
2020) was utilized to infer the complete contours of the occluded par-
ticles (Zhang et al., 2024a). The particle overlap issue in stacked gravelly 
sands was also examined using a deformable convolutional network 
(DCNv2) modified SOLOv2 model (Gong et al., 2025). Instead of using a 
single image, multi-view camera images are utilized as inputs in a 3D 
CNN model to predict exact shape descriptors for a particle (Liu et al., 
2025a).

Fig. 12. ML for CFD-DEM simulations: (a) Resolved and unresolved CFD-DEM coupling methods; (b) an ML-assisted drag force prediction framework in CFD-DEM 
simulations with non-spherical particles, image credit: (Hwang et al., 2021).
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Note that ML alone cannot provide exact size measurements from 
images. Only when the physical length per pixel is known, PSD can be 
predicted with accuracy comparable to manual sieving methods (Bai 
et al., 2021). A practical approach is to include an object of known 
physical size, allowing for the calculation of a scaling factor to convert 
pixels into real-world dimensions (Zhou et al., 2023). A summary of ML- 
based particle shape and size recognition research in granular media is 
provided in Table 3.

Data is crucial for accurately recognizing the shape and size of 

particles in images. Various strategies have been developed to increase 
the availability of high-quality labelled image data. One key approach is 
data augmentation, which includes: (1) rotating images by specific de-
grees, (2) flipping axes, (3) revising brightness, and (4) adding random 
noise (e.g. Gaussian noise). In addition to using real particle images, 
synthesized particles from DEM simulations are used to test and validate 
the segment anything model (SAM) (Kirillov et al., 2023) in recognizing 
the PSD of granular packings (Xiao et al., 2024). Furthermore, super- 
resolution techniques using GANs are employed to generate high- 
resolution images for assessing particle size and shape (Gong et al., 
2024a). To simplify labelling efforts, a multi-patch strategy decomposes 
large images into smaller segments using sliding windows. These crop-
ped small images are then processed by a trained mask R-CNN model 
before being reassembled into the original large image (Zhang et al., 
2024b).

The description of particle shape is inherently a problem with 
infinite-dimensional function space. Traditional shape descriptors as 
shown in Fig. 11 are simply approximations and cannot uniquely define 
a shape. ML offers a new tool to generate shape descriptors. An example 
is to use VAE and latent diffusion model (LDM) to construct a latent 
space to represent particle shapes (Macedo et al., 2023, Zhong et al., 
2024). Despite different methodologies, both VAE and LDM leverage 
latent representations for generative tasks. Once trained, these models 
can sample from the latent space to produce new images that are not 
present in the training datasets. This concept has also been applied to 
simulate the interactions of fluids and particles with complex shapes 
(Hwang et al., 2021) and can be used for the description of micro-
structures of granular materials. In addition, 3D CNN is used to char-
acterize complex particle shapes directly by assigning different values in 
a 3D matrix, where points inside the particle are marked as 1 and those 
outside as − 1. The flow and packing behaviour of these particles can 
then be inferred using 3D CNN (Hesse et al., 2021).

4.2. 3D reconstruction of granular specimens

Reconstructing DEM RVEs with realistic shape and size distributions 
typically involves using 3D X-ray computed tomography (X-RCT) images 
of granular media and extracting individual grains via explicit grain 
segmentation (Kawamoto et al., 2016). This process can be challenging 
due to diverse shapes of grains, complex microstructures, and imper-
fections in the images (Faessel and Jeulin, 2010, Liu et al., 2023). ML has 
emerged as a powerful tool for grain segmentation, with methods such 
as trainable Weka segmentation (Lai and Chen, 2019), random forest 
and particle swarm optimization (Zhang et al., 2022a, Li et al., 2024b) 
delivering promising results. In addition, CNN is used to identify 
incorrectly segmented grains, thereby expediting the manual inspection 
process, after image processing based on raw 3D X-RCT images (Cevallos 
et al., 2023). Recently, vision foundation models (VFMs), such as SAM, 
have been leveraged to segment 2D X-RCT images for 3D reconstruction 
purposes (Li et al., 2024a). Here a computational procedure for the VFM- 
assisted 3D grain reconstruction method is shown in Fig. 15. The 
reconstructed granular packing offers a digital foundation for con-
ducting DEM simulations with realistic particle shapes (Kawamoto et al., 
2018) or microstructures (He et al., 2024).

However, 3D X-RCT scanning is limited by sample size and equip-
ment requirements. Researchers have explored alternative approaches 
using 2D projections or images to reconstruct the 3D geometrical fea-
tures of granular media (Santos and Neto, 2023). Examples include 3D 
laser scanning (Su and Yan, 2018), structural light technique (Sun et al., 
2019), dynamic imaging analysis (Wang et al., 2019a) and video 
tracking (Wang et al., 2023a). Additionally, a dynamic graph edge 
convolution neural network (DGECNN) was developed to utilize 2.5D 
point cloud data to characterize the roundness and sphericity of 3D 
particles (Xi et al., 2025). In recent years, there has been a growing 
interest in reconstructing 3D representations of objects from single-view 
or multi-view RGB images using ML. Inspired by the Pix2Vox method 

Table 1 
ML-based drag force model in CFD-DEM simulations.

