
Computers and Geotechnics 180 (2025) 107113 

A
0

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research paper

A sparse-memory-encoding GPU-MPM framework for large-scale simulations
of granular flows
Hao Chen, Shiwei Zhao ∗, Jidong Zhao ∗

Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region

A R T I C L E I N F O

Keywords:
MPM
GPU
Sparse memory
Large deformation
Granular flow

A B S T R A C T

The Material Point Method (MPM) is increasingly recognized as an effective tool for simulating complex
granular flows. While GPU computing has been widely used in MPM applications for large-scale problems,
its heavy reliance on contiguous memory distribution can significantly hinder efficiency and limit simulation
capabilities due to memory capacity constraints. This study presents a sparse-memory-encoding framework
that incorporates advanced algorithms to address these limitations in large-scale simulations. We introduce
a novel algorithm for atomic-free dual mapping between material points and nodes, in conjunction with
warp-wise particle-to-grid mappings organized within a block-cell-material point hierarchy. Moreover, the
framework features an efficient memory shift algorithm that optimizes memory usage for material properties.
This optimization enables the seamless integration of commonly used material constitutive models, including
elastic, elastoplastic, and hyper-plastic models, as well as various iteration schemes such as ‘‘update stress
first", ‘‘update stress last", and ‘‘modified update stress last" within a cohesive framework. Furthermore,
the framework accommodates incorporating diverse boundary conditions, such as Dirichlet, Neumann, and
arbitrary-shaped rigid body contact, thus broadening its applicability to real-world engineering challenges,
including landslides. The framework can effectively and efficiently handle large-scale, high-fidelity simulations
of granular flows.
1. Introduction

The Material Point Method (MPM) has emerged as a highly effective
numerical tool for simulating granular materials, particularly in the
context of extreme deformation scenarios, as demonstrated in vari-
ous recent studies (Gaume et al., 2018; Iverson, 2012; Pudasaini and
Krautblatter, 2021; Zheng et al., 2023; Coombs et al., 2018; Jin et al.,
2021). MPM distinguishes itself apart from traditional approaches,
such as the Finite Element Method (FEM) (Hrennikoff, 1941) and the
Discrete Element Method (DEM) (Cundall and Strack, 1979), through
its innovative dual formulation that combines Lagrangian and Eulerian
perspectives. This hybrid methodology enables MPM to proficiently
model granular materials that exhibiting both solid and fluid-like char-
acteristics, and facilitates accurate representations of history-dependent
material responses while mitigating severe mesh distortion issues com-
monly encountered in other techniques. Furthermore, the reliance on
point sampling, as opposed to complex mesh tessellation, enhances the
versatility and applicability of MPM (Zhang et al., 2024).

In recent decades, MPM has gained surging popularity, supported
by numerous research initiatives that have produced well-established
open-source codes, including NairnMPM (Hammerquist and Nairn,

∗ Corresponding authors.
E-mail addresses: ceswzhao@ust.hk (S. Zhao), jzhao@ust.hk (J. Zhao).

2017), CB-Geo (Kumar et al., 2019), Anura3D (Anura3D MPM Re-
search Community, 2024), and Karamelo (de Vaucorbeil et al., 2021).
These frameworks utilize low-level backends in C++ and Fortran,
along with parallel computing libraries such as Open Multi-Processing
(OpenMP) (Dagum and Menon, 1998) and Message-Passing Interface
(MPI) (Clarke et al., 1994), enabling the distribution of computational
workloads across multiple CPU cores or nodes. Furthermore, they
incorporate advanced high-order interpolation techniques, such as the
Generalized Interpolation Material Point (GIMP) method (Bardenhagen
et al., 2004), B-Splines (Steffen et al., 2008; Yamaguchi et al., 2021),
and Moving Least Squares (MLS) approaches (Hu et al., 2018), thereby
enhancing the efficacy of MPM. The integration of both structured
and unstructured meshes (Cao et al., 2024; Bardenhagen et al., 2004)
further extends the applicability of MPM to complex realistic prob-
lems characterized by intricate boundary conditions (Wang et al.,
2021; Bird et al., 2024; Remmerswaal, 2023). However, challenges
remain regarding the inefficiencies associated with large-scale CPU-
based MPM implementations. Buckland et al. (2024) noted that as the
number of material points (MPs) increases to millions or even billions,
https://doi.org/10.1016/j.compgeo.2025.107113
Received 27 November 2024; Received in revised form 13 January 2025; Accepted
vailable online 4 February 2025 
266-352X/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
 21 January 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/compgeo
https://www.elsevier.com/locate/compgeo
https://orcid.org/0000-0002-3410-3935
https://orcid.org/0000-0002-6344-638X
mailto:ceswzhao@ust.hk
mailto:jzhao@ust.hk
https://doi.org/10.1016/j.compgeo.2025.107113
https://doi.org/10.1016/j.compgeo.2025.107113


H. Chen et al.

o

u

b

e
n

a

l

m
M

i
a

b
i

c
t
b
e

s
U
e
(
(
t

c

a
f
m
k

D

r

d
b

f
i

g
a
v
t
p
p
e
i

Computers and Geotechnics 180 (2025) 107113 
CPU-parallel models relying on multiple threads or processes may expe-
rience diminished acceleration ratios due to excessive communication
verhead among cores or nodes.

More recently, GPU-driven parallel techniques, particularly those
tilizing NVIDIA Compute Unified Device Architecture (CUDA)

(NVIDIA et al., 2020), have emerged as a robust alternative in the realm
of parallel computing. These techniques leverage lightweight schedul-
ing and inherent communication parallelism typical of many-core
architectures, making them particularly advantageous for particle-
ased methods, such as DEM (Zhao et al., 2023) and MPM (Dong et al.,

2015, 2022; Zhang et al., 2023). Notably, various optimization tech-
niques have been proposed for GPU-based MPM. For example, atomic
operations (Feng and Xu, 2021; Wyser et al., 2021) have been intro-
duced for particle-to-grid (P2G) mapping to alleviate race conditions,
specially when the number of MPs surpasses the number of lattice
odes. Moreover, recently proposed GPU-friendly implicit solvers have

shown significant improvements in computational performance (Wang
et al., 2024; Zhou et al., 2024).

The computer graphics community has made significant strides in
dvancing GPU-based MPM techniques. A prominent example is the

Taichi programming language (Hu et al., 2019), which incorporates
sparse memory structures into GPU MPM (Museth, 2013; Setaluri et al.,
2014), effectively addressing memory capacity constraints. The Taichi
anguage has facilitated the development of several MPM frameworks

based on its principles (Hu et al., 2018; Li et al., 2023; Shi et al., 2024),
successfully balancing ease of code development with computational
efficiency through a Pythonic programming style. However, it is impor-
tant to note that Taichi MPM primarily employs the Array of Structures
(AOS) memory format, which may not optimize coalesced memory
access and high cache-hit rates on GPUs. Subsequent investigations
by Gao et al. (2018) and Wang et al. (2020b) have explored the
Structure of Arrays (SOA) and Array of Structures of Arrays (AOSOA)

emory formats for GPU MPM, aligning with the Single Instruction
ultiple Threads (SIMT) design paradigm.

However, these methodologies primarily address immediate needs
n real-time animations in computer graphics, limiting their direct
pplicability for modeling of challenging engineering problems (Feng

and Xu, 2021), such as granular flows involving complex materials and
oundary conditions (BCs). For instance, GPU-based MPM techniques
n computer graphics generally implement a hyper-plastic model (Chen

and Baladi, 1985), where the plastic component and stress are directly
orrelated with the strain energy of MPs. In contrast, granular flow sys-
ems often exhibit rate-dependent mechanical behavior, necessitating a
roader range of material models, including hyper-plastic, incremental
lastoplastic, and non-local viscoplastic models (Kamrin and Koval,

2012). Previous research related to computer graphics has not exten-
sively explored the diverse state variables associated with different
material types and the appropriate application of iterative schemes,
uch as Update Stress First (USF), Update Stress Last (USL), or Modified
pdate Stress Last (MUSL). Moreover, there has been limited consid-
ration of material-related boundary aspects, including BC time series
e.g., sinusoidal versus constant models), targeted applications for BCs
whether at nodes, MPs, or both), BC imposition involving transforma-
ions (e.g., rotation or affine transformations) (Bing et al., 2019; Liang

et al., 2023), and the geometry of BCs. For example, addressing debris
flow hazards in mountainous regions may require convoluted digital
elevation models that are often analytically undefined or difficult to
represent numerically.

This study presents a novel GPU-based MPM framework specifi-
ally designed to address large-scale engineering challenges involving

complex materials and BCs. The framework leverages sparse memory
nd incorporates a block-cell-MP parallelism topology, enhanced by
ine-grained, warp-intrinsic memory access. It implements a unified
emory shift of state variables of material constitutive models across

ernel executions and timesteps. This approach decouples GPU MPM
2 
optimization from material type dependencies, and making the frame-
work adaptable to various material models, including elastoplastic
and hyper-plastic types. Furthermore, beyond conventional Dirichlet
and Neumann boundary conditions, this study introduces an efficient

EM-enriched contact algorithm, enabling precise modeling of interac-
tions between MPs and arbitrary boundary geometries, such as those
epresented by Standard Triangle Language (STL) meshes.

The remainder of this paper is organized as follows: Section 2
presents a concise theoretical and technical overview of the MPM.
Section 3 explores the GPU-based algorithms of our MPM framework,
while Sections 4 and 5 examine the validation process and evaluate the
efficiency of the GPU-based MPM. Concluding remarks are presented in
Section 6.

2. Prevailing solution schemes

2.1. Governing equations

The MPM, first introduced by Sulsky et al. (1994), is designed for
modeling large deformations using a hybrid framework that integrates
both Lagrangian and Eulerian approaches. In MPM, the solution domain
is discretized into Lagrangian points, while the kinematics and dynam-
ics of these points are updated utilizing a background mesh consistent
with the Eulerian framework. The governing equations, which encapsu-
late mass and momentum conservations within the MPM formulation,
can be expressed in strong form as follows:
𝐷 𝜌
𝐷 𝑡 = 0 (1a)

𝜌𝒂 = ∇ ⋅ 𝝈 + 𝜌𝒃 (1b)

where 𝒂 represents acceleration, the 𝝈 denotes the Cauchy stress, 𝜌 in-
dicates density, and 𝒃 signifies body-force acceleration. By multiplying
Eq. (1b) with the weighting term 𝛿𝒖, we obtain the weak form of the
momentum equation:

∫𝛺
𝜌𝒂 ⋅ 𝛿𝒖𝑑 𝑉 = ∫𝛺

𝜌𝒃 ⋅ 𝛿𝒖𝑑 𝑉 + ∫𝜕 𝛺
𝝉 ⋅ 𝛿𝒖𝑑 𝑆 − ∫𝛺

𝝈 ⋅ ∇𝛿𝒖𝑑 𝑉 (2)

where 𝛺 denotes the solution domain, and 𝜕 𝛺 represents the domain
boundary. The term 𝝉 = 𝝈 ⋅𝒏 signifies the surface traction acting on the
omain boundary, with 𝒏 being the outward unit normal vector at the
oundary in the current configuration.

2.2. Temporal and spatial discretization

Eq. (2) is discretized and integrated over the background mesh,
ollowing an iterative procedure comprising four primary stages, as
llustrated in Fig. 1. In an initial P2G stage, the kinematics of the MPs,

including mass, momentum and stress, are extrapolated to the nodes,
to establish the discrete momentum conservation equations. The next
rid-to-grid mapping (G2G) stage, features a Newtonian integration
t the nodes to update dynamic variables such as acceleration and
elocity. These updated values are then interpolated back to the MPs in
he third grid-to-particle mapping (G2P) stage. In the final particle-to-
article mapping (P2P) stage, the MPs are updated in terms of their
osition and state variables. The necessary discrete calculations for
ach stage within a single timestep of the MPM iteration are detailed
n Eqs. (3)(a-f):

𝑚(𝑛)
𝑖 =

∑

𝑝
𝑚(𝑛)
𝑝 𝑆

(𝑛)
𝑖𝑝 (3a)

𝒑(𝑛)𝑖 =
∑

𝑝
𝒑(𝑛)𝑝 𝑆

(𝑛)
𝑖𝑝 (3b)

𝒇 (𝑛)
𝑖,𝑒𝑥𝑡 =

∑

𝑝
𝑚(𝑛)
𝑝 𝒃(𝑛)𝑝 𝑆

(𝑛)
𝑖𝑝 + ∫𝜕 𝛺𝜏

𝝉𝑆(𝑛)
𝑖𝑝 𝑑 𝐴 (3c)

𝒇 (𝑛)
𝑖,𝑖𝑛𝑡 = −

∑

𝑝
𝑉 (𝑛)
𝑝 𝝈(𝑛)

𝑝 ⋅ ∇𝑆(𝑛)
𝑖𝑝 (3d)

(𝑛) (𝑛) (𝑛)
𝒇 𝑖 = 𝒇 𝑖,𝑒𝑥𝑡 + 𝒇 𝑖,𝑖𝑛𝑡 (3e)



H. Chen et al.

s
f
f

m

a

𝑑

g

l
g
f

a

𝑁

Computers and Geotechnics 180 (2025) 107113 
Fig. 1. The four primary stages of iteration in the general MPM process.
∇

t

𝒑(𝑛+1)𝑖 = 𝒑(𝑛)𝑖 + 𝒇 (𝑛)
𝑖 𝛥𝑡 (3f)

where 𝑆𝑖𝑝 and ∇𝑆𝑖𝑝 represent the shape function and its gradient, re-
pectively, while 𝑉𝑝 denotes the volume of the MPs. Mass (𝑚𝑝), external
orce (𝒇 𝑖,ext), internal force (𝒇 𝑖,int), and momentum (𝒑) are extrapolated
rom the MPs to the background grid, as detailed in Eqs. (3a), (3e),

and (3b). Eq. (3f) presents the Newtonian integration of the mapped
omentum.

