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A B S T R A C T   

This paper presents a fully coupled thermo-mechanical peridynamic model for simulating inter-
active thermo-mechanical material responses and thermally induced fracturing of solids. A 
temperature-dependent constitutive model and a deformation-dependent heat conduction model 
are derived for state-based peridynamic formulation. The dispersion relation and truncation error 
of the state-based peridynamic heat equation are analyzed for the first time. It is found that as 
non-locality becoming more pronounced, the dissipative rate of heat is reduced, and the trun-
cation error becomes larger. A small horizon can effectively mitigate oscillation while reducing 
the error in the temperature field. For coupled thermo-mechanical modeling, a novel multi- 
horizon scheme is introduced where the thermal field is solved with a different horizon than 
that of the mechanical field. The multi-horizon scheme allows for the implementation of a distinct 
degree of non-locality for different physical field. Comparing with the constant-horizon scheme, 
we demonstrate through numerical examples that the multi-horizon scheme offers smoother and 
more accurate solutions and serves a promising option for peridynamics-based multi-physics 
simulations.   

1. Introduction 

The peridynamic (PD) theory (Silling, 2000; Silling et al., 2007) is a non-local extension of the classical continuum mechanics. It is 
based on integral-differentiation governing equations which make it inherently suitable for modeling discontinuities. The method has 
gained increasing popularity in modeling fracturing in solids (Gao and Oterkus, 2019; Liu et al., 2024; Shi et al., 2022; Wan et al., 2020; 
Yang et al., 2024; Zhu and Zhao, 2019a, 2019b; 2021). Nonetheless, fracturing in many natural and industrial processes is accom-
panied by multiphysics processes. Thermal fracturing is one of the examples. It is regarded as one of the weathering mechanisms of 
rock (Buckman et al., 2021) and is also one of the most devasting defects in addictive manufacturing (Ruan et al., 2023). In geothermal 
energy exploitation, cool water is often injected into hot rock to build large scale crack networks to improve the heat extract efficiency 
(Xue et al., 2023). The thermal fracturing is not an independent process but is fully coupled with the mechanical response of material. 
It is well known that mutual influence of the temperature variation and material deformation exists. 

Given the advantages of the PD theory in modeling discontinuities, it is natural to develop a coupled thermo-mechanical (TM) PD 
for modeling the interacting thermal and mechanical fields associated with the fracturing process. Pioneering works on TM PD include 
Kilic and Madenci (2010), Agwai (2011), and Oterkus et al. (2014a, 2014b), who developed PD heat conduction equation and 
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subsequently fully coupled PD thermomechanics based on the irreversible thermodynamics. Both the equation of motion and thermal 
diffusion are formulated with bond-based PD. More recently, the thermomechanical framework is extended to ordinary state-based 
(Zhang and Qiao, 2018, 2020) and non-ordinary state-based (Sun et al., 2023) ones. However, the heat equation is not explicitly 
included in these analyses, and only the one-way effects of temperature on stress are considered. With these coupled thermo-
mechanical methods, PD has been employed to simulate thermal cracking of various brittle materials including rocks, concretes, ice 
and ceramics (Wang et al., 2019; Bazazzadeh et al., 2020; Chen et al., 2021; Song et al., 2022; Sun et al., 2023; Song et al., 2021; Zhang 
et al., 2023). It is worth noting that PD is a versatile computational framework that can integrate multiple physical fields. Examples 
include coupled hydro-mechanical/thermo-hydro-mechanical modeling for porous media (Oterkus et al., 2017; Song and Silling, 
2020; Menon and Song, 2021, 2022, 2023; Ni et al., 2022, 2023; Yu et al., 2024a, b, c), fluid-driven fracturing (Sun et al., 2022a; Sun 
et al., 2022b; Yang et al., 2024), and ion diffusion and chemical reactions (Chen and Bobaru, 2015; Wang et al., 2018a; Wu and Chen, 
2023; Yang et al., 2020). 