References Inputs Outputs ML 
models

Data source

(He and Tafti 
2019)

Reynolds number, 
solid fraction, the 
relative distance 
between the 
target particle and 
its nearest 
neighbouring 
particles

Drag forces MLP Resolved 
CFD-DEM 
simulations

(Muralidhar 
et al., 2020)

Reynolds number, 
solid fraction, 
neighbouring 
particle positions

Drag forces CNN Resolved 
CFD-DEM 
simulations

(Hwang et al., 
2021)

129 features 
including the 
latent vector from 
the VAE and a 
Reynolds number

Drag forces 
and x, y, z- 
torque 
coefficients

VAE and 
MLP

Resolved 
CFD-DEM 
simulations

(Davydzenka 
and 
Tahmasebi 
2022)

Particle velocities, 
fluid velocities, 
void fraction

Drag forces MLP Unresolved 
CFD-DEM 
simulations

(Ashwin 
et al., 2022)

Mean flow 
Reynolds number, 
solid fraction, the 
aspect ratio of 
particles and their 
orientation to 
flow direction

Drag forces MLP Resolved 
CFD-DEM 
simulations

(Ashwin 
et al., 2022)

Mean flow 
Reynolds number, 
solid fraction, the 
aspect ratio of 
particles and their 
orientation to 
flow direction, 
along with a 3D 
image of the 
distance function 
for the particle of 
interest and its 
immediate 
neighbours

Drag forces CNN Resolved 
CFD-DEM 
simulations

(Qu et al., 
2022a)

A sequence of 
matrixes/images 
showing gas–solid 
flow state

A parameter 
to model 
gas–solid 
flow

RNN and 
CNN

Resolved 
CFD-DEM 
simulations

(Hwang et al., 
2024)

VAE-based latent 
vectors for 
describing 
particle shapes, 
Reynolds number

Flow fields VAE and 
MLP

Resolved 
CFD-DEM 
simulations

(Xiang et al., 
2024)

Particle shape 
factor: sphericity, 
aspect ratio, and 
diameter ratio; 
fluid data: 
Reynolds number

Drag 
coefficient

MLP and 
Random 
Forest

DEM–LBM 
simulations

(Hu et al., 
2024)

Primary energy 
spectra of SH 
frequencies, Euler 
angles, and flow 
conditions

Drag 
coefficient

MLP Resolved 
CFD-DEM
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(Xie et al., 2019), a 3D CNN with an encoder-decoder framework has 
been used to infer 3D voxel models from 2D particle images (Giannis 
et al., 2024). These generated voxel models are then converted into 
mesh models via the Marching Cubes algorithm. Similar pixels-to-voxels 
(PVP) models have been applied to reconstruct the 3D morphology of 
irregular sands (Zhao et al., 2024) and to determine the 3D positions of 
tracer particles in volumetric particle image velocimetry (Lin and Gao, 
2024). However, the 2D-to-3D transformation remains a relatively new 
area that deserves further exploration.

4.3. Granular material generation via generative AI

Grain shape is important, but obtaining versatile, high-quality 3D 
grain geometry data can be costly. Research has been conducted to 
leverage generative models to artificially construct new granular spec-
imens with different grain shapes. Generative models are AI models 
capable of generating new data instances that are similar to but not 
identical to the original data, by learning the underlying patterns and 
distribution characteristics from training data. Three types of generative 
models, including GAN, VAE, and DDPM, are widely used, as depicted in 
Fig. 16.

GANs typically consist of two neural networks, a generator that 
creates new data samples, and a discriminator that evaluates them. The 
goal of the generator is to create imitations of data to trick the 

discriminator, while the discriminator aims to identify real data from the 
fakes created by the generator (Fig. 16a). Both are trained simulta-
neously in a competitive learning process to improve the quality of the 
generated samples over time. An application of GANs in CGM is that 
Deep Convolutional GANs (DCGAN) are employed to synthesize X-ray 
CT images of partially saturated sands (Argilaga, 2023). To falsify CT 
images with similar factual dimensions as real sands, the pore fractal 
dimension is computed based on the real CT images with the box count 
method. The probability distribution metrics of fractal dimension are 
embedded into the original GAN loss function, called Fractal Informed- 
GAN (FI-GAN). The developed model can generate representative sand 
samples, as depicted in Fig. 17, potentially offering a cost-effective 
method for augmenting CT image data.

Conditional Generative Adversarial Networks (cGANs) extend 
traditional GANs by providing both the generator and discriminator 
with additional input information during training. This conditioning 
allows cGANs to produce more targeted and controlled outputs. Zhao 
et al., (Zhao et al., 2023c) leverage a cGAN to incorporate shape de-
scriptors as explicit conditions for generation tasks. A feature of their 
work is the use of the Metaball-Imaging algorithm for dimensionality 
reduction on the X-RCT data of real particles, which helps reduce 
training time for the models.

A VAE generates new samples by combining neural networks and 
variational inference to learn a probabilistic representation of data. In 

Fig. 13. Image-based prediction of granular flow (Liao et al., 2021).

Table 2 
A summary of ML-accelerated granular simulations.

Methods Role of MLs Efficiency Applicability Notes

DDMM Replaces online DEM computations in 
FEM × DEM HMM

50-210x acceleration Confined granular simulations Constitutive descriptions of granular 
material

MLP-based contact 
resolution in DEM

Contact detection and determination of 
contact force in DEM

2x (2D) and 
5x (3D)

Limited particle shape types −

CNN-assisted DEM Contact detection and determination of 
contact force in DEM

74x (strategy 1) /7x 
(strategy 2)

Collision-based simulation Two different strategies reported

GNN for DEM Replaces the entire computational cycle 10-100x acceleration Small-to-medium scale 
granular simulations

A 700x acceleration was reported when 
using PCA

RNN for DEM Replaces the entire computational cycle 355x acceleration Case-specific applications −

ML-accelerated CFD-DEM Replaces drag force model 43x acceleration Fluid-particle interaction Tested based on CPU time per particle 
drag force calculation

State-based mapping Bridges the mappings between two states 
of granular flows

Several orders of 
acceleration

Case-specific applications Efficient, yet limited in scenario 
extrapolation
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contrast to the autoencoder (AE) model, VAE encodes the input into a 
probabilistic distribution, characterized by a mean and variance. This 
allows for probabilistic sampling from the latent space and variability in 
the generated outputs (Fig. 16b). VAE has been used to learn from 

around 30,000 X-ray micro-computed tomography (μCT) scanned sand 
particles and generate unseen 3D sand grains (Shi et al., 2021a). Their 
research found that the generated sand particles exhibit statistical sim-
ilarities to the natural sand particles. Through the use of VAE, it is found 

Fig. 14. Typical descriptors for characterizing the morphology of a particle.