The increments in strain, denoted as 𝑑𝝐𝑡+𝛥𝑡𝑝 , and the increments in
spin, represented by 𝑑𝝎𝑡+𝛥𝑡𝑝 , associated with the velocity gradient 𝑳𝑡+𝛥𝑡𝑝 ,
re quantified as follows Liang et al. (2024):

𝑳𝑛+1𝑝 =
∑

𝑖
∇𝑆𝑖𝑝𝒗𝑛+1𝑖 (4a)

𝑑𝝐𝑛+1𝑝 = 1
2
(𝑳𝑛+1𝑝 + (𝑳𝑛+1𝑝 )𝑇 )𝛥𝑡 (4b)

𝝎𝑛+1𝑝 = 1
2
(𝑳𝑛+1𝑝 − (𝑳𝑛+1𝑝 )𝑇 )𝛥𝑡 (4c)

For the incremental scheme of stress update, the relationships are
iven by:

𝑭 𝑛+1
𝑝 = (𝛥𝑡𝑳𝑛𝑝 + 𝑰)𝑭 𝑛

𝑝 (5a)

𝝈𝑛+1𝑝 = 𝝈𝑛𝑝 +𝑫𝑒𝑝𝑑𝝐𝑛+1𝑝 + 𝑑𝝎𝑛+1𝑝 ⋅ 𝝈𝑛𝑝 − 𝝈𝑛𝑝 ⋅ 𝑑𝝎
𝑛+1
𝑝 (5b)

where 𝑭 𝑝 represents the deformation gradient of the material point, 𝝈𝑝
denotes the stress tensor, and 𝑫𝑒𝑝 is the elastoplastic Jacobian.

2.3. Solution schemes

Several options are available for enhancing MPM iterations for a so-
ution. A crucial factor is the selection of the shape function (𝑆𝑖𝑝) and its
radient (∇𝑆𝑖𝑝) used during the P2G and G2P stages. One efficient and
undamental choice is the linear shape function, introduced by Sulsky

et al. (1994), which simplifies the treatment of MPs as entities without
n associated geometrical volume. In the context of mass interpolation,

the linear shape function is expressed as follows:

𝑚(𝐱, 𝑡) = ∑

𝑝
𝑚𝑝𝑁𝑖𝑝(𝐱, 𝐱𝑝) (6a)

𝑖𝑝(𝐱, 𝐱𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝐱 − 𝐱𝑝 ⩽ −𝐿
1 + (𝐱 − 𝐱𝑝)∕𝐿 −𝐿 < 𝐱 − 𝐱𝑝 ⩽ 0
1 − (𝐱 − 𝐱𝑝)∕𝐿 0 < 𝐱 − 𝐱𝑝 ⩽ 𝐿
0 𝐿 < 𝐱 − 𝐱𝑝

(6b)

where 𝑚𝑝 represents the mass of the MP, 𝑁𝑖𝑝 is the linear shape
function, 𝐿 denotes the node space, and 𝐱𝑝 is the position vector of
the MP.

However, employing the linear shape function can lead to sig-
nificant numerical instability, particularly when the material parti-
cles cross the background cells, i.e., cell-crossing issues. Apart from
this, lower-order interpolation methods may result in abrupt loss of
gradients. Conversely, higher-order interpolation techniques, such as
3 
the GIMP, help to alleviate cell-crossing issues. In GIMP, the shape
functions are defined as follows Bardenhagen et al. (2004):

𝑆𝑖𝑝 =
1
𝑉𝑝 ∫𝛺𝑝∩𝛺

𝜒𝑝(𝐱)𝑁𝑖𝑝(𝐱)𝑑 𝑉 (7a)

𝑆𝑖𝑝 =
1
𝑉𝑝 ∫𝛺𝑝∩𝛺

𝜒𝑝(𝐱)∇𝑁𝑖𝑝(𝐱)𝑑 𝑉 (7b)

where 𝜒𝑝 represents the characteristic function within a virtual MP
domain that is typically defined to be orthogonal and aligned with its
background cell. The GIMP approach employs an integration technique
that incorporates the multiplication of characteristic function and linear
shape functions within the MP domain, facilitating a smooth transition
of the gradient shape function between adjacent background cells. This
study adopts the GIMP method as a showcase. It is worth mentioning
that other higher-order counterparts, such as B-Splines (Steffen et al.,
2008) or MLS (Hu et al., 2018), can also be considered conveniently in
our proposed framework.

The second alternative arises in the G2P/P2P stage, which varies
based on whether the updated velocity of nodes, updated accelera-
tion of nodes, or both influence the kinematics of the MP. The first
method is defined by the Particle-In-Cell (PIC) approach (Harlow,
1964), whereas the second is characterized by the FLuid-Implicit-
Particle (FLIP) method (Brackbill and Ruppel, 1986). These methods
exhibit different dissipation and stability characteristics: PIC tends to
provide greater numerical stability, whereas FLIP demonstrates lower
artificial dissipation. This study adopts a hybrid approach that com-
bines both PIC and FLIP (Hammerquist and Nairn, 2017), weighted by
a fraction (𝛽):

𝑽 𝑛+1 = (1 − 𝛽)𝑽 𝑛 + 𝑆𝑖𝑝𝒂𝛥𝑡 + 𝛽 𝑆𝑖𝑝𝒗𝑛 (8a)

𝐱𝑛+1 = 𝐱𝑛 + 𝑆𝑖𝑝𝒗𝑛+1𝛥𝑡 − 0.5[𝑆𝑖𝑝𝒂 +
𝛽
𝛥𝑡

(𝑽 𝑛 − 𝑆𝑖𝑝𝒗𝑛)]𝛥𝑡2 (8b)

where 𝒗𝑛 represents the velocity on the background grid at step 𝑛, 𝒂𝑛
is the acceleration of nodes at step 𝑛, 𝑽 𝑛 signifies the velocity of the
material points at step 𝑛, and 𝑽 𝑛+1 denotes the velocity of the material
points at step 𝑛 + 1. The term 𝑆𝑖𝑝 indicates the matrix of interpolation
shape functions that correspond to the degrees of freedom between
nodes and material points, and 𝐱𝑛 denotes the material point position at
step 𝑛. The PIC fraction (𝛽) acts as a weighting parameter that regulates
he contribution of PIC within the hybrid scheme. A value of 𝛽 = 1

corresponds to the full PIC scheme, whereas 𝛽 = 0 signifies exclusive
reliance on the FLIP method.

As illustrated in Fig. 1, the order of iteration stages is critical,
determined by whether the stress update of MPs occurs before or after
the G2G stage. In the USF scheme, the stress increment relies on the
previous step’s node velocities, while the USL scheme uses the current,
updated dynamics for the stress update. A modified variant, termed
MUSL, introduces an additional P2G step between G2G and the stress
update, balancing both methodologies. The USF approach is adopted
for this study, and a conventional CPU version workflow of USF is

1).
introduced for comparison (Algorithm



H. Chen et al.

t
g
s
g
s

o

i
i
f

i

b
d
d
g
r
m
s
f

w
T
t

i
a

Computers and Geotechnics 180 (2025) 107113 
Algorithm 1: MPM iteration within a single timestep.
1 [h]
2 foreach 𝑝 in points do
3 Initialization: Reset the information for all nodes.
4 P2G 1: Transfer mass and momentum from material points

to the grid.
5 Node: Convection of the velocities at the nodes.
6 Stress: Compute the strain and stress for the material

points.
7 P2G 2: Transfer forces from material points to the grid.
8 G2G: Update the velocity and acceleration of the nodes.
9 G2P and P2P: Transfer the updated acceleration and

velocity from the grid back to the material points, while
updating the necessary kinematics of the material points.

2.4. Porting from CPU to GPU: General ways on implementation

Transitioning the MPM workflow from CPU to GPU entails sub-
stantial modifications, especially in the initialization phase, the P2G
and G2P mapping processes and the execution of material constitutive
models. Nevertheless, certain aspects, such as the establishment of
shape functions and the G2G stage, share some similarities.

(1) Initialization. A primary challenge in GPU-based MPM is initial-
ization, where constraints on memory usage occur. Engineering
simulations frequently necessitate a variety of geometries, includ-
ing spheres, cubes, polygons, and other complex shapes defined
analytically or numerically. These geometries require minimal MP
resolutions to achieve accurate boundary conditions; however, in
large-scale problems, high resolutions can frequently surpass the
capacity of GPU memory which is often limited to around 100 GB,
in contrast to the hundreds or thousands of GB available on CPUs.
To mitigate this issue, we employ a sparse memory management
strategy, which is elaborated in Section 3.1.

(2) P2G and G2P. The adaptations for P2G and G2P in a GPU context
largely involve consideration of thread scheduling and memory
access. Unlike CPU implementations that utilize loops over MPs
or nodes in P2G/G2P, GPU implementations may encounter chal-
lenges such as non-coalesced memory access and race conditions.
In P2G, where the number of MPs typically exceeds the number
of nodes, many-to-one mapping is commonplace. Traditional GPU
techniques for scattering attributes often depend on atomic op-
erations, allowing simultaneous read/write requests to the same
address, but only one operation is allowed to execute, controlled
by hardware locks. In scenarios where MPs vastly outnumber
nodes, this reliance on atomic operations can hinder performance,
resembling serial CPU operations. To counteract this, we apply a
warp-intrinsic method in combination with block-cell parallelism
for P2G. For G2P, we adopt a SOA data layout to promote
coalesced memory access and further implement multi-level mem-
ory deployment (register, shared, and global) to enhance cache
efficiency, as detailed in Sections 3.3.1 and 3.3.2.

(3) Material Constitutive Models. The great variety and complexity
of material models, such as hyper-plastic and elastoplastic mod-
els, poses substantial challenges on optimization for the transition
from CPU to GPU. Complex models with extensive datasets may
easily exceed the GPU memory page size limits (commonly 4
KB), leading to cache evictions and page faults that escalate
memory latency and diminish performance. Moreover, differing
material models introduce data dependencies; for instance, elasto-
plastic models may require incremental deformation gradients,
which are not necessary for hyper-plastic models. To manage this
4 
variability, we implement a data shift algorithm that provides
flexibility across material types, as discussed in Section 3.5.

In this study, all GPU MPM kernels are developed using CUDA/C++
o achieve optimal performance. Interfaces are encapsulated and or-
anized into Python packages, facilitating a user-friendly simulation
etup. Users can configure essential MPM parameters, such as back-
round dimensions, damping factors, gravity, timestep, and iteration
chemes, using only a few lines of Python code. Moreover, advanced

functionalities, including MP sampling within complex solution do-
mains, multi-material assignment, time-dependent boundary condi-
tions, and periodic result archiving, are supported through user-defined
Python functions. These auxiliary functions are translated into C++
objects by our Python interface for GPU MPM, which are then executed
n the GPU kernel according to the user-specified configuration.

3. Sparse memory supported algorithms on GPU

A suitable data structure can reduce memory footprint, thereby
mproving the dimension of simulations, especially those with lim-
ted hardware configurations. A GPU-Sparse-Grid structure, adapted
rom Setaluri et al. (2014), is employed. Details will be provided in

Sections 3.1 and 3.2. Moreover, another challenge regarding GPU-MPM
performance is the data transfer between MPs and nodes, as MPM
iterations involve frequent data resets and data interpolation or extrap-
olation. To address this challenge, a block-cell-MP hierarchical strategy
is implemented for efficient P2G and G2P transfers, as discussed in
Sections 3.3.1 and 3.3.2.

3.1. Sparse grid

The Lagrangian and Eulerian configurations of a typical MPM simu-
lation are illustrated in Fig. 2, where a general multi-material scenario
s simplified into a two-material condition for clearer demonstration.

Material A (green particles) and Material B (red particles) occupy the
ottom-left and top-right corners, respectively, to clearly showcase the
ifferent memory formats. According to the discretized form of MPM,
ata mapping between the MPs and nodes is guided by weights or
radient weights that MPs fetch from the supporting domain (brown
egions) of the activated nodes (magenta squares). Thus, the access
ode to the memory of either MPs or nodes is critical to the overall

imulation efficiency. This section focuses on the memory of the nodes;
or the MPs counterpart, please refer to the next section.

Fig. 2 depicts the activated nodes, represented by magenta squares,
ith their respective indices displayed along the left and bottom edges.
he memory index, for example, is denoted as 0∕1, where 0 indicates
he sparse memory index and 1 represents the continuous memory

index. The distinction between these memory indices arises from the
different allocation methods used for continuous and sparse memory.
Continuous memory accesses the dynamics of all nodes within a grid
consisting of 6 × 4 = 24 nodes, as illustrated in Fig. 2. Assuming that each
node requires storage for 𝑁𝑑 bytes, the overall memory requirement
s 24𝑁𝑑 . In contrast, the sparse memory method focuses solely on the
ctivated nodes, resulting in a reduced memory requirement of 15𝑁𝑑 .

It is essential to recognize that the oscillations resulting from parti-
cle transitions across cells require higher-order interpolation methods.
Thus, at least one extra padding layer is necessary for the shape func-
tion domain. For example, Nairn and Hammerquist (2021) observed
that in the GIMP framework, the resolution is typically set so that each
direction includes two MPs, with each MP generally tracking nodes up
to three cells away. By incorporating an additional padding layer, MPs
in GIMP interpolation can efficiently map to a total of four nodes in
each dimension.



H. Chen et al.

f

d
s
p
(

A
1
w
s
o
b

Z
a
i

d
0
f
i
i

t
b

Computers and Geotechnics 180 (2025) 107113 
Fig. 2. Offset differences between continuous and sparse memory distributions in a two-material (A and B) MPM simulation.
s

b
o
o

e

d
a
i

o

3.2. Material points reorder

Fig. 3 demonstrates the organization of blocks, each consisting of
our cells in both dimensions, for Materials A and B, illustrating the

sparse memory mechanism used for compressing node indices. A key
istinction between sparse and dense memory lies in the filtration-
plice strategy. In dense memory mode, MPs consider all nodes as
otential interpolation candidates, as evidenced by the brown indices
A: ∈ [0, 15] and B: ∈ [48, 63]) shown in Fig. 3. Conversely, sparse

mode operates differently by omitting any nodes within N/A blocks
and incrementing node indices solely for non-N/A blocks, as indicated
by the black strokes. This distinction underscores the inefficiency of
dense memory, where the executor unnecessarily accesses nodes in two
N/A blocks, effectively doubling memory access and reducing cache-hit
rates.

In sparse memory mode, the filtration stage is followed by a splice
stage that produces a finalized node index. The filtration process gener-
ates blocks irrespective of their physical adjacency, while consistently
ensuring a memory adjacency feature. As illustrated in Fig. 3, blocks
 and B are mapped to adjacent memory locations within a unit of
6 cells; specifically, block A occupies the first range of cells 0–15,
hile block B occupies the second segment of 0–15. The terms first and

econd refer to the global offset, while the ranges 0–15 denote the local
ffset. Consequently, the sparse memory updates the memory range of
lock B from [48, 63] to [16, 31].