The PD theory is known to be a non-local theory, meaning that a material point interacts not only with its immediate neighboring 
points but also points at a finite distance, namely the horizon. This non-locality enables PD to well capture the crack propagation 
process in fracturing problems. However, when incorporating different physical fields except the mechanical field in the PD frame-
work, it is important to realize that the non-local nature of PD may become a possible source of error, since many physical processes are 
governed by local equilibrium. For heat conduction problems, for example, the transfer of heat occurs through direct contact between 
adjacent materials and such process is described by the local governing equations in classical thermodynamics. However, when 
simulating either pure heat conduction or couple thermo-mechanical problems in PD, the heat transfer is still modeled within a finite 
zone of influence. Hence, the point-skipping heat transfer contradicts the physics underlying actual conduction when observed from a 
macroscopic perspective. The parametric studies conducted by Agwai (2011) reveal that the temperature distribution significantly 
deviates from the analytical solution as the horizon becomes larger. Moreover, the PD formulation is found to be dispersive. When 
modeling mechanical responses of materials, dispersion occurs for high frequency waves mainly owing to the non-local nature of PD 
and it may also be attributed to discretization (Bessa et al., 2014; Bažant et al., 2016; Butt et al., 2017). When modeling fluid flow in 
porous media using PD, Ni et al., (2022) analyzed the length scale of different phases and mentioned that dispersive behavior may 
occur due to the Laplacian term in Darcy’s law. In view of the similarity between Fourier’s law and Darcy’s law, when applying PD for 
modeling the thermal field, numerical issues such as oscillation of field variables and dispersion of thermal waves can be expected. 
However, to the best knowledge of the authors, no prior investigation has been performed to address dispersion characters and error 
mitigation for PD formulation of the heat conduction equation. 

For the thermo-mechanical model within pure PD framework, most of the existing methods are developed within the framework of 
bond-based PD, which assumes that bonds behave independently from each other. Potential drawbacks of the bond-based PD have 
been discussed in detail by Silling et al. (2007) including limitation on the Poisson’s ratio of materials and difficulties in incorporating 
complex constitutive behavior of materials. When modeling heat conduction by bond-based PD, a micro-conductivity is always needed 
to make analogy between classical material conductivity and peridynamic material conductivity. However, the determination of this 
parameter itself is non-trivial since it depends on the weight function. Either complicated analytical expression or numerical calcu-
lation of this parameter is needed. These drawbacks associated with the bond-based PD can be greatly eased by adopting the 
state-based PD. Notably, Ni et al. (2023) recently employed the state-based PD to model mechanical response of the solid phase and 
finite element method (FEM) to model heat conduction and fluid flow in porous media, with additional coupling techniques introduced 
between PD and FEM. 

The objective of this work is to present a fully coupled thermo-mechanical formulation suited for the state-based PD, with rigorous 
study of its dispersion characters and discretization-induced error. For the coupling between the thermal and mechanical fields, we 
show derivation of a temperature-dependent elastic model together with a deformation-dependent heat conduction model. For heat 
conduction problem, the dispersion characters of the formulation is analyzed through spectral approach and the truncation error is 
studied by Taylor expansion of the discretized governing equation. It will be shown that the state-based TM PD formulation may 
experience amplified numerical oscillation and errors owning to its non-local nature. As a strategy of remedy, a novel multi-horizon 

Fig. 1. Schematics of thermomechanical state-based PD. Shown in the figure are interactions between the master material point and (a) hotter 
material point (force state and heat flux form xʹ to x); (b) isothermal material point (force state only); (c) colder material point (force state and heat 
flux from x to xʹ). 

C. Yang et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 191 (2024) 105758

3

computational scheme is introduced for the coupled thermo-mechanical PD model. It is demonstrated that the multi-horizon scheme 
offers appreciable improvements in the simulation accuracy. 

This paper is organized as follows. In Section 2, we present an a new fully coupled thermomechanical state-based PD model, 
including a temperature-dependent constitutive model and a heat conduction model with consideration of the effects of deformation 
on temperature. In Section 3, the dispersion relation and error analyses of PD heat equation are investigated from a mathematical 
perspective. Section 4 presents the principles and algorithm of a multi-horizon scheme for coupled thermo-mechanical modeling. 
Multiple numerical examples are provided for validation purpose in Section 5, including heat conduction model, coupled thermo-
mechanical models, and thermal fracturing model. Finally, conclusion and a discussion on the proposed computational scheme are 
given in Section 6. 