Table 3 
A summary of ML-based grain shape and size identification.

Reference ML Models Datasets Annotation Input Output Notes

(Zheng and 
Hryciw 
2018)

AdaBoost 85,000 images with a pixel size of 32 
× 32

N/A RGB images Roundness and 
sphericity

N/A

(Liang et al., 
2019)

U-Net 540 images after data augmentation N/A RGB images Elongation, 
orientation index, 
root of form factor

N/A

(Yang et al., 
2021)

Mask R-CNN 30 images; resolution: 3024 × 4032 
pixels

VIA (Dutta 
et al., 2016)

RGB images Elongation, angularity, 
roughness,

Fine-tuned from Detectron2

(Zhang et al., 
2022c)

3D-CNN 2D X-RCT slices for 100 ballast and 
100 Fujian sands

VIA 2D binary 
images

Roundness, 
sphericity, convexity, 
aspect ratio

Considering 3D

(Kim et al., 
2022)

Inception-ResNet- 
v2

Over 7000 sand images from six 
different sands

N/A Grayscale 
or 
Binary

Roundness, sphericity, 
slenderness, circularity

N/A

(Zhou et al., 
2021)

U-Net 150 images of excavated muck from 
TBM

Manual RGB images Elongation, 
circularity, 
equivalent diameter

N/A

(Sun et al., 
2022)

NSNet: 
encoder–decoder

430 raw SEM/TEM images; 4300 
augmented images; Resolution: 512 
× 512 pixels

LabelMe Grayscale Blaschke shape factor; 
size distribution

Nano particles

(Zhang et al., 
2023c)

Mask R-CNN 50 raw images, Data augmentation to 
1000; Resolution: 2048 × 2048 
pixels

LabelMe RGB images Equivalent particle size A shaker-photography system 
was designed to consider 3D 
particle shape

(Gong et al., 
2024a)

GAN and SOlO v2 800 raw images with a resolution of 
4480 × 4480

Manual RGB images Size distribution, 
sphericity, roundness

Super-resolution

(Zhou et al., 
2025a)

AlexNet and YOLO- 
v3

3,800 individual particle images K-means 
clustering

RGB images Particle shape class N/A

Note: [i] R-CNN: Region Convolutional Neural Network; VIA: VGG Image Annotator; [ii] Detectron2: a platform for object detection, segmentation and other visual 
recognition tasks. [iii] Blaschke shape factor = 32A/(πP)2 (Sun et al., 2022), root of form factor = 2

̅̅̅̅̅̅
πA

√
/P (Liang et al., 2019), with A and P being the projected area 

and perimeter of each particle, respectively. The particle orientation index is the angle between the particle’s longest axis and the positive x-axis, measured clockwise.
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that 20 descriptors in the latent space can uniquely define the 
morphology of a particle (Macedo et al., 2023). In addition, a metaball- 
based VAE is developed to generate realistic sand shapes. The idea is that 
VAE uses 3D metaball descriptors, instead of a 3D digital matrix of 
particle shape, as inputs and outputs. The particle shape is computed 
based on the generated metaball descriptors (Zhao et al., 2023b).

DDPM is a type of generative models that utilize diffusion processes 
to iteratively remove noise from corrupted data (Fig. 16c), allowing for 

the generation of high-quality samples that closely resemble the original 
data distribution (Ho et al., 2020). Recently, DDPMs have been 
employed to generate particles that have never been observed in reality 
(Vlassis et al., 2023). As shown in Fig. 18, a real particle is represented as 
a point cloud pi=(xi, yi, zi) in three-dimensional Euclidean space, 
denoted as P=[p1, p2, p3,…, pi,…, pN]. An autoencoder architecture is 
utilized to discover a latent representation of the point clouds of sand 
grains. Subsequently, DDPMs are trained through a diffusion process 
that progressively adds noise to the lower-dimensional embeddings of 
these point clouds. This is followed by a reverse diffusion process that 
constructs lower-dimensional embeddings of the generated sand grains 
through gradual denoising. The trained decoder then utilizes these 
generated embeddings to produce synthetic sand that closely resembles 
the original data distribution. The rationality of generated particle 
shapes is assessed by comparing the statistical consistency of key par-
ticle shape indicators with the original distribution of natural particle 
assemblies.

4.4. ML-based contact force predictions

Granular media resist external loads through interparticle contacts, 
forming highly inhomogeneous contact force chains that evolve 

Fig. 15. A computational procedure for VFM-assisted 3D grain reconstruction method. Image adapted from (Li et al., 2024a).

Fig. 16. Three representative generative AI models.

Fig. 17. Reconstructed specimens via generative models (Argilaga 2023).
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dynamically within the system (Shi et al., 2021b, Gong et al., 2024b). 
The evolution of the force-chain network is partially responsible for the 
complex collective behaviour observed in sheared granular media (Peng 
and Yin, 2023). In laboratory experiments, particle positions and ve-
locities can be measured, but direct measurement of forces between 
particles is almost impossible. This becomes an important motivation for 
using ML to estimate contact force distributions in granular media using 
kinematic data from μCT (Cheng et al., 2023) and photoelastic experi-
ments (Lin, 2024).

Although MLP is found effective at predicting contact forces (Wu and 
Wang, 2022b), GNN has gained more attention for modelling contact 
force chains (Cheng and Wang, 2022). Under specific loading condi-
tions, GNNs can predict the location of force chains in granular materials 
from the initially undeformed structure (Mandal et al., 2022, Li et al., 
2023c). Recent studies indicate that GNNs can scale to predict larger and 
more complex systems that were not seen during training (Aminimajd 
et al., 2024). Instead of developing a surrogate model to predict contact 
force distributions directly, SHapley Additive exPlanations (SHAP) 
value analysis reveals that the coordination number and local clustering 
coefficient are keys for forming these force chains (Cheng and Lin, 
2024). Furthermore, ML is used to reconstruct forces acting between 
particles in photoelastic granular material. Due to the scarcity of 
experimental data, a CNN is first pre-trained on a synthetic dataset 
derived from analytical solutions of photoelastic theory and then fine- 
tuned on a smaller experimental dataset, showing satisfactory results 
(Sergazinov and Kramár, 2021).