It is important to note that both global and local offsets increase in a
-Curve shape, arranged in column-major order. The Z-Curve facilitates
 unique encoding and decoding process in dense memory mode, link-
ng the decimal and binary representations of a given index (Setaluri

et al., 2014). For instance, considering a cell with an index of 60, its
ecimal coordinates are (7, 5), which correspond to the binary values
111 and 0101, respectively. By interleaving the bits of X and Y starting
rom the least significant bit and organizing them into 64-bit slots, as
llustrated in Fig. 3, we obtain the encoded binary index (00111100)
ndicated below the brown index marker, following a color-to-color

matching scheme. The final 4 bits, 1100, are derived from the last
wo bits of X (11) and the last two bits of Y (00), while the initial 4
its, 0011, result from the interleaving of the higher two bits of X (01)
5 
and Y (01). It is evident that cells within the same block consistently
hare the same high 4 bits, with the low 4 bits varying from 0 to 15.

These high bits signify a global offset in dense mode; for example,
lock B, represented as 0011(2) = 3(10), corresponds to a global offset
f 3 × 16 = 48, whereas block A, 0000(2) = 0(10), denotes a zero global
ffset.

The int64 index, encoded from the X and Y coordinates of any cell,
implies that blocks can be sorted based on their leading cell index and
then forwarded to assist in a consistent splice process. Since block B
holds a global offset of 48, which is larger than the global offset of
0 of block A, block B is joined to the tail of block A and assigned a
sparse index of 1. Assuming there are more than two blocks perhaps
hundreds of thousands of blocks registered as non-N/A, we can adopt
the same encoding method and sort the global offsets of the blocks.
The sorted indices will replace their global offsets and contribute to a
memory offset by adding the local offset decoded from the lowest 4
bits. Note that if the simulation is carried out in three dimensions, the
int64 index changes slightly; the high bits consist of 58 digits, and the
low bits consist of 6 digits.

3.2.1. Int64 index of material points
Since each MP within the grid domain can receive a unique cell

index which is encoded in int64 format, a reordering of the MPs is
xpected to increase the memory cache hit rate. Under two-dimensional

conditions, two supporting mask indices are defined to encode the
ecimal X or Y coordinate into binary as 𝑚𝑎𝑠𝑘𝑋 = 0𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐
nd 𝑚𝑎𝑠𝑘𝑌 = 0 × 5555555555555553, and the encoding process is shown
n Algorithm 2.

For all the MPs, the int64 indices are determined from their posi-
tions and the spacing of nodes, as shown in Algorithm 3.

3.2.2. Hash the int64 index to blocks
Fig. 4 demonstrates a sparse sampling of MPs. Three types of blocks

are considered according to different material resolutions: Blk, Blk
ghost, and N/A. The Blk type plays a dominant role in the P2G
and G2P stages. Blk ghost, which contains no MPs, supports padding
f attributes in the high-order interpolation method. N/A blocks are

assigned no operations and serve as virtual placeholders in sparse



H. Chen et al.

t
o
f
a
i
I
t
t
b
c

Computers and Geotechnics 180 (2025) 107113 
Fig. 3. Memory indices transfer from continuous to sparse.
d
q

Algorithm 2: To convert the material point index from decimal
to binary.

Input: Point binary row/column index 𝑖𝑑 and 𝑚𝑎𝑠𝑘𝑖𝑑
Output: Encoded binary index 𝑒𝑖𝑑

1 Function maskPos(𝑖𝑑, 𝑚𝑎𝑠𝑘𝑖𝑑):
2 𝑒𝑖𝑑 ← 0
3 𝑚𝑎𝑠𝑘𝑠 ← {0𝑥 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐 , 0𝑥 5555555555555553}
4 𝑚𝑎𝑠𝑘 ← 𝑚𝑎𝑠𝑘𝑠[𝑚𝑎𝑠𝑘𝑖𝑑]
5 while 𝑖𝑑 ≠ 0 do
6 for 𝑖 ← 0 to 64 do
7 if (𝑚𝑎𝑠𝑘 & (1≪ 𝑖)) ≠ 0 then
8 𝑒𝑖𝑑 ← 𝑒𝑖𝑑 | ((𝑖𝑑 &1) ≪ 𝑖)
9 𝑖𝑑 ← 𝑖𝑑 ≫ 1

10 return 𝑒𝑖𝑑

memory mode.
Recalling the filtration-splice procedure necessary for sparse mem-

ory, it is crucial to determine the number of Blk and sort them prior
o any subsequent MPM iterations. After obtaining the int64 indices
f MPs via Algorithm 3, the next step is to create a hash for block
iltration. Each MP decodes the high bits of its int64 index to calculate
 block index, which is then hashed into a large hash table according to
ts magnitude. This hashing process operates in parallel across blocks.
f the first MP in a block successfully completes the int64 index calcula-
ion and hashes the block index into the hash table, a boolean flag is set
o True. However, concerns regarding the size of the hash table must
e addressed: a table that is too small increases the likelihood of hash

ollisions, while an excessively large table leads to unnecessary memory

6 
Algorithm 3: Calculation of int64 indices for material points.
Input: point number 𝑛, point position 𝑝, node spacing 𝑑
Output: point index 𝑝𝑖𝑑

1 for 𝑖 ← 0 to 𝑛 − 1 do
2 𝑥index ← int(𝑝[𝑖][0]∕𝑑[0]);
3 𝑦index ← int(𝑝[𝑖][1]∕𝑑[1]);

// ⊲ Algorithm 2
4 𝑥e,index ← maskPos(𝑥index, 0) ;
5 𝑦e,index ← maskPos(𝑦index, 1) ;

6 𝑝𝑖𝑑[i] = 𝑥e,index | 𝑦e,index;

overhead. To mitigate these issues, we propose a hash table size that is
ouble the predicted number of blocks, although this remains an open
uestion.
Algorithm 4: Create hash maps of the parent block of material
points.

Input: point index 𝑒𝑖𝑑, hashsize ℎ𝑠𝑖𝑧𝑒
Output: hash values 𝑝𝑣𝑎𝑙

1 for 𝑖𝑑 ∈ 𝑒𝑖𝑑 do
2 𝑏𝑖𝑑 = 𝑑 𝑒𝑐(𝑖𝑑 >> 4);
3 ℎ𝑎𝑠ℎ𝑖𝑑 = ℎ𝑎𝑠ℎ𝑓 𝑢𝑛𝑐 𝑡𝑖𝑜𝑛(𝑏𝑖𝑑 , ℎ𝑠𝑖𝑧𝑒);
4 if 𝑎𝑡𝑜𝑚𝑖𝑐 𝑅𝑒𝑎𝑑(𝑝𝑣𝑎𝑙[ℎ𝑎𝑠ℎ𝑖𝑑]) == 0 then
5 𝑎𝑡𝑜𝑚𝑖𝑐 𝑊 𝑟𝑖𝑡𝑒(𝑝𝑣𝑎𝑙[ℎ𝑎𝑠ℎ𝑖𝑑], 1);
6 else
7 𝑟𝑒𝑡𝑢𝑟𝑛 ;



H. Chen et al.

a
s
a

m

g

𝑁
a
i

Computers and Geotechnics 180 (2025) 107113 
Fig. 4. Reorder of the material points according to a hierarchical block-cell topology.
a

b
w
t
M
w
i
s
e
t
o
c
A

Table 1
The hash map of sparse distributed blocks.

Hash id 0 1 2 ... 4997 4998 4999 5000 5001 ... N
Hash state 0 1 0 ... 0 1 0 0 1 ... 1
Prefix-sum 0 1 0 ... 0 10 0 0 213 ... 754

Table 2
Mapping between unsorted indices of MPs and cells.

Material point ID 0 1 2 3 4 5 6 7 8 (𝑁𝑝 − 1)
Cell continuous ID 187 178 46 35 187 40 38 178 188

Table 3
Mapping between sorted indices of MPs and cells.

Parent block ID 32 32 32 32 176 176 176 176 176
Cell continuous ID 35 38 40 46 178 178 187 187 188
Material point ID 3 6 5 2 7 1 0 4 8
New block ID 0 0 0 0 1 1 1 1 1
New cell local ID 3 6 8 14 2 2 11 11 12
New material point ID 0 1 2 3 4 5 6 7 8

Table 1 pairs a hash table of size 𝑁 with hash states corresponding
to Algorithm 4. Any occupied hash table slots are marked as True and
ttached to a global block index. The splice stage will execute a prefix-
um and use the results to replace the original global block index with
 compressed sparse block index.

3.2.3. Hash the int64 index to cells
Our previous study on GPU-accelerated DEM introduced a dual

apping technique that integrates particles and cells (Zhao et al.,
2021). This innovative method is designed to efficiently sort and or-
anize particles within each cell. Building on this concept, we have

developed a MP-cell dual mapping framework utilizing a key–value
bound sort based on the int64 index of the MPs and the sparse in-
dices of the cells. For instance, consider the randomly distributed MPs
illustrated in Fig. 4 and detailed in Table 2. The first row of Table 2
presents an unsorted index sequence ranging from 0 to 𝑁𝑝 − 1, where
𝑝 represents the total number of MPs. Subsequently, the results of

pplying a key–value bound sort to the data in Table 2 are summarized
n Table 3.
7 
Cell indices, a crucial component of the key–value sort, are pre-
sented in the fifth row of Table 3 and represent an increasing order
distribution. Unique cell indices indicate that a single MP is associated
with a given cell, while duplicate indices signify multiple MPs sharing
the same cell. Correspondingly, duplicated block indices in the fourth
row illustrate that multiple cells are activated within the same blocks.
The arrangement of these two sorted rows implies that any duplicate
cells or blocks are likely to be closely connected in memory, resulting
in favorable cache hit rates. Building on this premise, compressed and
zero-based new indices for blocks and MPs are derived in the fourth and
sixth rows of Table 3, thereby completing the sparse memory mapping
for blocks and MPs. It is important to note that the new cell indices
presented in the fifth row do not follow a zero-based or sequential
numbering system; rather, they are defined by their local offset within
the parent block to enhance the efficiency of sparse memory index
calculations. Additional technical details are provided in Algorithm 5.

Two auxiliary data structures, the boundary of cells and the bound-
ry of blocks, are introduced in Algorithm 5 to facilitate index calcu-

lation for blocks and cells in the filtration and splice sparse memory
operations. These two arrays are initialized to False. During the reorder
process in the splice stage, any MPs or cells residing at a border between
regions of duplicates and non-duplicates will set their parent cell’s or
block’s boundary arrays to True. The two arrays, with sampled True and
False states, will be subjected to a prefix-sum, and their discontinuous
dense mode indices will be converted to continuous indices in sparse
memory mode. Each block will be assigned a range of MP indices
denoted as 𝑝𝑖𝑑𝑟𝑏, and each cell will similarly be assigned data denoted
as 𝑝𝑖𝑑𝑟𝑐 . Accordingly, each block and cell can calculate the number
of MPs they hold by subtracting the range of MPs of their previous
neighbor from their own. When Algorithm 5 is done, a dual mapping
etween MPs-blocks and MPs-cells is fully established, and these data
ill be used in the P2G and G2P stages. Algorithm 5 not only reports

he relationship between MPs and blocks/cells but also clarifies how the
Ps’ order changes between any two neighboring timesteps. In other
ords, a bi-directional query table is obtained to help any MP with

ndex 𝑖𝑑𝑛 at step 𝑛 to find the index at the last step 𝑖𝑑𝑛−1 or at the next
tep 𝑖𝑑𝑛+1. In this way, kinematics or dynamics of MPs can be shifted
asily between any two time series. For special cases, such as material
ypes that always need a mapping between step 0 and step 𝑛 instead
f a common mapping between step 𝑛 − 1 and 𝑛, a direct query table
an also be maintained by a reverse ordering of the 𝑖𝑑𝑛, as shown in
lgorithm 6.



H. Chen et al.

m
M
o
b
t

p
b

t
e
f
w
i
f
w
t
i
a
n
a
d

r
t
s
a
p
N
s
t

Computers and Geotechnics 180 (2025) 107113 
Algorithm 5: Create hash maps of the parent cells of material
points.