2. Fully coupled thermomechanical state-based peridynamics 

In the PD theory, a continual media is modeled by discretized material points. The material points interact with each other within a 
certain distance range, as illustrated in Fig. 1. This range is denoted by δ and is named horizon. The set of material points within the 
horizon of x is termed family of x and is denoted by Ωx. Under non-isothermal conditions, the interactions between material points 
involve not only the mechanical response but also the heat transfer process. As illustrated in Fig. 1, when a master point, x, has a hotter 
neighboring point, xʹ, the bond force applies along with the heat flow from xʹ to x. On the contrary, when the master point, x, is colder 
than a neighboring point, xʹ, the heat flows from x to xʹ. The material response is determined by the coupled thermal and mechanical 
fields. In other words, the total force acting on material point x consists of a structural force component, which follows the constitutive 
law of the material under isothermal condition, and a thermal component which originates from the temperature change. Meanwhile, 
the temperature of material point x is determined by the collective heat flux of neighboring points as well as the deformation of those 
neighbors. The key of developing a fully coupled thermomechanical PD model involves a temperature-dependent constitutive model 
and a deformation-dependent heat conduction model. The two key aspects are addressed in Sections 2.1 and 2.2. The formulations are 
derived for the state-based PD. 

2.1. Temperature-dependent constitutive model 

The general form of the equation of motion in the state-based PD can be expressed by 

ρ(x)ü(x, t) =
∫

Ωx

[T < xʹ − x > − T < x − xʹ > ]dVxʹ + b(x) (1)  

where ρ represents density at a material point, u represents material point deformation, b represents body force density and Vxʹ denotes 
the volume of a neighbor point xʹ. T〈xʹ − x〉 is a force state which represents the force exerted by xʹ on x and the angle bracket represents 
the bond that the state operates on. Note that if T〈xʹ − x〉 equals T〈x − xʹ〉, the state-based PD reduces to the bond-based PD. The force 
state maps the deformation of a bond into a force vector and different constitutive models can be implemented in the calculation of the 
force state. For an ordinary material, the force state act on the bond ξ = xʹ − x is computed by (Silling et al., 2007) 

T〈xʹ − x〉 = t
Y

‖ Y ‖
(2)  

where t represents a scalar force state and Y is the deformed bond vector. It is assumed that Eq. (2) remains applicable under non- 
isothermal conditions, and therefore the key of developing a thermomechanical PD solid model comes to determine the expression 
of t under different temperatures. The derivation of t for the bond-based PD is available in previous work (Oterkus et al., 2014a) and the 
present study is focused on deriving t that fits into the state-based PD. 

For an elastic material, the scalar force state t can be obtained by taking the Fréchet derivative of energy density function W with 
respective to the extension state e as t = ∇eW. The term ∇eW is defined as (Silling et al., 2007) 

W
(

e+Δe
)

= W
(

e
)

+∇eW ⋅ Δe + o
(

‖ Δe‖
)

(3)  

in which e can be calculated by ‖ Y ‖ − ‖ ξ ‖; Δe represents an increment in the extension state; o
(

‖ Δe‖
)

is the residual error. Note 

that the non-local energy density function WPD in PD form should be equivalent to classical local energy density function W (Le et al., 
2014), which can be readily obtained from the definition W =

∫
σij dεij and the generalized Hooke’s law (Wang, 2017; Zhang and Qiao, 

2018, 2020) as 
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W =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
∑

i,j=1,2,3
εijεij +

λ
2

(
dV
V

)2

− 3kβΔΘ
(

dV
V

)

+ f(Θ) ,3D

G
∑

i,j=1,2
εijεij +

[

G
( v

1 − v

)2
+

λ
2

(
1 − 2v
1 − v

)2
](

dS
S

)2

− 3kβΔΘ
1 − 2v
1 − v

dS
S

+ f(Θ) ,plane strain

G
∑

i,j=1,2
εijεij +

λ
2

(
dS
S

)2

− 3kβΔΘ
dS
S

+ f(Θ) ,plane strain

(4)  

where G and k are shear and bulk moduli, respectively; λ is lame constant and v is Poisson’s ratio; σij and εij are stress tensor and strain 
tensor, respectively; dV/V and dS/S represent volumetric strain and plane strain, respectively; β is the linear coefficient of thermal 
expansion; ΔΘ denotes the temperature change between the current state and a reference state; f(Θ) is a potential energy function 
associated only with current temperature, which is independent of the stress state. 