4.5. ML-assisted descriptions of material behaviour

The use of AI to predict the macroscopic behaviour of granular media 
has a long history (Antony et al., 2006). One basic motivation is that 
some physical behaviours or processes are too complex to be mathe-
matically formulated or numerically simulated, such as the evolution of 
PSD due to particle attrition in long-term fluidization processes 
(Farizhandi et al., 2016). ML can serve as a surrogate model to establish 
the physical relationships between relevant variables based on available 
experimental data. For example, the mechanical behaviour of granular 
biomass materials was learned using ML models based on laboratory 
data from cyclic axial compression and ring-shear tests (Li et al., 2025).

Stiffness and strength are essential properties of granular media. To 
analyze stiffness characteristics, methods include using 3D CNNs to 
extract the fabric of granular soil for predicting its constrained modulus 
(Zhang et al., 2024d) and applying MLPs to forecast the small-strain 
shear modulus of sand and sand-fines mixtures (Khodkari et al., 
2024). Regarding strength behaviour, various ML models are used to 
predict the uniaxial compressive strength (UCS) of the Voronoi-based 
universal distinct element code (UDEC) model based on contact-scale 
cohesion and friction angle (Fathipour-Azar, 2022).

Another strategy for harnessing AI in the description of material 
behaviour is linking particle-scale physics with free parameters in 
phenomenological material models. For instance, MLPs are used to 
capture the correlation between PSDs and two free parameters in the 
Duncan–Chang hyperbolic model (Gonzalez Tejada and Antolin, 2022), 
i.e. the tangent elastic modulus and the ultimate deviatoric stress 
(Duncan and Chang, 1970). Furthermore, building an AI constitutive 
model to describe how a material deforms under specific external loads 
is a crucial aspect of this topic. Given the resemblance between data- 
driven constitutive modelling and multiscale modelling, further details 
can refer to Section 3.1.

4.6. ML-based pattern recognition from granular dynamics

ML is a useful tool for identifying inherent patterns in granular sce-
narios. In process engineering, ML is used for grain classification by 
detecting kinematic patterns to sort different granular media (Laudari 
et al., 2022), for differentiating small from large grains in the observable 
dynamics of disordered granular flows (Laudari et al., 2023). In some 
experimental settings, a dilated convolution UNet++ model is employed 
to recognize the quasi-static region resulting from sphere impacts on 
granular beds, replacing the traditionally used Particle Image Velocim-
etry (PIV) measure technique (Chen et al., 2021).

In addition, Mask R-CNN is utilized to track the position and orien-
tation of dilute rod-like particles across two-view videos. The identified 
2D coordinates from both views are converted into 3D trajectories by 
minimizing reprojection error, enabling automated 3D statistical anal-
ysis of particle trajectories with the aid of ML (Puzyrev et al., 2020).

4.7. Discovery of granular physics via machine learning

Many physical laws are hidden in complex patterns and environ-
ments. These underlying physics are typically hard to explain, describe, 
and predict. Some efforts have been made to employ ML to gain granular 
insights that might not have been possible with traditional methods 
alone. Discovering ordinary differential equations (ODEs) and partial 
differential equations (PDEs) to describe physical systems and processes 
is a fundamental task in physics. Representative data-driven methods for 
finding governing equations include: (i) sparse regression, (ii) symbolic 
regression, and (iii) partial dependence analysis.

Sparse regression is a technique that uses regularization to identify a 
subset of features and reduce model complexity in regression analysis. A 
notable example is using sparse regression to identify the governing 
equation of granular temperature during homogeneous cooling (Zhao 
et al., 2023a). In this case, domain expertise is leveraged to choose a 
candidate variable library associated with granular temperature, fol-
lowed by linear regression to model its evolution using DEM simulation 
data. In contrast, symbolic regression is an ML approach that uses 

Fig. 18. DDPM-based sand grain generation: (a) process of generating sand grain and (b) an example of generated samples, adapted from (Vlassis et al., 2023).
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algorithms like genetic programming to uncover underlying mathe-
matical relationships in data. This technique has been used to discover 
elastoplasticity constitutive models in conjunction with the neural 
polynomial method (Bahmani et al., 2024). In addition to sparse and 
symbolic regression, partial dependence analysis can reveal how a 
specific feature influences models’ predictions while keeping other 
features unchanged (Parr and Wilson, 2021). This technique has been 
employed to develop explicit permeability formulas in granular mate-
rials, resulting in a permeability prediction equation that demonstrates 
robust applicability across various datasets (Zhang et al., 2024c).

When the relationships among physical variables are too complex to 
be mathematically formulated, using a data-driven surrogate model to 
capture these relationships is a viable option. For example, Gradient 
Boosting Decision Trees (GBDT) can map short- and medium-range 
structural features to identify crystalline phase precursors in mono-
disperse packings (Zhang et al., 2022e). Extreme Gradient Boosting 
(XGBoost) links micro slips (indicated by squared nonaffine displace-
ments) to slip avalanches (reflected in macroscopic stress fluctuations) 
in sheared granular gouges (Ma et al., 2022b). A 3D CNN connects voxel 
matrix representations of microscopic dynamics to macroscopic stress 
fluctuations (Mei et al., 2023). Graph Convolutional Neural Networks 
(GCNNs) serve to identify particles with high plasticity susceptibility 
based on solely initial particle positions (Mei et al., 2024). GNNs can 
capture particle crushing strength using connected fragment graphs 
instead of traditional morphology descriptors (Zheng et al., 2024) and 
examine the relationship between microscopic plasticity and macro-
scopic stress (Mei et al., 2022). A causal link is established between 
particle-level structural indicators (such as coordination number and 
local packing fraction) and the plastic instability of shearing granular 
materials (Zou et al., 2023). CNNs are employed to identify the struc-
tural characteristics of granular materials (Cui et al., 2023). MLPs 
explore shock compaction-induced heating mechanisms in energetic 
granular media by linking local density to local temperature and intra-
molecular strain energy (Hamilton and Germann, 2023). In addition, 
MLP and random forest are leveraged to predict the number and sizes of 
crushed ballast particles (Aela et al., 2022).