Input: sorted int64 IDs 𝑖𝑑 𝑠, sorted material point sequence 𝑝𝑖𝑑0
Output: local continuous IDs of cell 𝑐 𝑖𝑑, particle range of

blocks 𝑝𝑖𝑑𝑟𝑏, particle range of cells 𝑝𝑖𝑑𝑟𝑐 , new block
IDs 𝑏𝑖𝑑

1 𝑏𝑐𝑐 𝑒𝑙 𝑙 ← {0} ∗ 𝑁𝑝; 𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘 ← {0} ∗ 𝑁𝑝; 𝑝𝑖𝑑 = 𝑝𝑖𝑑0 ;
2 for 𝑖← 0 to 𝑁𝑝 do
3 𝑝𝑎𝑟𝑖𝑑 = 𝑖𝑑 𝑠[𝑖]; 𝑔 𝑙 𝑜𝑏𝑖𝑡 = 𝑝𝑎𝑟𝑖𝑑 >> 4; 𝑙 𝑜𝑐 𝑏𝑖𝑡 = 𝑝𝑎𝑟𝑖𝑑& 15;

4 if 𝑖 < 𝑁𝑝 − 1 then
5 if 𝑔 𝑙 𝑜𝑏𝑖𝑡! = 𝑖𝑑 𝑠[𝑖 + 1] >> 4 then
6 𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑁𝑝 − 1] = 1;
7 𝑏𝑐𝑐 𝑒𝑙 𝑙[𝑁𝑝 − 1] = 1;
8 else
9 if 𝑙 𝑜𝑐 𝑏𝑖𝑡! = 𝑖𝑑 𝑠[𝑖 + 1]&15 then
10 𝑏𝑐𝑐 𝑒𝑙 𝑙[𝑁𝑝 − 1] = 1;

11 else
12 𝑏𝑐𝑐 𝑒𝑙 𝑙[𝑁𝑝 − 1] = 1;
13 𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑁𝑝 − 1] = 1;

14 𝑐 𝑖𝑑 ← 𝑛𝑒𝑤𝑏𝑐𝑐 𝑒𝑙 𝑙 ← 𝑝𝑟𝑒𝑓 𝑖𝑥𝑠𝑢𝑚(𝑏𝑐𝑐 𝑒𝑙 𝑙) ;
15 𝑏𝑖𝑑 ← 𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘 ← 𝑝𝑟𝑒𝑓 𝑖𝑥𝑠𝑢𝑚(𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘) ;
16 for 𝑖← 1 to 𝑁𝑝 do
17 if 𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖] ! = 𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖 − 1] then
18 𝑝𝑖𝑑𝑟𝑏[𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖]].𝑥 = 𝑖; 𝑝𝑖𝑑𝑟𝑏[𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖 − 1]].𝑦 = 𝑖;
19 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑖𝑑[𝑖]][𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖]].𝑥 = 𝑖;
20 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑖𝑑[𝑖]][𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖 − 1]].𝑦 = 𝑖 + 1;
21 else
22 if 𝑛𝑒𝑤𝑏𝑐𝑐 𝑒𝑙 𝑙[𝑖] ! = 𝑛𝑒𝑤𝑏𝑐𝑐 𝑒𝑙 𝑙[𝑖 − 1] then
23 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑖𝑑[𝑖]][𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖]].𝑥 = 𝑖;
24 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑖𝑑[𝑖]][𝑛𝑒𝑤𝑏𝑐𝑏𝑙 𝑜𝑐 𝑘[𝑖]].𝑦 = 𝑖 + 1;

Algorithm 6: Dual-mapping for material point IDs.
Input: sorted material point sequence 𝑝𝑖𝑑0, material point

number 𝑁𝑝
Output: reverse material point IDs map 𝑝𝑖𝑑𝑟𝑚𝑎𝑝

1 for 𝑖← 0 to 𝑁𝑝 do
2 𝑝𝑖𝑑𝑟𝑚𝑎𝑝[𝑝𝑖𝑑0[𝑖]] = 𝑖;

3.3. GPU cell-wise mapping between particles and grid nodes

3.3.1. Mapping from particles to grid nodes (P2G)
Up to now, all the facilities for P2G are ready, including the es-

tablishment of sparse indices for MPs, cells, and blocks. Auxiliary
etadata that help to explain the relationships among the indices of
Ps, cells, and blocks are also listed. Fig. 5 presents the two subtypes

f the P2G stage: block-block P2G, represented by Blk 0-Blk 1, and
lock-ghost block P2G, represented by Blk 0 to Blk ghost 0-3. Under
he application of the GIMP interpolation method, the shape function

domain of each MP is 3 × 3 in two dimensions, and with one layer of
adding forms a final domain of 4 × 4. This means that P2G requires
oth intra-block and inter-block memory access.

The magenta MPs in Fig. 5 represent intra block-block P2G, while
those colored red, blue, and green and located at the margins of the
block denote P2G between block and ghost block. Accordingly, two
different strategies are proposed for them: gathering P2G and scattering
P2G. The gathering P2G is executed from the node side, where no race
conditions are implied. The scattering is called from the MP side, where
an appropriate race condition remedy is required.
8 
Algorithm 7: P2G in gathering mode.
Input: space of nodes 𝑠𝑝𝑎𝑐 𝑒, attributes of material points 𝑑 𝑎𝑡𝑎𝑝,

position of material points 𝑝𝑜𝑠𝑝, particle range of block
𝑝𝑖𝑑𝑟𝑏, status of block 𝑠𝑡𝑎𝑡𝑒𝑏, cell status of block 𝑠𝑡𝑎𝑡𝑒𝑐 ,
particle int64 index 𝑝𝑖𝑑, hash table of blocks ℎ𝑎𝑠ℎ𝑏

Output: attributes of internal nodes 𝑑 𝑎𝑡𝑎𝑛𝑑 𝑖
1 𝑡ℎ𝑟𝑒𝑎𝑑 = 64;
2 𝑠ℎ𝑚𝑒𝑚 = {};
3 for 𝑖 ← 0 to 𝑁𝑏 do
4 𝑏𝑙 𝑜𝑐 𝑘_𝑖𝑛𝑡64_𝑖𝑑 = 𝑝𝑖𝑑[𝑝𝑖𝑑𝑟𝑏[𝑖].𝑥];
5 for 𝑡ℎ𝑖𝑑 ← 0 to 𝑡ℎ𝑟𝑒𝑎𝑑 do
6 𝑛𝑑_𝑖𝑑 = 𝑡ℎ%16;
7 𝑐 𝑒𝑙 𝑙_𝑖𝑑 = 𝑡ℎ∕16;
8 𝑐 𝑒𝑙 𝑙_𝑥 = 𝑐 𝑒𝑙 𝑙_𝑖𝑑∕4 − 2; 𝑐 𝑒𝑙 𝑙_𝑦 = 𝑐 𝑒𝑙 𝑙_𝑖𝑑%4 − 2;
9 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑥 = 𝑐 𝑒𝑙 𝑙_𝑥 < 0 ? − 1 ∶ 0; 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑦 = 𝑐 𝑒𝑙 𝑙_𝑦 <

0 ? − 1 ∶ 0;
10 𝑛𝑒𝑤_𝑏𝑖𝑑 =

ℎ𝑎𝑠ℎ𝑏(𝑏𝑙 𝑜𝑐 𝑘_𝑖𝑛𝑡64_𝑖𝑑 + 𝑖𝑛𝑡2(𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑥, 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑦));
11 𝑐 𝑒𝑙 𝑙_𝑥% = 4; 𝑐 𝑒𝑙 𝑙_𝑦% = 4;
12 𝑐 𝑒𝑙 𝑙_𝑖𝑑 = 𝑐 𝑒𝑙 𝑙_𝑥 ∗ 4 + 𝑐 𝑒𝑙 𝑙_𝑦;
13 𝑐 𝑒𝑙 𝑙_𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑠𝑡𝑎𝑡𝑒𝑏[𝑐 𝑒𝑙 𝑙_𝑖𝑑][𝑛𝑒𝑤_𝑏𝑖𝑑];
14 if 𝑐 𝑒𝑙 𝑙_𝑠𝑡𝑎𝑡𝑢𝑠 then
15 𝑝𝑖𝑑_𝑏𝑒𝑔 𝑖𝑛 = 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑒𝑙 𝑙_𝑖𝑑][𝑛𝑒𝑤_𝑏𝑖𝑑].𝑥;
16 𝑝𝑖𝑑_𝑒𝑛𝑑 = 𝑝𝑖𝑑𝑟𝑐 [𝑐 𝑒𝑙 𝑙_𝑖𝑑][𝑛𝑒𝑤_𝑏𝑖𝑑].𝑦;
17 𝑙 𝑜𝑐 𝑎𝑙_𝑝𝑑 𝑎𝑡𝑎 = {};
18 for 𝑖𝑡𝑒𝑟𝑝← 𝑝𝑖𝑑_𝑏𝑒𝑔 𝑖𝑛 to 𝑝𝑖𝑑_𝑒𝑛𝑑 do
19 𝐺 𝐼 𝑀 𝑃 (𝑙 𝑜𝑐 𝑎𝑙_𝑝𝑑 𝑎𝑡𝑎, 𝑠𝑝𝑎𝑐 𝑒, 𝑐 𝑒𝑙 𝑙_𝑖𝑑 , 𝑝𝑜𝑠𝑝[𝑖𝑡𝑒𝑟𝑝], 𝑑 𝑎𝑡𝑎𝑝

[𝑖𝑡𝑒𝑟𝑝]);
20 𝑠ℎ𝑎𝑟𝑒𝑑 𝑀 𝑒𝑚𝑜𝑟𝑦𝑊 𝑟𝑖𝑡𝑒(𝑠ℎ𝑚𝑒𝑚, 𝑡ℎ𝑖𝑑);
21 _ _𝑠𝑦𝑛𝑐 𝑡ℎ𝑟𝑒𝑎𝑑 𝑠();
22 𝑏𝑙 𝑜𝑐 𝑘𝑅𝑒𝑑 𝑢𝑐 𝑒();
23 𝑔 𝑙 𝑜𝑏𝑎𝑙 𝑀 𝑒𝑚𝑜𝑟𝑦𝑊 𝑟𝑖𝑡𝑒(𝑠ℎ𝑚𝑒𝑚, 𝑑 𝑎𝑡𝑎𝑛𝑑 𝑖);

Refer to Algorithm 7 for the gathering mode of nodes in P2G.
Under GIMP interpolation, each node may search for MPs in attached
blocks, up to a number of 4 in two dimensions. With 16 cells per
block, there may be up to 64 candidate cells to search for MPs. Each
hread needs a prerequisite check to determine whether the target cell
xists or not, either due to a N/A block or being outside of the shape
unction domain. For any existing cell, the thread proceeds to perform a
eighted interpolation from any child MPs in this cell. Shared memory

s allocated at the block level to collect the P2G gathered attributes
rom MPs. Considering the large ratio of MPs to nodes, at least one warp
ill be assigned for each node to reduce and gather the attributes of

he MPs. After a warp-wise reduction operation accelerated by CUDA
ntrinsics, the shared memory is written to the global memory of nodes,
nd the gathering P2G is completed. We follow the rule that bordering
odes only bound to the block in the top-right direction if any BCs need
 P2G stage in attributes as well. This regulation aims to remove any
uplicate P2G in the BC attributes interpolation.

Block-ghost block P2G adopts a different scatter behavior (Algo-
ithm 8) than block-block P2G because a single ghost block may link
o multiple non-ghost blocks, causing the gather loop to experience
ignificant memory address jumps when switching among blocks. As
 result, each non-N/A block will independently perform a scatter
rocess and map attributes to the target ghost block. The scatter of non-
/A blocks uses a lazy interpolation strategy, as the attributes in the

hape function domain are first reduced into a virtual cache and then
he combined results are transferred to the destination memory. This

approach helps to mitigate the write latency caused by memory jumps.
The parallel topology in terms of blocks and threads is derived

from the distribution density of MPs. A direct block-to-thread logic



H. Chen et al.

F
n
o
2
2
w
o
t
p
b
r
s

c
t
a

Computers and Geotechnics 180 (2025) 107113 
Fig. 5. Mapping the attributes of the material points onto the nodes.
M

is not straightforward but is modified at an block-warp-thread level.
or example, if there are two blocks, A and B, consisting of different
umbers of particles 500 and 100, respectively, and a minimum number
f threads activated is 256, block A will be divided into two bins with
56 threads each, equivalent to 8 warps, with the latter bin padded by
56 − 244 = 12. Block B will be assigned to one bin corresponding to 8
arps and padded by 256 − 100 = 156. Therefore, the stream processors
f the GPU card schedule a total of 24 warps for 3 blocks. In each warp,
hreads with sequential indices are guaranteed to belong to MPs that
ossess good locality, i.e., they either share the same cells or the same
ordering nodes. Warp intrinsics can then be applied for better P2G
eduction and to facilitate efficient coalesced reads and writes from
hared memory to global memory.

3.3.2. Mapping from grid nodes to particles (G2P)
The interpolation of dynamics from nodes to MPs follows a point-

side gather policy, which means only non-ghost blocks execute the G2P
stage. As shown in Fig. 6, MPs collect the updated dynamics regardless
of whether the nodes are inside blocks or ghost blocks (indicated by
dashed padding cells). The algorithm for the G2P stage is similar to
that of Algorithm 8, without another scatter component as in the P2G
stage.

3.4. Boundary condition

Summarized by the De Vaucorbeil et al. (2020), types of BCs in MPM
an classified into Dirichlet, Neumann and rigid bodies contact. From
he implementation prospects, an synonym of the BC types of Dirichlet
nd Neumann can be also defined as: MP and node BC.

The imposition of MP BC primarily covers moving loads, traction
loads, body force loads, and gradient loads. Except for body forces,
9 
Fig. 6. Interpolation of dynamics from nodes to material points.

which simply introduce user-defined forces with time dependencies on
Ps, the other three types require extrapolation to all nodes surround-

ing the MPs; otherwise, artefacts might be anticipated. Moving loads



H. Chen et al.

o
s
c
m
i
c
i
e

a

f
o

a
o
a

b
f
e
o

o
p
f
a
b
f
i

r
a

𝒊

t
w
m
P
i
d

a
i
f
𝑩
t

𝑟

Computers and Geotechnics 180 (2025) 107113 
Algorithm 8: P2G in scattering mode.
Input: split material points offset 𝑝𝑡_𝑏𝑒𝑔 𝑖𝑛, split material points

number 𝑁𝑝,𝑏, attributes of material points 𝑑 𝑎𝑡𝑎𝑝,
position of material points 𝑝𝑜𝑠𝑝, particle range of block
𝑝𝑖𝑑𝑟𝑏, status of block 𝑠𝑡𝑎𝑡𝑒𝑏, cell status of block 𝑠𝑡𝑎𝑡𝑒𝑐 ,
particle int64 index 𝑝𝑖𝑑, hash table of blocks ℎ𝑎𝑠ℎ𝑏

Output: attributes of internal nodes 𝑑 𝑎𝑡𝑎𝑛𝑑 𝑖
1 𝑡ℎ𝑟𝑒𝑎𝑑 = 256;
2 𝑠ℎ𝑚𝑒𝑚 = {} ∗ 16;
3 for 𝑖← 0 to 𝑁𝑏,𝑠𝑝𝑙 𝑖𝑡 do
4 𝑏𝑎𝑠𝑒_𝑝𝑡_𝑖𝑑 = 𝑝𝑖𝑑𝑟𝑏[𝑖];
5 for 𝑡ℎ𝑖𝑑 ← 0 to 𝑚𝑖𝑛(𝑁𝑝,𝑏, 𝑡ℎ𝑟𝑒𝑎𝑑) do
6 𝑔 𝑙 𝑜𝑏𝑎𝑙_𝑝𝑡_𝑖𝑑 = 𝑡ℎ𝑖𝑑 + 𝑝𝑡_𝑏𝑒𝑔 𝑖𝑛 + 𝑏𝑎𝑠𝑒_𝑝𝑡_𝑖𝑑;
7 𝑙 𝑜𝑐 𝑎𝑙_𝑐 𝑒𝑙 𝑙_𝑖𝑑 = 𝑝𝑖𝑑[𝑔 𝑙 𝑜𝑏𝑎𝑙_𝑝𝑡_𝑖𝑑]&15;
8 𝑐 𝑒𝑙 𝑙_𝑚𝑎𝑠𝑘 = 𝑤𝑎𝑟𝑝𝑅𝑒𝑑 𝑢𝑐 𝑒(𝑙 𝑜𝑐 𝑎𝑙_𝑐 𝑒𝑙 𝑙_𝑖𝑑 ! =