The non-local peridynamic form of elastic energy density function should converge to the classical local density function when the 
horizon reduces to zero, by making an analogy between the two (Zhang and Qiao, 2020), one can obtain the peridynamic form energy 
density function as 

WPD =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
2

θ2 +
15G
2m

(

w〈‖ ξ ‖〉ed
)

⋅ ed − 3kβΔΘθ + f(Θ) , 3D

1
2
kʹθ2

s +
4G
m

(

w〈‖ ξ ‖〉ed
)

⋅ ed − 2kʹβΔΘθs + f(Θ) , plane stress

1
2
kʹθ2

s +
4G
m

(

w〈‖ ξ ‖〉ed
)

⋅ ed − 2kʹ(1 + v)βΔΘθs + f(Θ) , plane strain

(5)  

where ed represents the deviatoric part of extension state, which can be calculated by e − ei; ei represents the isotropic part of extension 
state and can be related to dilation θ and plane dilation θs through 

ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ
3
‖ ξ ‖ (3D)

θs

2
‖ ξ ‖ (2D)

(6)  

the weight volume m, dilation θ (for 3D) and plane dilation θs (for 2D) are calculated by 

m =

∫

Ωx

w〈 ‖ ξ ‖ 〉 ‖ ξ‖2 dVxʹ (7)  

θ =
3
m

∫

Ωx

w〈‖ ξ ‖〉 ‖ ξ ‖ e dVxʹ (8)  

θs =
2
m

∫

Ωx

w〈‖ ξ ‖〉 ‖ ξ ‖ e dVxʹ (9) 

Here w〈‖ ξ ‖〉 is the weight function that measures the influence of neighboring points. It is chosen to be the Gaussian function in 

the form of w〈 ‖ ξ ‖ 〉 = e
−

(
‖ξ‖
αδ

)2 

where the parameter α is selected to be 0.5. For 2D cases, kʹ is defined as the plane bulk modulus and 
can be calculated based on the Young’s modulus E and Poisson’s ratio (v) by 

kʹ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E
2(1 − v)

, plane stress

E
2(1 + v)(1 − 2v)

,plane strain
(10) 

Substituting the non-local elastic strain energy density WPD into Eq. (3) yields the scalar force state in the form of 
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t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3k
m

(θ − 3βΔΘ)w〈 ‖ ξ ‖ 〉 ‖ ξ ‖ +
15G
m

w〈 ‖ ξ ‖ 〉ed , 3D

2kʹ

m
(θs − 2βΔΘ)w〈 ‖ ξ ‖ 〉 ‖ ξ ‖ +

8G
m

w〈 ‖ ξ ‖ 〉ed , plane stress

2kʹ

m
[θs − 2(1 + v)βΔΘ]w〈 ‖ ξ ‖ 〉 ‖ ξ ‖ +

8G
m

w〈 ‖ ξ ‖ 〉ed , plane strain

(11) 

It can be noted that the first term in the scalar force state represents a volumetric term due to dilation and temperature change 
whereas the last term represents a force originated from the deviatoric bond extension. 

2.2. Deformation-dependent heat conduction model 

The general form of the fully coupled peridynamic heat equation writes (Oterkus et al., 2014a) 

ρc
DΘ
Dt

=

∫

Ωx

[h〈xʹ − x〉 − h〈x − xʹ〉+ΘB〈xʹ − x〉 ⋅ Ẏ˙〈xʹ − x〉]dVxʹ + ρΘb (12)  

in which ρ is the density; c is the specific heat capacity; Θ and Θb represent the absolute temperature and the volumetric heat gen-
eration per unit mass, respectively; h〈xʹ − x〉 denotes the heat flux state; B〈xʹ − x〉 represents the thermal modulus state and Ẏ˙〈xʹ − x〉
represents by rate of change of extension. The product of these two terms gives the effect of deformation on temperature. However, in 
the previous studies, both the heat flow state and the heat flux state are determined for the bond-based PD only. In the present study, 
we derive a more comprehensive form of the heat equation for the state-based PD by transforming the classical heat equation and 
Fourier’s law using a non-local differential operator. 