ML has been used to investigate the heterogeneous dynamics of 
disordered granular flows (Cubuk et al., 2015, Cubuk et al., 2017). A 
random forest classifier reveals that force and acceleration in collisional 
zones of bidisperse silo flows can differentiate small from large grains, 
while other indicators like velocity, are ineffective, particularly in dense 
zones of the silo flow (Laudari et al., 2023). Although the predictions are 
not entirely satisfactory, ML has been reported to uncover meaningful 
physics underlying the clogging process in 2D granular hoppers (Hanlan 
et al., 2024). Beyond solid mechanics, ML is applied to correlate pore 
networks, particle contact networks, and permeability in porous gran-
ular media (Yasuda et al., 2021).

ML has also been used to explore geological physics associated with 
granular media (Rouet-Leduc et al., 2017, Jaza et al., 2021). For 
instance, an XGBoost model predicts instantaneous global friction co-
efficients for sheared granular systems, which are designed to simulate 
the frictional behaviour of geological faults (Ren et al., 2019). Through 
tentatively adding particle-scale information to ML models, researchers 
found that velocity signals from individual particles contain details 
about intermittent frictional stick–slip dynamics. Similarly, the Light 
Gradient Boosting Machine (LightGBM) analysis revealed that plate 
motion signals in a sheared granular fault during the initial slip stage 
contain precursor information about the duration of slip in laboratory 
earthquakes (Wei and Gao, 2024). Notably, the knowledge gained from 
particle-scale simulation data can be transferred to predictions of labo-
ratory fault friction via transfer learning (Wang et al., 2021a).

Based on well-trained ML models, SHAP values are widely used to 
explain individual predictions by computing the contribution of each 
feature. The application of SHAP analysis can be found in examining the 
plastic instability of disordered granular media, identifying important 
particle shape descriptors related to crushing strength (Wang et al., 

2021b), discovering key variables associated with the shear modulus of 
gap-graded granular mixtures (Liu et al., 2024), identifying crucial 
variables affecting hydraulic fracture behaviour in conglomerate rock 
(Shentu et al., 2024), and exploring the structure–property relationship 
of granular materials (Zhang et al., 2022f). However, SHAP analysis 
relies on specific models and data. Using identical datasets with different 
models, or identical models with different datasets, can yield different 
explanations. This variability is particularly pronounced when the data 
does not cover all possible scenarios or contains significant noise, 
potentially leading to biased results. In addition, while SHAP analysis 
provides insights into the contribution of each variable, it does not fully 
explain the underlying physics.

5. Machine learning for inverse problems in computational 
granular mechanics

Inverse problems involve using observed data or outcomes of a sys-
tem to deduce underlying causes or parameters. Solving inverse prob-
lems is essential in engineering and science applications, but it can be 
challenging due to the possibility of non-unique or infinite solutions. 
Typical inverse problems in granular mechanics include parameter 
calibration in DEM and simulation-based optimization tasks. In contrast 
to conventional methods, ML brings new solutions for tackling these 
longstanding inverse problems.

5.1. Parameter calibration in DEM

Realistic simulations require accurate input parameters. However, 
particle-scale parameters are often difficult to measure directly for most 
granular materials. In addition, DEM models simplify the complexities of 
real physical systems, including shape and size distributions of grains 
and contact behaviour. Thus the fundamental philosophy of parameter 
calibration is to (1) acknowledge the simplifications made in DEM and 
(2) adjust particle-scale parameters to match physical observations as 
closely as possible (Qu et al., 2020a).

5.1.1. Supervised machine learning for parameter calibration
ML is often used to build a macro-microscopic parameter relation 

(Benvenuti et al., 2016). Basically, there are two main strategies. One is 
the direct method which uses macroscopic parameters as input while 
particle-scale parameters as outputs (Zhou et al., 2022, Wang et al., 
2023b, Liu et al., 2025b). The other one is the surrogate inversion 
method which builds an ML-based surrogate model to evaluate macro 
parameters based on micro properties (Shentu and Lin, 2023) and then 
leverages optimization methods, such as orthogonal search algorithm 
(Ye et al., 2019) and genetic algorithm (GA) (Gu et al., 2023), to search 
for satisfactory particle-scale parameters to reproduce the target macro 
properties.

In terms of the direct method, multi-fidelity residual neural network 
(MFRNN) utilizes existing empirical or analytical macro–micro relations 
as low-fidelity data while DEM simulations as high-fidelity data to 
reduce the costs of training a reliable parameter calibration model in 
bonded granular materials (Zhou et al., 2024). A potential risk is that 
there might be many particle-scale parameter combinations that will 
yield similar macroscopic results. Thus, the direct prediction from 
macroscopic properties to estimate potential microscopic parameters 
might suffer from problems. To mitigate this issue, Long et al., (Long 
et al., 2023) leveraged the entire stress–strain sequences as inputs to 
estimate particle-scale parameters, based on the consideration that the 
macroscopic stress–strain sequences resulting from particle-scale DEM 
simulations are highly associated with the parameters used. The results 
show this scheme can yield satisfactory interpolated results as shown in 
Fig. 19.

In the surrogate inversion method, ML serves to replace time- 
consuming DEM simulations with an efficient data-driven forward 
simulator (Irazábal et al., 2023), thereby accelerating the calibration 
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process. This approach typically requires a certain number of iterative 
simulations (Qu et al., 2020b). In contrast to the direct method, the 
surrogate inversion method is found to be more accurate (Pan et al., 
2023).