𝑝𝑖𝑑[𝑔 𝑙 𝑜𝑏𝑎𝑙_𝑝𝑡_𝑖𝑑 + 1]&15);
9 𝑐 𝑒𝑙 𝑙_𝑠𝑡𝑎𝑡𝑢𝑠 = {};
10 for 𝑐 ← 0 to 16 do
11 𝑐 𝑒𝑙 𝑙_𝑖𝑑 = 𝑐∕16;
12 𝑐 𝑒𝑙 𝑙_𝑥 = 𝑐 𝑒𝑙 𝑙_𝑖𝑑∕4 − 2; 𝑐 𝑒𝑙 𝑙_𝑦 = 𝑐 𝑒𝑙 𝑙_𝑖𝑑%4 − 2;
13 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑥 = 𝑐 𝑒𝑙 𝑙_𝑥 < 0 ? − 1 ∶ 0; 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑦 =

𝑐 𝑒𝑙 𝑙_𝑦 < 0 ? − 1 ∶ 0;
14 𝑛𝑒𝑤_𝑏𝑖𝑑 =

ℎ𝑎𝑠ℎ𝑏(𝑏𝑙 𝑜𝑐 𝑘_𝑖𝑛𝑡64_𝑖𝑑 + 𝑖𝑛𝑡2(𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑥, 𝑏𝑙 𝑜𝑐 𝑘_𝑜𝑓 𝑓 𝑦));
15 𝑐 𝑒𝑙 𝑙_𝑥% = 4; 𝑐 𝑒𝑙 𝑙_𝑦% = 4;
16 𝑐 𝑒𝑙 𝑙_𝑖𝑑 = 𝑐 𝑒𝑙 𝑙_𝑥 ∗ 4 + 𝑐 𝑒𝑙 𝑙_𝑦;
17 𝑐 𝑒𝑙 𝑙_𝑠𝑡𝑎𝑡𝑢𝑠[𝑐] = 𝑠𝑡𝑎𝑡𝑒𝑏[𝑐 𝑒𝑙 𝑙_𝑖𝑑][𝑛𝑒𝑤_𝑏𝑖𝑑];
18 𝑙 𝑜𝑐 𝑎𝑙_𝑑 𝑎𝑡𝑎𝑛𝑑 = 𝐺 𝐼 𝑀 𝑃 (𝑙 𝑜𝑐 𝑎𝑙_𝑐 𝑒𝑙 𝑙_𝑖𝑑 , 𝑐 𝑒𝑙 𝑙_𝑠𝑡𝑎𝑡𝑢𝑠, 𝑑 𝑎𝑡𝑎𝑝);
19 𝑤𝑎𝑟𝑝𝑅𝑒𝑑 𝑢𝑐 𝑒(𝑐 𝑒𝑙 𝑙_𝑚𝑎𝑠𝑘, 𝑠ℎ𝑚𝑒𝑚, 𝑙 𝑜𝑐 𝑎𝑙_𝑑 𝑎𝑡𝑎𝑛𝑑 );
20 _ _𝑠𝑦𝑛𝑐 𝑤𝑎𝑟𝑝𝑠();
21 for 𝑛𝑑 𝑖𝑑 ← 0 to 16 do
22 𝑎𝑡𝑜𝑚𝑖𝑐 𝐺 𝑙 𝑜𝑏𝑎𝑙 𝑀 𝑒𝑚𝑜𝑟𝑦𝑊 𝑟𝑖𝑡𝑒(𝑠ℎ𝑚𝑒𝑚, 𝑑 𝑎𝑡𝑎𝑛𝑑 𝑖);

require that the nodes within the shape function domain of MPs receive
specified value constraints (such as velocity, pore pressure, or tempera-
ture) from the MPs. This reception can occur through direct inheritance
or as a weighted value based on the shape function. Traction and gradi-
ent loads do not require all nodes around the MPs but only those around
two vertices on one side of the edge of the uGIMP domain of MPs, if a
direction is provided. BC values or gradients are first determined at the
vertices of the MPs and then mapped to the supporting nodes of these
vertices through weighted mapping. Referring to Algorithm 4, once the
int64 index of MPs is obtained, the block index and local offset with
ne layer of padding also become apparent. The bounding cell and the
urrounding nodes can then be identified for BC imposition. Since a
luster of MPs within one cell may share the same BC value in single-
aterial mode and have limited BC values in multi-material mode, BC

mposition is not performed in parallel on the MP side but rather on the
ell side. Each cell selects the first MP in each material domain within
ts MP range (𝑝𝑖𝑑𝑟𝑐) and performs weighted extrapolation of the BC to
liminate any heavy atomic operations locally.

Node BC applies any predefined constraints on nodes and keeps
 fixed target throughout the entire simulation. This BC usually con-

sists of symmetric and mirror velocity constraints or value settings
or displacement, temperature, and surcharge under the assumption
f small deformations. If any MPs move out of the shape function

domain, they will lose connection to the BCs. Executing node BCs
involves checking whether node memory is actually allocated in either
blocks or N/A blocks. If not, the BC will be omitted. Otherwise, the X
and Y coordinates of nodes will be encoded into an int64 index and
transferred to the indexes of cells and blocks to affect the MPs. The
BC information will be collected by MPs during any necessary stages,
10 
e.g., deformation gradient calculations or G2P stages, and will be reset
t the end of each timestep. Compared to the MP BC, the node BC
verhead is much lower, but its versatility is also reduced, as the nodes
re fixed and fail to track any moving MPs to provide an attached BC.

Rigid body contact aims to provide a DEM-contact law-driven
oundary condition that moves with its prescribed velocity. The in-
luence of rigid body contact on MPs does not require a node to
xtrapolate any dynamics; instead, it corrects the MPs’ response based
n a DEM contact criterion. Specifically, if any contact penetration

occurs between an MP, represented by a virtual radius, and a rigid body
geometry, the normal and tangential forces are determined by contact
laws, such as the Linear-Spring law, Hertz–Mindlin law, or advanced
barrier law adopted in Jiang et al. (2022) and Liang et al. (2024). The
shapes of the rigid bodies can be analytical, such as spheres, rectangles,
r super-ellipsoids, or they can be numerical, formed by geometric
rimitives like lines and triangular meshes. In the context of granular
low, a ground with complex elevation features is often involved as
 boundary condition. Thus, a contact correction for the rigid body
oundary condition between MPs and triangular mesh terrain is used
or demonstration, but it can also be extended to other shapes without
ncurring significant overhead.

Metadata describing the terrain typically require preprocessing to
convert them into a more program-friendly data format, optimizing for
parallel processing and computational efficiency. For instance, irregular
digital elevation model mappings are often re-interpolated into an
orthogonal mesh format. This results in a structured matrix of adjacent
cells, where each cell encompasses four vertices of elevation data, and
two triangles are derived from each cell to generate the corresponding
face normal information. Our framework efficiently manages the inter-
action between material points and digital terrain structures in parallel
by employing a division operation between the positions of the MPs
and the terrain space to ascertain the cell index.

Given a material point denoted by its position vector 𝒙𝑝 and a virtual
adius 𝑟𝑝, the indices of potential contact cell candidates are determined
s follows:

𝒙𝑐 = 𝒙𝑝 ± 𝑟𝑝 ⃖⃗𝒆 (9a)

𝒅𝑐 = 𝑖𝑛𝑡(
𝒙𝑐
𝜹
) (9b)

where 𝒙𝑐 represents the base vertex coordinates of the cell, ⃖⃗𝒆 signifies
the normalized unit direction, 𝒊𝒅𝑐 corresponds to the cell index vector,
and 𝜹 denotes the mesh spacing.

The one-dimensional flattened indices are constructed as follows:

𝒊𝒅𝑎𝑙 𝑙 = 𝑐 𝑒𝑙 𝑙[𝒊𝒅𝑐 ,𝑥𝑚𝑖𝑛 ∶ 𝒊𝒅𝑐 ,𝑥𝑚𝑎𝑥, 𝒊𝒅𝑐 ,𝑦𝑚𝑖𝑛 ∶ 𝒊𝒅𝑐 ,𝑦𝑚𝑎𝑥, 𝒊𝒅𝑐 ,𝑧𝑚𝑖𝑛 ∶ 𝒊𝒅𝑐 ,𝑧𝑚𝑎𝑥] (10)

where 𝒊𝒅𝑎𝑙 𝑙 encapsulates all potential contact candidates within a flat-
ened one-dimensional index. Notably, this approach can be optimized
hen dealing with fixed boundary digital terrain; since the cell infor-
ation derived from the int64 index has already been processed in the
2G stage, only a linear offset from the MPM mesh to the digital terrain
s required, thereby eliminating the need for further floating-point
ivision and index flattening.

Although there can be up to eight possible contact candidate cells,
ccounting for variations in the 𝑧-direction coordinates limits the loop-
ng to a maximum of four cells and eight triangles during contact
orce calculations. Considering a triangle defined by its vertices 𝑨,
, and 𝑪 ; the projection procedure from material points onto the

riangle (Guilkey et al., 2021) is derived as follows:

𝒏 = (𝑩 −𝑨) × (𝑪 −𝑨) (11a)

𝑑𝑝 = (𝒙𝑝 −𝑨) ⋅ 𝒏 (11b)

𝒑 = 𝒙𝑝 − 𝑑𝑝𝒏 (11c)

𝑝𝑟𝑜𝑗 =
√

𝑟2𝑝 − 𝑑2𝑝 (11d)

where 𝒏 is the normal vector of the triangular plane, 𝑑𝑝 represents the
distance from the material point to the triangular plane, 𝒑 denotes the



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
projected position vector of the material point onto the plane, and 𝑟𝑝𝑟𝑜𝑗
corresponds to the projected radius derived from the virtual radius.

The combination of 𝒑 and 𝑟𝑝𝑟𝑜𝑗 defines a disk that enables the
evaluation of potential intersections between the disk and the triangle.
The intersection area 𝑆𝑝𝑟𝑜𝑗 between the disk and the triangle leads to
the definition of a penalty 𝛽 given by 𝛽 = 𝑆𝑝𝑟𝑜𝑗∕𝜋 𝑟2𝑝𝑟𝑜𝑗 ∈ (0, 1), which is
applied to the contact forces to mitigate excessive contact behavior, as
shown below:

𝒇 𝑛 = 𝛽 𝐾𝑛(𝑟𝑝 − 𝑑𝑝)𝒏 (12a)

𝒇 𝑡 += 𝛽 𝐾𝑡𝛥𝒗𝛥𝑡 (12b)

where 𝒇 𝑛 and 𝒇 𝑡 represent the normal and tangential contact forces,
respectively; 𝐾𝑛 and 𝐾𝑡 indicate the normal and tangential contact
stiffness; 𝛥𝒗 signifies the velocity difference between the material point
and the triangular plane, and 𝛥𝑡 is the timestep.

This contact method exhibits a time complexity of 𝑂(1), effectively
bypassing the need for intensive loops through numerous triangular
meshes, and negates the necessity for advanced techniques such as
Level-Set methods for reflecting complex terrains. Should either the
material shape or the boundary mesh become non-spherical, more
sophisticated contact algorithms can be incorporated, as demonstrated
in Liang et al. (2024) and Chen et al. (2023).

3.5. Iteration loop

We begin by outlining the essential properties of a typical material
constitutive model to illustrate the implementation of memory shifts
in GPU-based MPM simulations. Key material properties include the
deformation gradient, rate of deformation gradient, stress, and plastic
index. The update process for these properties can be executed in either
incremental or full deformation gradient forms. In the incremental
deformation approach, the rate of deformation gradient is updated first,
followed by the stress. Within this framework, it is unnecessary to main-
tain a full form of deformation gradient matrix; only a memory cache
for storing stress and plastic index values is required. Consequently,
even if the MPs are reordered between time steps, the memory position
shift of the deformation gradient remains dead status. The central focus
here is only on establishing the rate of deformation gradient within
each time step, which we characterize as an in-place shift.

For deformation-dependent materials, a memory cache for the full
form of the deformation gradient is essential, necessitating memory
shift operations at each time step. Once the in-place generation of the
rate of deformation gradient is completed for a given time step, updates
to the deformation gradient and stress are performed. At the end of each
time step, the deformation gradient, stress, and plastic index undergo a
memory shift. In three-dimensional space, this entails allocating 3 × 3 =
9 slots for the deformation gradient, 6 slots for stress, and potentially
1 slot for the plastic index, totaling 16 memory slots. A pre-allocated
memory shift workspace serves as a buffer for encoding these timestep-
wise memory shifts, utilizing the query table 𝑝𝑖𝑑𝑚𝑎𝑝 obtained from
Algorithm 6. Beyond the in-place and timestep-wise shifts, a special
scenario arises when certain materials require more complex stress
notations (e.g., Kirchhoff stress) instead of standard Cauchy stress.
To facilitate efficient transitions among different stress definitions, a
constant initial volume is preserved, necessitating a memory slot for
reverse-mapping the current reordered index to its initial state, as
enabled by the mapping identifier 𝑝𝑖𝑑𝑟𝑚𝑎𝑝 defined in Algorithm 6.

In multi-material domains, each material block maintains its own
mapping tables to record the local indices of material points. The
material kernels execute in a serialized manner, ensuring local paral-
lelism within each block while synchronizing with global material point
reordering to optimize memory caching. In parallel with managing
material properties during memory shifts, common kinematics encoun-
tered in MPM, such as mass, velocity, and position, are also addressed.
Notably, specific optimizations can be employed when all materials
11 
Fig. 7. The iteration flowchart of USF in GPU MPM.

share a same mass or when uniform GIMP assumptions apply, allow-
ing for the elimination of mass and interpolation domain reordering.
However, reordering of velocity and position is still necessary. In the
context of the USF and USL, velocity is exclusively read during the P2G
phase and written during the G2P phase, warranting a timestep-wise
shift. Conversely, in the MUSL case, where remapping occurs between
MPs and nodes, velocity experiences an in-place shift during the G2P
stages. On the other hand, the position attribute consistently undergoes
an in-place memory shift during the G2P phase, while its timestep-wise
shift is conducted lazily during the reordering stage.