For heat conduction problems, the continuity equation in its local form is expressed by 

ρc
DΘ
Dt

= − ∇ ⋅ q + ρΘb (13)  

where q is the heat flux and can be related to temperature by the Fourier’s law as 

q = − kh∇⊗ Θ (14)  

where kh represents the heat conductivity. To derive the heat conduction equation in peridynamic form, we utilize the non-local 
operators which was introduced in PD to approximate differentiation through integration. Successful attempts on non-local opera-
tors have been made to achieve this conversion between derivatives and integrals by Taylor expansion such as Madenci et al., (2019), 
Rabczuk et al., (2019) and Ren et al. (2020b, 2020a). In this paper, the non-local gradient operator and divergence operator proposed 
by Bergel and Li (2016) are adopted as 

∇⊗ A =

⎡

⎢
⎣

∫

Ωx

w〈‖ ξ ‖〉(Δ ⋅ A) ⊗ ξ dVxʹ

⎤

⎥
⎦M− 1

x (15)  

∇ ⋅ A =

∫

Ωx

w〈‖ ξ ‖〉(Δ ⋅ A) ⋅
(
M− T

x ξ
)

dVxʹ (16)  

where A is a vector field and Δ ⋅ A = Axʹ − Ax is defined as the non-local difference operator; the shape tensor Mx is calculated as 

Mx =

∫

Ωx

w〈‖ ξ ‖〉 ξ ⊗ ξ dVxʹ (17) 

Note that even if A reduces to a scalar, such as temperature in Eq. (14), the abovementioned operators remain applicable. The above 
non-local operator has been proven to converge to the local gradient and divergence operators when the horizon approaches zero (Tu 
and Li, 2017). Substituting Eqs. (15)-(16) into Eqs. (13)-(14) yields the non-local heat equation and Fourier’s law 

ρc
DΘ
Dt

=

∫

Ωx

w〈 ‖ ξ ‖ 〉
(
qxM− T

x ξ〈xʹ − x〉 − qxʹM− T
xʹ ξ〈x − xʹ〉

)
dVxʹ + ρΘb (18)  

qx = − kh

⎡

⎢
⎣

∫

Ωx

w〈 ‖ ξ ‖ 〉 Θ〈xʹ − x〉 ξ dVxʹ

⎤

⎥
⎦M− 1

x (19)  
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where the temperature state is defined as 

Θ〈xʹ − x〉 = Θxʹ − Θx (20) 

The Eqs. (18) and (19) are implemented in the state-based PD. Note that the classical heat conductivity kh is directly used in the 
state-based PD formulation. This eliminates the need of finding a micro-conductivity value in bond-based PD. However, the local heat 
equation given in Eq. (13) does not consider the possible temperature variation induced by deformation. To consider such effect, an 
additional term has been added into Eq. (18) and the fully coupled heat conduction equation take the form of 

ρc
DΘ
Dt

=

∫

Ωx

[
w〈 ‖ ξ ‖ 〉

(
qxM− T

x + qxʹM− T
xʹ
)
ξ + ΘB〈xʹ − x〉 ⋅ Ẏ〈xʹ − x〉

]
dVxʹ + ρΘb (21)  

where the thermal modulus state B〈xʹ − x〉 can be determined by referencing to the force state given in Eq. (11) given that the thermal 
effect on the force state should be represented by B〈xʹ − x〉ΔΘ 

B〈xʹ − x〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3k
m

βw〈 ‖ ξ ‖ 〉 ‖ ξ ‖
Y

‖ Y ‖
, 3D

4kʹ

m
βw〈 ‖ ξ ‖ 〉 ‖ ξ ‖

Y
‖ Y ‖

,plane stress

4kʹ(1 + v)
m

βw〈 ‖ ξ ‖ 〉 ‖ ξ ‖
Y

‖ Y ‖
, plane strain

(22) 

Remark 1. The effect of deformation on temperature variation may be negligible for typical brittle-elastic materials owning to the 
small deformation before fracturing. However, such effect is more pronounced when a material undergoes plastic deformation. An 
example refers to growing fracture in metals where a plastic region forms ahead of the crack tip which leads to temperature increase 
with the dissipation of mechanical energy. Nevertheless, when dealing with plastic material responses with large deformations, it is 
essential to conduct a careful investigation to determine if the current total-Lagrangian scheme remains applicable and appropriate. 