Supervised learning algorithms, including the direct method and 
surrogate inversion method, face challenges in incorporating particle 
size, shape distributions, and microstructures of granular systems, fac-
tors that impact the macroscopic behaviour of granular media. As the 
number of parameters to calibrate grows, the parameter space expands 
significantly, necessitating numerous DEM simulations for training data 
generation. Consequently, despite showcasing strong calibration per-
formance, supervised learning methods frequently encounter difficulties 
in generalizing scenarios with diverse packings.

5.1.2. Reinforcement learning (RL)
RL is a branch of ML in which an agent learns to make optimal de-

cisions by interacting with an environment. This approach is inspired by 
how humans naturally acquire knowledge through interacting with their 
surroundings. RL consists of four basic components: (1) agent, (2) 
environment, (3) state, and (4) action. Through numerous interactions 
with its environment, RL enables virtual agents to determine optimal 
actions for any given state, making it particularly effective for combi-
natorial optimization problems. A reinforcement learning framework is 
proposed to calibrate particle-scale parameters (Westbrink et al., 2021), 
as shown in Fig. 20. Calibration is conducted based on both the static 
angle of repose (AoR) using lifting cylinder tests and the dynamic AoR 
with rotating drum tests. The agent’s states are defined by the particle- 
scale parameters that require calibration, while actions involve 

adjusting these material parameters to maximize rewards. Rewards are 
determined by the difference between experimentally measured 
macroscopic properties and their simulated counterparts in DEM. The 
closer the numerical results are to the experimental targets, the higher 
the reward.

5.2. Optimisation problems in granular mechanics

Optimisation is a key focus in industry and engineering. The goal of 
optimization is to find the best solutions from a set of feasible solutions 
to maximize or minimize an objective function under specified con-
straints. ML-based surrogate models excel at solving optimisation 
problems for several reasons: (1) some surrogate models are differen-
tiable so that gradient-based optimisation methods can offer iterative 
directions for a prescribed goal. (2) ML surrogate models provide high 
computational efficiency for simulating granular processes, allowing for 
numerous iterative computations in a reasonable time. (3) ML can un-
cover low-dimensional latent representations of high-dimensional 
parameter spaces, thereby lowering the cost of finding feasible solu-
tions. Overall, the potential of ML to optimize various problems related 
to granular materials is being actively researched.

5.2.1. Gradient-based optimization
The primary technique for training deep learning models largely 

relies on automatic differentiation (AD) and gradient-based optimisa-
tions. Through establishing a differentiable surrogate model, the 
gradient information can be leveraged for optimization (Allen et al., 
2022). Recent advancements include the GNS-based inverse design 
method for granular flows. Automatic inverse design is an optimization 
problem that involves defining an objective function (Lθ) and iteratively 
adjusting the parameters θ to be optimized. Gradient-based iteration is a 
common choice in optimization and there are two main strategies for 
computing the gradient of the objective function against the parameters 
being optimized: one uses perturbation or the finite difference method to 
approximate the gradient of the objective function Lθ with respect to the 
parameters θ, i.e. ∇θLθ (Jiang et al., 2024). For example, if suppose 
θ¼(θ1,θ2), the gradient ∇θLθ can be approximated using Eq. (14). 

∇θLθ ≈

(
Lθ(θ1 + ∊1, θ2) − Lθ(θ1, θ2)

∊1
,

Lθ(θ1, θ2 + ∊2) − Lθ(θ1, θ2)

∊2

)

(14) 

where θ1and θ2 represent two parameters to be optimized (more pa-
rameters can be treated in the same way);∊1 and ∊2 are small numbers 
representing a perturbation to θ1and θ2, respectively.

The alternative strategy is to leverage the AD of a GNS (Kumar and 
Choi, 2023): 

∇θLθ =
∂Lθ

∂Sk
∂Sk

∂θ
(15) 

Fig. 19. A RNN approach for particle-scale parameter calibration (Long et al., 2023).

Fig. 20. Structure of Actor-Critic RL algorithm for parameter calibration in 
DEM, adapted from (Westbrink et al., 2021).
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where Sk represents the GNS state at the kth time step. With S0 being the 
initial state, the following states can be computed via: 

S1 = GNS
(
S0; θ

)

S2 = GNS
(
S1; θ

)

… 

Sk = GNS
(
Sk− 1; θ

)
(16) 

In addition, ∂Sk− 1

∂θ can be computed recursively by applying the chain 
rule to the entire simulation trajectory: 

∂Sk

∂θ
=

∂Sk

∂Sk− 1⋯
∂S1

∂S0
∂S0

∂θ
(17) 

Eqs. (15) and (17) indicate that accurately calculating ∇Lθ requires 
propagating gradients from the final state Sk back to the initial state S0, 
utilizing all intermediate states S1, S2, ⋯, Sk− 1. Since the GNS consists of 
multiple MLPs with numerous parameters, storing all intermediate 
states for long trajectories can be memory-intensive. Research showed 
that GNS simulations of granular flows with approximately 3,000 par-
ticles can only handle 3 to 4 timesteps on GPUs with 40 GB of memory 
(Choi and Kumar, 2024b). However, they found that the gradient 
checkpointing technique (Chen et al., 2016) can reduce memory con-
sumption effectively and enable the computation of a 3D granular flow 
problem over hundreds of timesteps.

With gradient information available, gradient-based optimization 
methods can iteratively minimize the difference between the GNS 
simulation results and the specified goals. For example, in the gradient 
descent method, the parameter θ can be updated as follows: 

θ := θ − η∇θLθ (18) 

where η is a hyperparameter called learning rate. Other first-order 
gradient-based optimisation methods, such as AdaGrad (Duchi et al., 
2011) and Adam (Kingma and Ba 2014), can be used seamlessly for the 
optimisation purpose. An example of the GNS-based optimization 
framework can be found in Fig. 21.