The sparse MPM framework has the following iteration stages in one
time step (using USF as an example) (see Fig. 7) :

3.6. Remarks

Frequently executing MP reordering may be unnecessary for quasi-
static problems, as the advantages do not justify the costs associated
with the reordering kernel. Instead, implementing periodic MP reorder-
ing can strike a reasonable balance. When allocating sparse memory for
a block, the overall memory size is determined by the data channels



H. Chen et al.

e
b
a
d
t

l

a

d
v

𝜔

o
t

m

s
t
a
n
t
s
m
i
m

M

Computers and Geotechnics 180 (2025) 107113 
Fig. 8. Simulation setup for the one-dimensional wave propagation example.

present in the nodes. In a three-dimensional context, assuming a single
phase of material, the total number of data channels for mass, accelera-
tion, velocity, momentum, and force adds up to 13. This configuration
remains manageable as long as the node channel size does not greatly
xceed 4 KB, which is the standard memory unit size typically handled
y CPUs and GPUs. However, in multi-phase or multi-physics problems,
n increase in data channels can result in substantial performance
egradation. To address this, our framework introduces a memory reuse
echnique that enables the sharing of workspace buffers between the

material properties shift stage and the MP reordering stage, thereby
reducing overall memory allocation. Another potential solution is to
stagger the execution of the mechanical kernel and other kernels,
which could facilitate latency hiding on modern GPUs by leveraging
asynchronous computation and I/O kernels.

4. Benchmarks and scalability tests

4.1. Elastic solution: One-dimensional wave propagation

The one-dimensional wave propagation in an elastic beam is ana-
yzed to validate the basic functionality of the proposed MPM frame-

work, as illustrated in Fig. 8. The beam length is set to 𝐿 = 25 m with
ll degrees of freedom constrained on the left side, while the right side

remains only horizontal displacement. The material properties of the
elastic beam are specified as follows: Young’s modulus (𝐸 = 100 Pa),
Poisson’s ratio (𝜈 = 0), and density (𝜌 = 1 k g∕m3). An initial velocity
distribution is defined as 𝑣(0, 𝑥) = 𝑣0 sin(

𝜋
2𝐿𝑥), where 𝑣0 has two options:

0.1 m/s and 0.75 m/s. These values are chosen to test for any potential
cell-crossing issues. Since the Poisson’s ratio is zero, the dimensions
in the Y and Z directions do not influence the simulation, and their
properties are ignored. The resolution of the cells in the X direction is
set to 100, and 320,000 particles are generated. The simulation runs
for 40 s with a timestep of 0.005 s, and no damping is applied.

The evolution of the probed point (A) in terms of velocity and
isplacement is shown in Fig. 9. The analytical displacement and
elocity are expected to be:

𝑥 =
𝑣0
𝛽 𝐿𝜔 sin(𝜔𝑡) (13a)

𝑣 =
𝑣0
𝛽 𝐿 cos(𝜔𝑡) (13b)

𝛽 = 𝜋
2𝐿

(13c)

= 𝛽
√

𝐸
𝜌

(13d)

For consistent comparison, all variables are normalized against
𝑣0. The results demonstrate a high level of agreement between the
numerical solution (dots) and the analytical solution (lines), regardless
f whether the velocity is low or high. This indicates the stability of
he basic sparse memory MPM framework. The simulation operates

at an approximate speed of 363 steps/s. However, due to the cubic
sampling of the material points, the benefits of sparse encoding in terms
of memory savings are negligible.
12 
4.2. Plastic solution: Three-dimensional granular column collapse

A column collapse test based on Bui et al. (2008) is used to evaluate
the effectiveness of the reordering technique when incorporating a
state-variable plastic model, such as the Drucker–Prager (Drucker and
Prager, 1952) model in this example.

The yield function and flow rule associated with the Drucker–Prager
odel can be expressed as follows:

𝐹 =
√

𝐽2 + 𝜂 𝜎𝐦 − 𝜉 𝑐 (14a)

𝐺 =
√

𝐽2 + �̄� 𝜎𝐦 (14b)

where the 𝐽2 is the second invariant of deviatoric stress tensor, 𝜎𝐦 is the
spherical stress, 𝑐 is the cohesion strength; 𝜂, 𝜉 and �̄� can be obtained
by the friction angle (𝜙) and dilation angle (𝜓),

𝜂 =
3 t an𝜙

√

9 + 12 t an2 𝜙
(15a)

𝜉 = 3
√

9 + 12 t an2 𝜙
(15b)

�̄� =
3 t an𝜓

√

9 + 12 t an2 𝜓
(15c)

The initial simulation configuration is shown in Fig. 10(a). A cube
with dimensions of 0.2 m × 0.05 m × 0.1 m is positioned on the left
side on a frictional base and is assigned 64,000 material points. The
material properties following the Mohr–Coulomb model are as follows:
Young’s modulus (𝐸 = 8.4 × 105 Pa), Poisson’s ratio (𝜈 = 0.3), density
(𝜌 = 2650 k g∕m3), friction angle (𝜙 = 19.2◦), and zero cohesion. All
side walls are used to confine the soil column, constraining only the
normal displacement. After generating and consolidating the material
points through a geostatic process, the column collapse is initiated
by suddenly removing the outlet baffle. Damping is set to 1 during
the geostatic process and adjusted to 0.1 during the collapse. The
simulation duration is 0.5 s, with a timestep of 5 × 10−4 s.

Fig. 10(b) presents a comparative analysis of the experimental
results (depicted by the black stroke) and the numerical results (il-
lustrated by the solid contour). The observations reveal a significant
deformation in the sand column, with the outline of the free surface
aligning closely with the findings reported by Bui et al. (2008). More-
over, a critical failure line corresponds well with the experimental data,
indicated by the pink triangles. A more detailed comparison of the
profiles is illustrated in Fig. 11, where the data from this study (repre-
ented by markers) is shown to align closely with the lines derived from
he experimental results (Bui et al., 2008). The simulation operates at
 rate of approximately 4750 steps/s. However, we observe that the
umber of material points may be inadequate to accurately represent
he framework’s efficiency, as the warm-up cost of the kernel could be
imilar to the computation costs. Nonetheless, with respect to sparse
emory configurations, a nodal memory savings of approximately 59%

s achieved, as the upper right void space is not allocated for sparse
emory.

4.3. Digital terrain contact: a block sliding on an inclined plane

A sliding block on an inclined digital terrain is used to test the
P-to-Tri-Mesh contact algorithm. As illustrated in Fig. 12(a), a cubic

cluster of MPs is placed on a plane with an inclination angle of 𝜃 = 30◦.
The cubic dimensions are 2 m × 1 m × 1 m, with a cell size of 0.0125 m.
Notably, the checker pattern of green, red, and blue blocks attached
to the cubic, represented by a 4 × 4 × 4 matrix, indicates how the
sparse memory is organized. Each block has locally contiguous mem-
ory, enabling efficient intra-block P2G and G2P operations. Adjacent
blocks with different colors engage in inter-block GIMP interpolation,
mitigating the cell-crossing issue. The memory distribution of nodes is
similar to that of the material points, with only one additional layer
extending from the material point block, while other areas remain as



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 9. Responses of velocity and displacement at the probed point (A) for initial velocities: (a) 0.1 m/s and (b) 0.75 m/s.
Fig. 10. Three-dimensional granular collapse: (a) initial settings, (b) experimental results sourced from Bui et al. (2008), (c) numerical results from this work, and (d) free surfaces
and failure lines comparison in XOZ plane.
Fig. 11. Comparison of the profile of three-dimensional granular collapse: blue and
red lines represent the failure surface and failure line from experimental results (Bui
et al., 2008), while the markers denote results from this study.
13 
ghost memory for abstraction.
The cubic is assigned with the following elastic properties: Young’s

modulus (𝐸 = 1 × 107 Pa), Poisson’s ratio (𝜈 = 0.3), and density (𝜌 =
2650 k g∕m3) to approximate a rigid material. The simulation targets a
duration of 0.5 s under gravity. The friction coefficient between the
cubic and the plane is set to 𝜇 = 0.5. Fig. 12(b) compares the analytical
and numerical results for velocity and displacement, using the equa-
tions: 𝑥 = 1

2𝑎𝑡
2, 𝑣 = 𝑎𝑡, and 𝑎 = 𝑔(sin(𝜃) − 𝜇 cos(𝜃)). The simulation

operates at an approximate speed of 191 steps/s and is anticipated to
achieve a nodal memory savings of 57% due to the dynamic activation
of node spaces linked to the material points. The validation of this
example shows that the contact algorithm operates effectively under
self-gravity conditions for nearly rigid material contact.

4.4. Digital terrain contact: a cylinder touching a plane

The Hertz contact problem of a cylinder in contact with a plane
is used to validate the force response under a quasi-static, small de-
formation regime. The geometrical setup is illustrated in Fig. 13(a). A
cylinder with a radius of 𝑅 = 8 m and a limited length in the Y direction
makes contact with the plane under a downward surcharge pressure of
𝑝 = 0.625 Pa. The analytical pressure distribution around the contact
area is given by:



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 12. Sliding block on a slope formed by digital terrain: (a) initial configuration and (b) variations in velocity and displacement along the slope direction.
Fig. 13. Hertz contact: (a) settings of the numerical simulation and (b) vertical stress distribution.
Fig. 14. Hertz contact benchmark and profiling: (a) contact pressure distribution and (b) evolution of speed and memory consumption versus the number of material points.
𝑝𝑎𝑛𝑎 =
4𝑅𝑝
𝜋 𝑏2

√

𝑏2 − 𝑥2 (16a)

𝑏 = 2
√

2𝑅2𝑝(1 − 𝜈2)
𝐸 𝜋 (16b)

where 𝐸 and 𝜈 denote the Young’s modulus and Poisson’s ratio of the
elastic cylinder, respectively; 𝑏 represents the contact area with a value
of 𝑏 = 0.681 m, as referenced in Johnson (1987).

To determine both the accuracy and efficiency of proposed contact
algorithm, three options combining the length of Y as 1 m and 2 m, and
particle per cell (PPC) of 8 and 27 are listed, and counting to particle
numbers as SIZE 1 + PPC 8 = 804,520, SIZE 2 + PPC 8 = 1,609,040
and SIZE 1 + PPC 27 = 2,714,400, respectively. The simulation runs for
50 s, with a ramped surcharge and a damping coefficient of 0.1 applied
to ensure a quasi-static regime.
14 
Fig. 13(b) illustrates the vertical stress distribution within the half-
circle section, while Fig. 14(a) presents the evolution of contact pres-
sure around the central contact points. As the dimension in the 𝑦-
direction increases, the numerical pressure results exhibit a subtle
upward trend. In contrast, the PPC refinement shows a significant
convergence towards the analytical solutions. The discrepancies ob-
served in SIZE 1 and PPC 27 compared to the analytical solution can
be attributed to the method of imposing contact forces. To enhance
efficiency, we employ body forces applied to a thin ghost layer of
material points instead of utilizing surcharge and contact response as
traction forces from the plane. This approach causes the shape function
to taper off near the top or bottom boundaries, leading to an incom-
plete mapping of the body force onto the material points due to the
truncation of the shape function. Consequently, this results in a reduced
peak force. We plan to address this limitation in future work. Fig. 14(b)
demonstrates basic scalability, revealing a nearly linear relationship



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 15. Scalability test configurations of a large-scale granular collapse with (a): a refined eight times number of cells, (b): four refined resolutions of material points, and (c):
scalability test results in terms of speed and memory consumption, along with a comparison against the open-source code GeoTaichi (Shi et al., 2024).
between speed/memory consumption and computational tasks, which
indicates robust scalability of our framework.

4.5. Scalability of the GPU-based MPM

Granular materials can undergo large deformations in various
modes. The first type may exhibit a continuous spatial distribution; for
example, slope instability often maintains geometric continuity even
when failure occurs across a widespread area. Alternatively, another
mode may demonstrate highly discrete behavior, where the solution
domain is sparsely distributed, and each sub-domain loses connection
with its neighboring regions. This section will assess scalability in terms
of these two dramatically different deformation modes.

4.5.1. Granular collapse
The case presented in Section 4.2, which involves dense spatial

distributions of MPs within a large deformation regime, is revisited
here to establish a baseline for a scalability test against the open-source
framework GeoTaichi (Shi et al., 2024). The geometrical dimensions
depicted in Fig. 15(a) are consistent with those outlined in Section 4.2,
though the resolutions for both the cells and the MPs have been refined.
Specifically, the number of cells has been doubled in each dimension,
resulting in a total of 80 × 40 × 20 = 64,000 cells. Meanwhile, three new
configurations for particles per cell (PPC) are introduced, specifically
PPC values of 27, 64, and 125, to create a more intensive computational
task. The various combinations of refined cells and PPC options yield
MP totals of 512,000, 1,728,000, 4,096,000, and 8,000,000. The baseline
for the scalability test is established by the configurations described in
Section 4.2, where the cell count is 8000 and the number of MPs is
8000 × 8 = 64,000. For consistency, all data types in this study and
GeoTaichi are set to float32. The material properties remain the same
as those in Section 4.2. After a geostatic process, damping is set to 0.1,
and the full simulation duration is 0.6 s.

In Fig. 15(c), the solid lines illustrate the overall efficiency com-
parison between this study (red line) and GeoTaichi (blue line). The
denoting accelerations adjacent to the line indicate an average acceler-
ation ratio of 2.86 for this framework. Regarding memory consumption
15 
(dashed lines), both this framework and GeoTaichi exhibit a linear
relationship between memory allocation and particle number; however,
the slope for this framework is lower, demonstrating an 13% memory
cost reduction when the particle count reaches 8 million. This sug-
gests that, in scenarios involving extremely large scales, this approach
provides superior memory compatibility. The differences in memory
efficiency and cost may be attributed to the additional memory abstrac-
tion layer connecting C++ and Python. For example, advanced features
in GeoTaichi might necessitate greater Python functionality, which may
not be fully optimized at the intermediate program level, particularly
evident during GPU kernel execution. In contrast, this framework’s
direct memory manipulation allows for faster large-memory operations,
such as copying, writing, and resetting, thereby enhancing performance
more effectively than higher-level, abstracted Python calls.