2.3. Damage model 

In peridynamics, the fracture of solid is modeled by the breakage of bonds between material points. A common approach to 
determine bond breakage under mechanical loads is through the critical stretch model (Silling and Askari, 2005), which states that a 
bond breaks irreversibly when it exceeds a predefined limit of strain. This critical stretch for bond failure can be expressed as 

sc =

̅̅̅̅̅̅̅̅̅
5Gc

9Kδ

√

(23)  

where Gc denotes the critical energy release rate. The local damage of a material point can be calculated by averaging the failure at 
bond level 

φ = 1 −

∫

Ωx
g〈ξ〉dVxʹ

∫

Ωx
dVxʹ

(24)  

in which g〈ξ〉 is a binary scalar-valued function that takes the value of either 1 (for intact bond) or 0 (for broken bond). 
In the case of thermally induced fracturing, opening of fractures on the free surface, away from the heat source, is predominantly 

attributed to the tensile stress (and subsequently thermal expansion) induced by temperature change. Our experience shows that the 
performance of the critical stretch model in such scenario is less satisfactory than expected. A possible reason is that the critical stretch 
value is dependent of the weight function, using a weight function different from the one for derivation of Eq. (23) can potentially 
induce inaccuracies. Also, since different horizons are used for the thermal and mechanical fields (as will be introduced in later 
sections), the critical stretch of bonds, which is assessed with the horizon of the mechanical field, may deviate from the length scale 
that is used for thermal field modeling. Therefore, in this study, an additional tensile stress-based failure model is implemented 
alongside the critical stretch model. With this model, a material point fails when its major principal stress exceeds the tensile strength 
of the material. Therefore, the local damage of a material point can reach 1.0 under two circumstances: a) bonds between all inter-
acting materials break; and b) major principal stress exceeds the material’s tensile strength. 

3. Peridynamic thermal wave dispersion and error analysis 

It is well known that the non-locality of peridynamics brings wave dispersion in transient analysis. The dispersive response of both 
bond-based and state-based PD in modeling elastic wave propagation has been extensively investigated based on the spectral approach 
(Bažant et al., 2016; Butt et al., 2017; Gu et al., 2016; Kulkarni and Tabarraei, 2018; Mikata, 2012; Silling, 2016; Wang et al., 2022a). It 
was found that both the non-local nature of PD and the discretization introduce dispersion. Furthermore, the dispersion depends on a 
variety of model settings including horizon, weight function and material point size. In general, larger horizon and coarser mesh are 
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associated with stronger dispersion, while the state-based formulation is more dispersive than the bond-based formulation (Bažant 
et al., 2016). 

The heat conduction is a dissipative process, which tends to dampen and smoothen out the waveforms over time. Moreover, 
thermal waves can exist when variations or fluctuations in temperature propagates through a medium. For example, in the case of 
periodic heating or cooling (e.g., in laser-induced heating or pulsed heating experiments), thermal waves can be generated. These 
thermal waves exhibit wave-like behaviors such as dissipation and dispersion just like other types of waves. When modeling heat 
conduction processes by PD, due to the non-local feature of the method, heat transfer is modeled not only between adjacent neigh-
boring points but also between points that are not immediate neighbors. That is, the heat transfer may skip some intermediate material 
points lying between the paired points of a bond. This is true from an atomic perspective, which however does not hold at macro- or 
meso-scale where PD is generally applied. Therefore, it is essential to further examine the dispersion relation and numerical errors of 
the non-local PD heat equation, which will offer insights into the non-local effect on the accuracy of the numerical solution and 
facilitate finding possible remedies. To the best knowledge of the authors, the study on thermal wave dispersion properties of the state- 
based PD has not been done in past studies. 

3.1. Dispersion relation 

In this section, we analyze dispersion relations for heat conduction in state-based peridynamic continua. Since the 2D and 3D 
analyses are similar to 1D case, only the detailed derivations of 1D case are presented here for clarity. To obtain the dispersion relation, 
a periodic thermal wave at material point x and time t is introduced as 

Θ(x, t) = Aei(kx− ωt) (25)  

in which A is the amplitude of the wave (the maximum temperature from the equilibrium state); k and ω denote the wave number and 
angular frequency, respectively; i represents the imaginary unit. Note that it is enough to analyze harmonic temperature variations, 
since any periodic wave or non-periodic wave can be expanded into Fourier series or Fourier transform, respectively. 