5.2.2. Gradient-free optimisation
In the absence of gradient information, ML can provide an efficient 

surrogate simulator for gradient-free optimization, which typically re-
quires many simulations. One such example is to control the final 
packing shape of granular materials by optimising the accelerations of a 
blade in rigid body-granular media interactions. A GNN-based surrogate 
simulator is integrated with Differential Dynamic Programming (DDP) 
to optimize a rigid body-driven granular system by iteratively refining 
control policies (Aoyama et al., 2024). Another gradient-free optimisa-
tion problem is searching which kinds of particle shapes can pack the 
densest granular matter in a certain specimen-making procedure. The 

solution is conducted in the following steps: First, a vector αp is defined 
to represent the particle shapes. Next, a numerical or ML model is used 
to determine the packing density ϕp for a given αp, following a specific 
sampling-making protocol. Finally, gradient-free methods, such as Nel-
derMead, Simulated Annealing (SA), and Differential Evolution (DE) can 
be used to minimize ϕp(αp) (Baule et al., 2023). 

α*
p = argmin ϕp

(
αp
)

(19) 

5.2.3. Dimension reduction in optimisation
Traditional optimization methods struggle with high-dimensional 

parameter spaces and implicit features. Taking Eq. (21) as an example, 
in the case that the combinatorial space of αp is too large, PCA can be 
used to reduce the dimensionality of the parameter space, thereby 
making the optimization more tractable. One more example is that in the 
inverse design of microstructure for Li-Ion Batteries (Xu et al., 2021a, Ge 
and Liu, 2024), the features to be optimised are not well-defined. 
Autoencoders offer a novel solution by transforming intricate inputs 
like microstructure images into optimizable latent variables, which can 
then be decoded back into optimal designs. Then conventional optimi-
zation methods, such as Bayesian optimization, can search for optimal 
solutions in the low-dimensional latent space (Jung et al., 2020).

5.3. Physics-informed neural network (PINN) for granular mechanics

PINNs integrate PDEs or ODEs into the loss function of neural net-
works as soft constraints (Raissi et al., 2019). During training, the 
network minimizes the residuals of these PDEs or ODEs using automatic 
differentiation. The differentiability of PINNs enables their use for 
solving inverse problems via backpropagation. For instance, these 
methods can infer unknown parameters that best fit the observed data 
by treating the parameters as trainable variables adjusted during opti-
mization. PDEs have been employed to characterize the evolution of 
granular systems. For example, population balance equations (PBEs) are 
often used to describe particle-based processes like particle breakage 
analysis (Gupta and Mishra, 2024) and powder mixing in chemical en-
gineering. PINNs are used to solve PBEs and identify unknown param-
eters such as aggregation and breakage rate constants (Chen et al., 
2021), demonstrating the potential of PINNs in solving forward and 
inverse PDE problems. However, the identified parameters may not be 
unique and PDEs are often unavailable or oversimplified for many 
granular behaviours.

PINNs represent a special type of unsupervised learning, where the 
loss function is formulated using analytical equations, rather than 
relying solely on labelled data. A similar idea is being increasingly in-
tegrated into the solution process of FEM (Wang et al., 2024c), where an 
NN is used to predict nodal displacements by using nodal coordinates as 
inputs. The loss function can be formulated using energy functional 
(Wang et al., 2025c) and boundary/initial conditions (Zhang et al., 
2025a). Together with other standard FEM computational procedures, 

Fig. 21. A GNS-based optimization simulation procedure (adapted from (Choi and Kumar 2024b, Jiang et al., 2024)).
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the NN can be trained to minimize the global residuals, yielding nodal 
predictions that satisfy governing equations in FEM. Alternatively, op-
timizers in NN training, e.g. Adam, and LBFGS, have been explored to 
directly minimize the global residual of the governing equations after 
Galerkin discretization in FEM (Wang et al., 2025b). These attempts 
enable FEM models to be differentiable. This, in turn, provides greater 
flexibility in tackling inverse problems.

6. Discussion

6.1. Challenge in data

The effectiveness of data-driven models is inherently limited by the 
quality and representativeness of the data on which they are built. To 
extract unbiased insights, it is essential to ensure representative sam-
pling; however, sampled datasets often fail to cover the full range of 
scenarios the model is intended to address. This challenge is complicated 
by the fact that data is often collected independently, limiting ML ex-
perts’ control over the sampling process. To minimize sampling biases, 
data collectors should understand the problem context, define the 
model’s intended scope, and ensure adequate sampling coverage.

When active sampling is infeasible, particularly in laboratory or 
engineering scenarios, synthetic data generation methods can be used to 
produce extensive datasets that are difficult or costly to obtain through 
physical monitoring. These methods include high-fidelity physics-based 
simulators (e.g. DEM) (Zhang and Yin, 2021), analytical formulation- 
based models (Zhang et al., 2020), and even Generative AI techniques 
(Argilaga 2023, Vlassis et al., 2023). Note that the lack of data under 
extreme conditions is a key challenge that affects many AI applications. 
In granular scenarios under extreme conditions, such as high strain rates 
and particle breakage, numerical simulations can provide a critical 
source of data for mitigating data scarcity (Zheng et al., 2024). These 
synthetic datasets can serve as low-fidelity data, to alleviate data scar-
city by leveraging similarities between related tasks through cross-task 
learning techniques such as transfer learning (Qu et al., 2023b) or 
multi-fidelity learning (Zhang et al., 2022b).

However, establishing explicit guidelines or standards for data syn-
thesis is essential to ensure the reproducibility of the data generation 
process. For instance, parameter calibration in numerical and analytical 
models is the prerequisite to minimize the discrepancy between syn-
thetic and physical data. Key information such as model parameters, 
simulation settings, random seeds, and software or code details should 
be documented as metadata to ensure the transparency and reproduc-
ibility of computational simulations.

Recognizing the importance of data and the challenges associated 
with its collection and management, we have launched a data man-
agement platform called “Clear Data Bay” (https://www.cleardatabay. 
com). This platform seeks to integrate all available data resources 
related to granular media and its associated industrial and engineering 
fields, including experimental, analytical, and numerical simulations. It 
aims to promote efficient data circulation and maximize the value and 
usage of data within the community. Unlike most data management 
systems, “Clear Data Bay” is a lightweight, centralized platform that 
features a substantial amount of metadata, providing information on 
existing open-source raw datasets and their corresponding source 
addresses.