4.5.2. Snow packing
The original simulation prototype described in Stomakhin et al.

(2013) is revisited in this study to test the scalability of the sparsity
mode (Fig. 16). In the simulation, a hanging cubic snow block falls
freely under gravity, impacts a rigid and sticky roof, and finally settles
onto a sticky base. Sticky indicates that both the roof and base impose
displacement constraints in the normal and tangential directions simul-
taneously. The cell discretization is set at 0.0125 m, with 8 material
points per cell, resulting in a total of 1.7 million material points. The
snow material is modeled to exhibit hyper-plastic behavior. The elasto-
plastic energy density function (𝛷), as a function of the deformation
matrix (𝐹 = 𝐹𝐸𝐹𝑃 , where 𝐹𝐸 represents elastic deformation and 𝐹𝑃
denotes plastic deformation), is expressed as follows:

𝛷 = 𝐴‖𝐹𝐸 − 𝑅𝐸‖2 +
𝐵
2
(𝐽𝐸 − 1)2 (17a)

𝐴 = 𝐸
2(1 + 𝜈) 𝑒

𝜆(1−𝐽𝑃 ) (17b)

𝐵 = 𝐸 𝜈
(1 + 𝜈)(1 − 2𝜈) 𝑒

𝜆(1−𝐽𝑃 ) (17c)

𝐽𝐸 = 𝑑 𝑒𝑡(𝐹𝐸 ) (17d)

𝐽 = 𝑑 𝑒𝑡(𝐹 ) (17e)
𝑃 𝑃



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 16. Schematic representation of the snow packing configuration.
𝐹𝐸 = 𝑅𝐸𝑈𝐸 (17f)

𝑈𝐸 ,𝑖 ∈ (1 − 𝑐 , 1 + 𝑐) (17g)

where 𝐸 and 𝜈 represent Young’s modulus and Poisson’s ratio, re-
spectively; 𝜆 denotes a plastic hardening multiplier; and 𝑅𝐸 and 𝑈𝐸
represent the left polar decomposition of the elastic deformation ma-
trix. The parameter 𝑐 constrains the minimum and maximum values of
the diagonal stretch components of 𝑈𝐸 .

Given that the three principal material properties, 𝐸, 𝜆 and 𝑐,
significantly influence snow behavior as noted by Stomakhin et al.
(2013), the sparsity performance is averaged across four cases. Among
them, Material 1 serves as the reference baseline, while Materials
2-4 provide variations in 𝐸, 𝜆 and 𝑐, respectively (see the Materials
section in Fig. 16). The timestep is set at 5 × 10−4 s, and the simulation
with damping of 0.7 concludes after 60,000 steps, equivalent to 30 s.
The final time states for the four materials are displayed in Fig. 17.
Lowering the parameter 𝑐 results in slimmer falling curtains, reducing
𝜆 sharpens the remaining snow caps on the roof, and a decrease in 𝐸
leads to degradation in snow accumulation both on the roof and the
ground.

Since all four features are integrated into the sparsity of the MP
distribution, the profiling time is averaged based on MPM iteration
stages: Reorder, GIMP, Stress, P2G, G2P, and auxiliary processes such
as Memset, Memcpy, and Contact with the digital terrain. Note that the
legend for Reorders includes values of 1, 10, and 20, as described in
Section 3.6, where periodic reordering aims to optimize the program.
These values indicate the iteration step intervals for reordering. For a
sparse distribution, a very high interval, as seen in DEM reorder (100
in Zhao et al. (2023)), is not recommended. Due to the significant
dynamic regime, an excessively high interval can cause particles to
jump outside the GIMP interpolation domain, disconnecting material
points from the anchoring nodes within a reorder period. The limitation
for reordering in this snow packing case is approximately 24, with 20
chosen as the maximum reorder interval for comparison.

The performance comparison of the snow packing simulation is
shown in Fig. 18. If reordering is performed at every step, the total
time cost would be 731 s, resulting in a speed of 82 steps/s. Referring
16 
to the linear scalability of the dense mode discussed in Sections 4.4
and 4.5.1, the expected speed for 1.7 million particles would be 112
steps/s and 115 steps/s, which is significantly faster than the sparse
configuration. By increasing the reorder interval from 1 to 10 and then
to 20, efficiency gains of 108% and 121% are achieved, indicating the
limitations of the reordering technique in sparse memory mode.

When breaking down the simulation into principal components
such as reorder, GIMP shape function calculation, material constitutive
modeling, P2G, and G2P, it is evident that P2G dominates the other
processes. This dominance is primarily due to the unavoidable many-
to-one memory write operations required when multiple particles write
to the same nodes in the scatter-dominated P2G stage. Although warp
intrinsics help alleviate the serialization burden to some extent, P2G
remains the primary bottleneck. A potential solution for the sparse
mode could be implementing a pure gather P2G method from the node
side, as the mismatch in the degrees of freedom between nodes and
material points is within acceptable limits.

The rose polar plot shows that Memset, Memcpy, and Contact
processes occupy a minimal fraction across all three reorder intervals,
demonstrating that modern GPUs (such as the NVIDIA RTX 4070 Ti
used in this study) efficiently manage memory operations. This also
indicates that the digital terrain contact handling method employed
here does not significantly increase computational cost and allows for
greater flexibility in mimicking complex boundary conditions.

5. Engineering-scale case: Baige landslide

5.1. Background

This analysis focuses on the Baige landslide, which occurred on the
right bank of the Jinsha River at coordinates (31◦4′56.41′′ N, 98◦42′

17.98′′ S), near Baige village along the border of Sichuan and Tibet
in southwest China. The area is characterized by developed faults
and folds within the strata, a consequence of multi-phase tectonic
movements associated with the freeze-thaw plateau. The average and
maximum annual precipitation recorded in the landslide vicinity are
650 mm and 1067.7 mm, respectively (Wang et al., 2020a). Notably,



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 17. Final packing profiles of snow for different sets of material properties.
Fig. 18. Computational profiling of the GPU-based MPM for snow packing.
cumulative rainfall at the nearest monitoring station surpassed 590 mm
between mid-June and early October 2018. This persistent heavy rain-
fall led to elevated water content and the saturation of bed deposits,
which are identified as the primary triggers of the catastrophic land-
slide (Zhang et al., 2019). During the event, approximately 27.6 million
m3 of large rock masses collapsed into the Jinsha River, resulting in a
blockage of the river channel (Fig. 19(a)).

The Baige landslide case has been widely utilized to validate numer-
ical simulations employing various methods, including MPM (Zhang
et al., 2023) and Smoothed Particle Hydrodynamics (SPH) (Peng et al.,
2022). For instance, Zhang et al. (2023) performed a GPU-based MPM
simulation of the Baige landslide, utilizing a digital elevation model
and material point sampling data to showcase the capabilities of GPU
MPM in addressing large-scale problems. This study aims to revisit the
Baige landslide simulation using our proposed optimized GPU MPM
framework, incorporating a BC handler for improved accuracy and
17 
performance.

5.2. Model setup

The raw data for the Baige landslide solution domain is sourced
from Zhang et al. (2023), tailored, and subsequently formatted for input
into the MPM solver in STL format. As illustrated in Fig. 19(b), the
solution domain measures 3380 m × 3170 m × 790 m, structured using
a uniform orthogonal cell grid with a resolution of 10 m. The black
outline indicates the area of the sliding mass, as identified through
field investigations. Prior to initiating the simulation, the source mass
is initialized with the refined red MPs positioned at their original
locations, encompassing a total of 4,329,288 MPs (Fig. 19(c)), with each
cell containing 6 × 6 × 6 = 216 MPs. Material types and parameters
are consistent with those reported by Zhang et al. (2023), utilizing the
Drucker–Prager model (Eq. (14)). The specified material properties are



H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Fig. 19. Baige landslide: (a) oblique photograph obtained from Zhong et al. (2020), (b) three-dimensional representation of the numerical simulation settings; and (c) inset
demonstration of the initialization of material points in the front view (Map data provided by OpenTopography).
as follows: density 𝜌 = 1850 k g∕m3, Young’s modulus 𝐸 = 2 × 108 Pa,
Poisson’s ratio 𝜈 = 0.33, cohesion 𝑐 = 10 k Pa, friction angle 𝜙 = 28◦,
dilation angle 𝜓 = 5◦, and a modified friction coefficient of 𝜇 = 0.25
between MPs and the base. The total duration of the simulation is set
at 100 s, with a timestep of 0.001 s. A minor damping factor of 0.01 is
applied to ensure numerical stability throughout the simulation.

5.3. Simulation results

The landslide process is comprehensively depicted in Fig. 20. The
left column presents a top view of the results, featuring a contour
of deposition that quantifies the characteristics of the sliding mass.
In contrast, the right column provides an inset from a front view.
The results reveal a rapid downward acceleration of the sliding mass
during the initial 40 s, which subsequently transitions into a quasi-
static packing state that continues until the simulation concludes at
100 s. Notably, Fig. 20(d) demonstrates that the accumulation area
identified through the MPM simulation closely aligns with the light-
gray region observed in field investigations. However, a discrepancy
arises: the MPM model does not account for the ascent of the debris
flow onto the riverbed, likely due to the single-phase nature of the dry
debris flow, which limits its rheological response.

In the packing region of the MPM results, a deposition profile is
illustrated in Fig. 21 for quantitative comparison with field data. The
red and green lines represent the test data from Sections A-A and B-B,
respectively, while circular and square markers indicate the numerical
results. Notably, Section B-B shows a strong agreement in trends,
whereas Section A-A reveals a leftward shift in the peak of the numeri-
cal data, suggesting an earlier cessation of the dry flow. The simulation
was completed in approximately 2777 s, executing 100,000 steps on
a workstation equipped with an NVIDIA RTX 4070 Ti, achieving an
effective performance rate of 36 steps/s. In contrast, Zhang et al. (2023)
18 
reported a runtime of 58.63 h for 15,000 steps on an NVIDIA RTX 3090,
which has a similar overall performance to the NVIDIA RTX 4070 Ti,
employing nearly the same number of material points, 4,135,539. This
comparison highlights a significant improvement in efficiency provided
by the current GPU MPM framework.

6. Concluding remarks

We present a novel sparse memory-driven GPU-based MPM frame-
work designed to optimize the balance between memory efficiency and
computational performance. This framework effectively addresses the
significant memory demands associated with large-scale simulations,
particularly for materials with sparse spatial distributions. To achieve
this, we introduce a hierarchical block-cell-material point structure
that enables an atomic-free dual mapping between material points
and nodes at each MPM iteration. This structure supports warp-level
intrinsic acceleration during the particle-to-grid and grid-to-particle
processes, facilitating efficient coalesced memory access and minimiz-
ing latency through staggered execution. Furthermore, our framework
is adaptable, accommodating for a variety of iteration schemes and
boundary condition types, making it suitable for engineering-scale
challenges involving complex materials and boundary conditions. The
two key features of the proposed framework are summarized as follows:
(1) Block-cell-MP hierarchy: this hierarchy is pivotal to the overall
execution framework. At the cell-material point level, it serves as the
foundation for the atomic-free dual mapping between material points
and nodes. The block-cell level ensures excellent compatibility with
low-level programming intrinsics, thereby enhancing the efficiency of
attribute communication, which is crucial for both particle-to-grid and
grid-to-particle processes. (2) Memory shift for material properties: the
memory shift in key components of material properties enhances the
capacity of this framework to accommodate a broader range of mate-
rial types. Moreover, the incorporation of arbitrarily shaped boundary



H. Chen et al.

Fig. 20. Simulation results (top and front view) of the dry debris flow on the Baige digital terrain: (a) 𝑡 = 20 s, (b) 𝑡 = 30 s, (c) 𝑡 = 40 s, and (d) 𝑡 = 100 s.

Computers and Geotechnics 180 (2025) 107113 

19 



H. Chen et al.

i
l
m
o
w

Z
J
F

c
i

F
C
1
T
c
o
b

Computers and Geotechnics 180 (2025) 107113 
Fig. 21. Deposition profile in Sections A-A and B-B.

condition engines further extends the applicability of this framework.
While the proposed framework demonstrates significant efficiency

n simulating engineering-scale problems; however, it also has several
imitations that warrant further investigation. Firstly, the current imple-
entation is restricted to single-phase problems that focus exclusively

n the mechanical responses of dry granular materials. Future research
ill aim to broaden this framework to encompass multiphysics interac-

tions, including thermo-hydro-mechanical coupling (Yu et al., 2024).
Secondly, due to the complex iteration schemes and boundary con-
ditions inherent in realistic scenarios, the existing serialization order
of the GPU kernel may not be optimal. To address this challenge, a
graph-based approach could be utilized to maintain a repository of
GPU kernels, facilitating asynchronous scheduling of computational
and memory tasks. This strategy has the potential to enhance the
balance between simulation efficiency and critical I/O operations, such
as the frequent archiving of results that is essential for near real-time
simulation applications.

CRediT authorship contribution statement

Hao Chen: Writing – original draft, Software, Investigation. Shiwei
hao: Writing – review & editing, Supervision, Funding acquisition.
idong Zhao: Writing – review & editing, Supervision, Resources,
unding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work was financially supported by National Natural Science
oundation of China (by Project No. 52439001) and Research Grants
ouncil of Hong Kong (by GRF Projects No. 16206322 and No.
6211221, by CRF Project No. C7082-22G, and by TRS Projects No.
22-606/23-R and No. T22-607/24-N). Any opinions, findings, and
onclusions or recommendations expressed in this material are those
f the authors and do not necessarily reflect the views of the financial
odies.

Data availability

No data was used for the research described in the article.
20 
References

Anura3D MPM Research Community, 2024. Anura3D source code. https://www.
anura3d.com. (Accessed 07 October 2024).

Bardenhagen, S.G., Kober, E.M., et al., 2004. The generalized interpolation material
point method. Comput. Model. Eng. Sci. 5, 477–496.

Bing, Y., Cortis, M., Charlton, T., Coombs, W., Augarde, C., 2019. B-spline based
boundary conditions in the material point method. Comput. Struct. 212, 257–274.

Bird, R.E., Pretti, G., Coombs, W.M., Augarde, C.E., Sharif, Y.U., Brown, M.J., Carter, G.,
Macdonald, C., Johnson, K., 2024. An implicit material point-to-rigid body contact
approach for large deformation soil–structure interaction. Comput. Geotech. 174,
106646.

Brackbill, J.U., Ruppel, H.M., 1986. FLIP: A method for adaptively zoned, particle-
in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65,
314–343.