Considering the heat conduction in an infinite 1D elastic state-based peridynamic continuum, the non-local governing equation 
becomes (neglecting the body heat generation and heat generated by deformation) 

ρc
DΘ
Dt

=

∫δ

− δ

w(ξ)
(
qxM− T

x + qxʹM− T
xʹ
)
ξ dξ (26)  

where the bond length ξ = xʹ − x becomes a scalar value. Assume a unity weight function for convenience, the shape tensor also 
degenerates to a scalar value and is the same at all points (except at the boundary) for the 1D case 

Mx = Mxʹ =

∫δ

− δ

w(ξ)ξ2dξ =
2δ3

3
(27) 

According to Eq. (19), the heat flux at two different material points x and xʹ are given as 

qx = − kh

∫ δ
− δ

(
Θx+ξ − Θx

)
ξdξ

∫ δ
− δ w(ξ)ξ2dξ

(28)  

qxʹ = − kh

∫ δ
− δ (Θxʹ+η − Θxʹ)η dη

∫ δ
− δ w(η)η2dη

(29) 

Substituting the periodic thermal cycling given in Eq. (25) into Eqs. (28)-(29) and Eq. (26), one can obtain 

− ρcωi =
9kh

4δ6

∫δ

− δ

⎡

⎣
∫δ

− δ

(
eikξ − 1

)
ξdξ+

∫δ

− δ

eikξ( eikη − 1
)
ηdη

⎤

⎦ξdξ (30) 

This equation can be further simplified by using the Euler formula and the symmetric property of material points within horizon 
into the form of 

− ρcωi =
9kh

4δ6

∫δ

− δ

⎡

⎣
∫δ

− δ

iξsin(kξ)dξ+ eikξ
∫δ

− δ

iηsin(kη)dη

⎤

⎦ξdξ (31) 

By calculating the integrals in Eq. (31), we obtain the 1D dispersion relation of PD heat equation in terms of angular frequency 

ω = − i
9kh

ρc

[
sin(kδ) − δkcos(kδ)

k2δ3

]2

(32) 
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The imaginary solution obtained in Eq. (32) represents the dissipative nature of heat conduction. This can be demonstrated by 
substituting Eq. (32) into Eq. (25). By doing so, one can derive the expression Θ(x, t) = Aeikxe− |ω|t , in which Aeikx represents the initial 
wave shape and the length of ω indicates the damping rate of thermal wave. This indicates that solving heat equation by PD non-local 
operators will not induce extra dispersion and will not violate the nature of heat conduction. However, the dispersion relation of PD 
heat equation is clearly different from the local analytical solution (ω = − ikhk2/ρc). A quantitative comparison is presented between 
the results of local methods and PD for the normalized angular frequency (ωn = ω/ − i) plotted against the square of the wave number 
in Fig. 2. It can be found that the numerical results converge to the local analytical solution as horizon approaches zero. Moreover, the 
dissipative rate of PD heat equation becomes smaller as the horizon increases, especially for waves with high frequency and short 
wavelength. This means the magnitude of thermal wave dampens slower when adopting larger horizon. The mathematical findings for 
state-based PD in this study are consistent with the parametric analyses conducted by Agwai (2011) for bond-based PD, in which a 
heated bar with zero temperature boundary is modeled. In Section 3.3, we will also conduct a benchmark for 1D heat conduction 
problem to showcase the effects of horizon within the state-based PD framework. 

Remark 2. The state-based PD heat equation does not alter the inherent non-dispersive nature of the heat conduction process; 
however, it significantly reduces the dissipation rate of thermal waves, i.e., a slower heat conduction process, with increasing horizon. 

3.2. Truncation error of discretized PD heat equation 

It is widely recognized in the FEM and finite difference method (FDM) that, despite of using non-dispersive governing equations, 
the discretization process itself can introduce additional dispersion (Bažant et al., 2016; Butt et al., 2017). Discretization generates 
inherent non-local properties because mass is lumped at discrete elements or points. It is a natural assumption to expect that the error 
introduced by discretization can be eliminated when the mesh is refined sufficiently, such as reaching the atomic size scale. Unfor-
tunately, achieving a material point size that fine is computationally unfeasible due to the prohibitively high computational cost it 
would entail. Like FEM and FDM, the PD heat equation is not exempt from errors arising from discretization. In this section, a 
comprehensive analysis is performed to identify and examine the sources of error in the PD heat equation. The objective is to provide 
insights and guidance on minimizing these errors beyond simply refining the mesh. 