6.2. Challenge in models

A significant challenge for current ML models is their reliability. 
Developing explainable and trustworthy ML models relies not only on 
comprehensive data coverage but also on advancements in computa-
tional algorithms. Several key areas are suggested below:

(1) Uncertainty Quantification. As data-driven models are typi-
cally not underpinned by a solid theoretical foundation, an AI model 
that can assess its uncertainty or confidence in each prediction can 

effectively enhance trustworthiness, particularly for out-of-distribution 
(OOD) predictions. Furthermore, the use of uncertainty estimators al-
lows for an interactive AI training strategy, where predictions with high 
uncertainty can trigger specified needs for numerical computations or 
laboratory experiments to further enrich the training dataset (Qu et al., 
2023a).

(2) Physics-involved Data-driven Models. Well-established phys-
ical knowledge, such as thermodynamics and frame-indifference, should 
be explored for integration into the training process of models, such as 
Physics-informed loss function (soft constraints), Physics-guided archi-
tecture (hard constraints) and even Physics-based parameter initializa-
tion. The development of principled physics-involved ML models could 
facilitate the development of high-quality models using limited data.

(3) Explainable ML models. AI models are often criticized as “black 
box” due to the lack of clarity on how outputs are generated (Chan et al., 
2022). In certain cases, interpretability may not be necessary for ap-
plications like generative structural design, because domain experts can 
leverage mechanics-based models or knowledge to assess the quality of 
ML outputs. However, for AI-informed decisions that directly or 
immediately affect high-consequence actions, research in interpret-
ability can effectively enhance confidence in the predictions made by AI 
models. Most current interpretability research in CGM relies on post hoc 
explanations, such as global techniques (e.g. feature importance), and 
local methods (e.g. SHAP). Further development in explainable ML 
models will enhance the reliability and trustworthiness of AI in accel-
erating granular simulations, knowledge discovery and other scientific 
applications in CGM.

6.3. Prospects in AI-driven CGM

AI is transforming numerous fields, including computational gran-
ular materials. While ML is a potent fitting tool, it often struggles to 
make accurate predictions for underrepresented scenarios during the 
training phase. The true value of AI will become evident when it suc-
cessfully addresses previously unresolved challenges in the CGM com-
munity. For instance, ML can be used to create scalable simulators that 
model physical objects over larger lengths and time scales that are 
inaccessible to traditional physics-based computational tools or develop 
highly efficient data-centric virtual twins that instantly interact with 
physical assets within the digital twin framework.

High-fidelity simulations remain essential in the age of AI. On the 
one hand, Physics-based simulators can generate abundant data effi-
ciently at a low cost for training AI models. On the other hand, AI models 
can be integrated into physics-based numerical simulators, acting as a 
type of non-intrusive reduced-order model to accelerate computations 
or empower differentiability by modifying certain components in the 
original computational framework. Combining physics-based simula-
tions and AI techniques offers a complementary approach that can 
leverage the strengths of both to advance the development of CGM.

While AI has been extensively explored in various aspects of CGM, 
the potential of generative AI to drive innovations in this field has not 
yet been fully realized. There is a growing trend towards fine-tuning, 
general-purpose LLMs for specialized usage. However, integrating 
diverse LLM agents into targeted application scenarios is equally crucial. 
Current standard uses of LLMs include generating codes (Kim et al., 
2025), debugging, brainstorming, and refining writing. Yet, further 
exploration of AI-human collaboration across broader scenarios is not 
just a trend but necessary. Additionally, despite some progress, the 
application of multi-modal LLMs or LVMs in CGM is still in its early 
stages. It can be expected that the integration of these generative AI 
techniques could unlock more frontiers in CGM.

7. Summary

This review summarizes the state-of-the-art machine learning ap-
plications in modelling granular materials and related industrial/ 
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engineering problems. The capabilities of AI in transforming computa-
tional granular media can be categorized into three main areas: 

(1) AI-accelerated simulations: This includes multiscale and 
constitutive modelling of granular soils, MLP-based contact laws 
in DEM, CNN-based intrusive reduced-order modelling of DEM, 
RNN and GNN-based non-intrusive reduced-order modelling of 
DEM, and ML-assisted CFD-DEM modelling. While AI cannot 
replace CGM, it serves as an important complementary tool that 
enhances CGM. AI-driven CGM is expected to provide better 
accuracy-speed trade-offs compared to conventional, physics- 
based granular simulators.

(2) AI-enabled pattern recognition and physics discovery: This 
encompasses the recognition of shape and gradation in granular 
media, 3D reconstruction of granular specimens, automatic gen-
eration of granular specimens, predictions of contact force 
network, characterization of macroscopic property, and data- 
driven physics discovery. AI can enhance human capabilities by 
identifying complex patterns that might otherwise go unnoticed, 
leading to more effective simulation-assisted knowledge discov-
ery and improved representation of granular materials in 
simulations.

(3) AI-assisted inverse modelling. This includes automatic cali-
bration of particle-scale parameters, scenario-specific optimiza-
tion of simulations, and the use of PINNs for granular modelling. 
Differentiable and lightweight AI-based surrogate simulators 
offer new solutions for addressing long-standing inverse prob-
lems in CGM.

To further promote the development of data-driven CGM, a 
specialized data platform featuring comprehensive metadata has been 
established. This platform aims to accelerate the circulation of CGM data 
and unlock its value for advancing the field. Although AI has been 
applied in various granular simulations, numerous challenges remain in 
terms of data and model/algorithm development. It is important to note 
that AI is not a panacea; AI systems often struggle to generalize beyond 
their training data, and produce poorly interpretable predictions. 
However, as AI continues to evolve and more principled methods that 
integrate domain knowledge with AI models are developed, AI-driven 
CGM approaches hold promises for improving the efficiency and accu-
racy of granular simulations, while extracting deeper insights from the 
simulation results.
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