Buckland, E., Nguyen, V.P., de Vaucorbeil, A., 2024. Easily porting material point
methods codes to GPU. Comput. Part. Mech. 1–16.

Bui, H.H., Fukagawa, R., Sako, K., Ohno, S., 2008. Lagrangian meshfree particles
method (SPH) for large deformation and failure flows of geomaterial using
elastic–plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32,
1537–1570.

Cao, Y., Zhao, Y., Li, M., Yang, Y., Choo, J., Terzopoulos, D., Jiang, C., 2024.
Unstructured moving least squares material point methods: a stable kernel approach
with continuous gradient reconstruction on general unstructured tessellations.
Comput. Mech. 1–24.

Chen, W.F., Baladi, G.Y., 1985. Soil Plasticity: Theory and Implementation. Elsevier.
Chen, H., Zhao, S., Zhao, J., Zhou, X., 2023. DEM-enriched contact approach for

material point method. Comput. Methods Appl. Mech. Engrg. 404, 115814.
Clarke, L., Glendinning, I., Hempel, R., 1994. The MPI message passing interface

standard. In: Programming Environments for Massively Parallel Distributed Sys-
tems: Working Conference of the IFIP WG 10.3, April 25–29, 1994. Springer, pp.
213–218.

Coombs, W.M., Charlton, T.J., Cortis, M., Augarde, C.E., 2018. Overcoming volumetric
locking in material point methods. Comput. Methods Appl. Mech. Engrg. 333, 1–21.

Cundall, P.A., Strack, O.D., 1979. A discrete numerical model for granular assemblies.
Geotechnique 29, 47–65.

Dagum, L., Menon, R., 1998. OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5, 46–55.

De Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J.Y., 2020. Material point method after
25 years: theory, implementation, and applications. Adv. Appl. Mech. 53, 185–398.

Dong, Y., Cui, L., Zhang, X., 2022. Multiple-GPU parallelization of three-dimensional
material point method based on single-root complex. Internat. J. Numer. Methods
Engrg. 123, 1481–1504.

Dong, Y., Wang, D., Randolph, M.F., 2015. A GPU parallel computing strategy for the
material point method. Comput. Geotech. 66, 31–38.

Drucker, S., Prager, W., 1952. Mechanics and plastic analysis or limit design. Quart.
Appl. Math. 2, 157–165.

Feng, Z.K., Xu, W.J., 2021. GPU material point method (MPM) and its application on
slope stability analysis. Bull. Eng. Geol. Environ. 80, 5437–5449.

Gao, M., Wang, X., Wu, K., Pradhana, A., Sifakis, E., Yuksel, C., Jiang, C., 2018. GPU
optimization of material point methods. ACM Trans. Graph. 37, 1–12.

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., Jiang, C., 2018. Dynamic anticrack
propagation in snow. Nat. Commun. 9, 3047.

Guilkey, J., Lander, R., Bonnell, L., 2021. A hybrid penalty and grid based contact
method for the material point method. Comput. Methods Appl. Mech. Engrg. 379,
113739.

Hammerquist, C.C., Nairn, J.A., 2017. A new method for material point method particle
updates that reduces noise and enhances stability. Comput. Methods Appl. Mech.
Engrg. 318, 724–738.

Harlow, F.H., 1964. The particle-in-cell computing method for fluid dynamics. Methods
Comput. Phys. 3, 319–343.

Hrennikoff, A., 1941. Solution of problems of elasticity by the framework method. J.
Appl. Mech..

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., Jiang, C., 2018. A moving least
squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph. 37, 1–14.

Hu, Y., Li, T.M., Anderson, L., Ragan-Kelley, J., Durand, F., 2019. Taichi: a language
for high-performance computation on spatially sparse data structures. ACM Trans.
Graph. 38, 201.

Iverson, R.M., 2012. Elementary theory of bed-sediment entrainment by debris flows
and avalanches. J. Geophys. Res.: Earth Surf. 117.

Jiang, Y., Zhao, Y., Choi, C.E., Choo, J., 2022. Hybrid continuum–discrete simulation
of granular impact dynamics. Acta Geotech. 17, 5597–5612.

Jin, Y.F., Yin, Z.Y., Zhou, X.W., Liu, F.T., 2021. A stable node-based smoothed pfem
for solving geotechnical large deformation 2d problems. Comput. Methods Appl.
Mech. Engrg. 387, 114179.

Johnson, K.L., 1987. Contact Mechanics. Cambridge University Press.
Kamrin, K., Koval, G., 2012. Nonlocal constitutive relation for steady granular flow.

Phys. Rev. Lett. 108, 178301.

https://www.anura3d.com
https://www.anura3d.com
https://www.anura3d.com
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb2
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb2
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb2
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb3
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb3
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb3
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb4
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb5
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb5
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb5
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb5
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb5
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb6
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb6
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb6
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb7
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb8
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb9
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb10
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb10
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb10
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb11
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb12
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb12
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb12
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb13
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb13
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb13
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb14
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb14
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb14
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb15
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb15
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb15
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb16
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb16
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb16
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb16
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb16
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb17
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb17
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb17
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb18
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb18
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb18
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb19
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb19
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb19
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb20
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb20
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb20
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb21
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb21
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb21
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb22
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb22
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb22
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb22
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb22
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb23
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb23
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb23
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb23
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb23
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb24
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb24
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb24
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb25
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb25
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb25
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb26
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb26
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb26
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb26
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb26
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb27
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb27
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb27
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb27
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb27
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb28
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb28
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb28
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb29
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb29
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb29
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb30
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb30
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb30
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb30
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb30
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb31
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb32
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb32
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb32


H. Chen et al. Computers and Geotechnics 180 (2025) 107113 
Kumar, K., Salmond, J., Kularathna, S., Wilkes, C., Tjung, E., Biscontin, G., Soga, K.,
2019. Scalable and modular material point method for large-scale simulations. arXiv
preprint arXiv:1909.13380.

Li, J., Wang, B., Wang, D., Zhang, P., Vardon, P.J., 2023. A coupled MPM-DEM method
for modelling soil-rock mixtures. Comput. Geotech. 160, 105508.

Liang, W., Fang, H., Yin, Z.Y., Zhao, J., 2024. A mortar segment-to-segment frictional
contact approach in material point method. Comput. Methods Appl. Mech. Engrg.
431, 117294.

Liang, Y., Given, J., Soga, K., 2023. The imposition of nonconforming Neumann
boundary condition in the material point method without boundary representation.
Comput. Methods Appl. Mech. Engrg. 404, 115785.

Museth, K., 2013. VDB: high-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 1–22.

Nairn, J.A., Hammerquist, C.C., 2021. Material point method simulations using an
approximate full mass matrix inverse. Comput. Methods Appl. Mech. Engrg. 377,
113667.

NVIDIA, Vingelmann, P., Fitzek, F.H., 2020. CUDA, release: 10.2.89. URL: https:
//developer.nvidia.com/cuda-toolkit.

Peng, C., Li, S., Wu, W., An, H., Chen, X., Ouyang, C., Tang, H., 2022. On
three-dimensional SPH modelling of large-scale landslides. Can. Geotech. J. 59,
24–39.

Pudasaini, S.P., Krautblatter, M., 2021. The mechanics of landslide mobility with
erosion. Nat. Commun. 12, 6793.

Remmerswaal, G., 2023. The random material point method for assessment of residual
dyke resistance: investigating the influence of soil heterogeneity on slope failure
processes.

Setaluri, R., Aanjaneya, M., Bauer, S., Sifakis, E., 2014. SPGrid: A sparse paged grid
structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 1–12.

Shi, Y., Guo, N., Yang, Z., 2024. GeoTaichi: A Taichi-powered high-performance
numerical simulator for multiscale geophysical problems. Comput. Phys. Comm.
301, 109219.

Steffen, M., Kirby, R.M., Berzins, M., 2008. Analysis and reduction of quadrature errors
in the material point method (MPM). Internat. J. Numer. Methods Engrg. 76,
922–948.

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A., 2013. A material point
method for snow simulation. ACM Trans. Graph. 32, 1–10.

Sulsky, D., Chen, Z., Schreyer, H.L., 1994. A particle method for history-dependent
materials. Comput. Methods Appl. Mech. Engrg. 118, 179–196.

de Vaucorbeil, A., Nguyen, V.P., Nguyen-Thanh, C., 2021. Karamelo: an open source
parallel C++ package for the material point method. Comput. Part. Mech. 8,
767–789.
21 
Wang, B., Chen, P., Wang, D., Liu, L.L., Zhang, W., 2024. Development of a GPU-
accelerated implicit material point method for geotechnical engineering. Acta
Geotech. 19, 3729–3749.

Wang, L., Coombs, W.M., Augarde, C.E., Cortis, M., Brown, M.J., Brennan, A.J.,
Knappett, J.A., Davidson, C., Richards, D., White, D.J., et al., 2021. An efficient
and locking-free material point method for three-dimensional analysis with simplex
elements. Internat. J. Numer. Methods Engrg. 122, 3876–3899.

Wang, X., Qiu, Y., Slattery, S.R., Fang, Y., Li, M., Zhu, S.C., Zhu, Y., Tang, M.,
Manocha, D., Jiang, C., 2020b. A massively parallel and scalable multi-GPU
material point method. ACM Trans. Graph. 39, 30–31.

Wang, W., Yin, Y., Zhu, S., Wang, L., Zhang, N., Zhao, R., 2020a. Investigation and
numerical modeling of the overloading-induced catastrophic rockslide avalanche in
Baige, Tibet, China. Bull. Eng. Geol. Environ. 79, 1765–1779.

Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., Podladchikov, Y.Y., 2021. An explicit
GPU-based material point method solver for elastoplastic problems (ep2-3de v1.
0). Geosci. Model Dev. 14, 7749–7774.

Yamaguchi, Y., Moriguchi, S., Terada, K., 2021. Extended B-spline-based implicit
material point method. Internat. J. Numer. Methods Engrg. 122, 1746–1769.

Yu, J., Zhao, J., Liang, W., Zhao, S., 2024. A semi-implicit material point method for
coupled thermo-hydro-mechanical simulation of saturated porous media in large
deformation. Comput. Methods Appl. Mech. Engrg. 418, 116462.

Zhang, D.Z., Perez, K.A., Barclay, P.L., Waters, J., 2024. Rapid particle generation from
an STL file and related issues in the application of material point methods to
complex objects. Comput. Part. Mech. 1–15.

Zhang, W., Wu, Z., Peng, C., Li, S., Dong, Y., Yuan, W., 2023. Modelling large-
scale landslide using a GPU-accelerated 3D mpm with an efficient terrain contact
algorithm. Comput. Geotech. 158, 105411.

Zhang, L., Xiao, T., He, J., Chen, C., 2019. Erosion-based analysis of breaching of Baige
landslide dams on the Jinsha River, China, in 2018. Landslides 16, 1965–1979.

Zhao, S., Lai, Z., Zhao, J., 2023. Leveraging ray tracing cores for particle-based
simulations on GPUs. Internat. J. Numer. Methods Engrg. 124, 696–713.

Zhao, S., Zhao, J., Liang, W., 2021. A thread-block-wise computational framework for
large-scale hierarchical continuum-discrete modeling of granular media. Internat.
J. Numer. Methods Engrg. 122, 579–608.

Zheng, X., Seaid, M., Pisanò, F., Hicks, M.A., Vardon, P.J., Huvaj, N., Osman, A.S.,
2023. A material point/finite volume method for coupled shallow water flows and
large dynamic deformations in seabeds. Comput. Geotech. 162, 105673.

Zhong, Q., Chen, S., Wang, L., Shan, Y., 2020. Back analysis of breaching process of
Baige landslide dam. Landslides 17, 1681–1692.

Zhou, X.W., Jin, Y.F., He, K.Y., Yin, Z.Y., Liu, F.T., 2024. A novel implicit fem-mpm
coupling framework using convex cone programming for elastoplastic problems.
Comput. Methods Appl. Mech. Engrg. 429, 117153.

http://arxiv.org/abs/1909.13380
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb34
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb34
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb34
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb35
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb35
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb35
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb35
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb35
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb36
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb36
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb36
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb36
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb36
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb37
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb37
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb37
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb38
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb38
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb38
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb38
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb38
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb40
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb40
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb40
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb40
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb40
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb41
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb41
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb41
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb42
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb42
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb42
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb42
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb42
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb43
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb43
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb43
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb44
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb44
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb44
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb44
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb44
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb45
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb45
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb45
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb45
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb45
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb46
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb46
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb46
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb47
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb47
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb47
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb48
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb48
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb48
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb48
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb48
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb49
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb49
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb49
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb49
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb49
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb50
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb51
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb51
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb51
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb51
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb51
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb52
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb52
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb52
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb52
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb52
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb53
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb53
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb53
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb53
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb53
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb54
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb54
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb54
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb55
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb55
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb55
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb55
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb55
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb56
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb56
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb56
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb56
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb56
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb57
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb57
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb57
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb57
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb57
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb58
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb58
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb58
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb59
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb59
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb59
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb60
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb60
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb60
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb60
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb60
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb61
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb61
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb61
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb61
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb61
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb62
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb62
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb62
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb63
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb63
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb63
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb63
http://refhub.elsevier.com/S0266-352X(25)00062-X/sb63

	A sparse-memory-encoding GPU-MPM framework for large-scale simulations of granular flows
	Introduction
	Prevailing Solution Schemes
	Governing Equations
	Temporal and Spatial Discretization
	Solution Schemes
	Porting from CPU to GPU: General Ways on Implementation

	Sparse Memory Supported Algorithms on GPU
	Sparse Grid
	Material Points Reorder
	Int64 Index of Material Points
	Hash the Int64 Index to Blocks
	Hash the Int64 Index to Cells

	GPU Cell-wise Mapping between Particles and Grid Nodes
	Mapping from Particles to Grid Nodes (P2G)
	Mapping from Grid Nodes to Particles (G2P)

	Boundary Condition
	Iteration Loop
	Remarks

	Benchmarks and Scalability Tests
	Elastic Solution: One-dimensional Wave Propagation
	Plastic Solution: Three-dimensional Granular Column Collapse
	Digital Terrain Contact: a Block Sliding on an Inclined Plane
	Digital Terrain Contact: a Cylinder Touching a Plane
	Scalability of the GPU-based MPM
	Granular Collapse
	Snow Packing


	Engineering-scale Case: Baige Landslide
	Background
	Model setup
	Simulation results

	Concluding Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