Consider the discretized form of 1D PD heat equation, where forward difference is utilized to approximate the temporal derivative 
and the horizon is meshed into (J+1) discretized material points 

ρc
Θn+1

i − Θn
i

Δt
=

∑J

j
w(ξ)

(
qiM− T

i + qjM− T
j

)
ξ (33)  

where Θn
i represents the temperature of material point i at step n; j denotes a neighboring material of master material point i; the 

discretized heat flux formula of material point i and j are given as 

qi = − kh

[
∑J

j
w(ξ)

(
Θj − Θi

)
ξij

]

M− 1
i (34)  

qj = − kh

[
∑J

l
w(ξ)

(
Θl − Θj

)
ξjl

]

M− 1
j (35) 

Fig. 2. Relation between normalized angular frequency and wave number for state-based PD heat equation.  
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in which the discretized shape tensor of material point i and j, Mi and Mj, can be calculated by 

Mi =
∑J

j
w(ξ)ξ2

ij (36)  

Mj =
∑J

l

w(ξ)ξ2
jl (37) 

Let Θ(i, n) be the exact solution to the PD heat equation, the following equation holds according to Eq. (26) 

ρc
∂Θ(i, n)

∂t
=

∑J

j
w(ξ)

[

− kh
∂Θ(i, n)

∂x
M− T

i − kh
∂Θ(j, n)

∂x
M− T

j

]

ξ (38) 

We can further express Θ(j, n) and Θ(i, n+1) by the exact solution Θ(i, n) based on the Taylor expansion 

Θ(j, n) = Θ(i, n) +
∂Θ(i, n)

∂x
ξij +

1
2!

∂2Θ(i, n)
∂x2 ξ2

ij +
1
3!

∂3Θ(i, n)
∂x3 ξ3

ij⋯ (39)  

Θ(i, n + 1) = Θ(i, n) +
∂Θ(i, n)

∂t
Δt +

1
2!

∂2Θ(i, n)
∂t2 (Δt)2

+ ⋯ (40) 

Substituting Eqs. (38)–(40) into Eqs. (33)–(35), the truncation error Tn
i of PD heat equation takes the following form (omitting the 

spatial terms higher than third order and the temporal terms higher than second order) 

Tn
i = ρc

[
1
2

∂2Θ(i, n)
∂x2 Δt

]

+
kh

6
∑J

j
w
(
ξij
)
[

M− T
i

∂3Θ(i, n)
∂x3

∑J
j w

(
ξij
)
ξ4

ij

Mi
+ M− T

j
∂3Θ(j, n)

∂x3

∑J
l w

(
ξjl
)
ξ4

jl

Mj

]

ξij (41) 

The discretized scheme is of one-order accuracy in time and two-order accuracy in space if the weight function is linearly related to 
the bond length. Only one-order accuracy in space is achieved if the unity weight function is employed as will be proven in Eq. (43). 
One can certainly employ other higher order integration scheme to achieve higher order accuracy, while it is out of the scope of this 
paper since the current scheme is already consistent because the truncation error approaches zero as Δt and ξij approaches zero. We 
want to pay special attention to the effects of horizon and material point size on the error. Assume a uniform discretization in space 
leads to |ξij| = mΔx, where m represents he m-th material point away from master material point as shown in Fig. 3. The shape tensor 
and truncation error can be rewritten as 

Mi = Mj =
∑L

m=1
2m2(Δx)2

=
L(L + 1)(2L + 1)

3
(Δx)2 (42)  

Tn
i =

kh

10
3L2 + 3L − 1

L(L + 1)(2L + 1)
∑L

m=1

[
∂3Θ(m+, n)

∂x3 −
∂3Θ(m− , n)

∂x3

]

mΔx (43)  

in which we use unity weight function again here for convenience; L = J/2. Note that the symmetric property of the material points 
within horizon is used several times when deriving Eq. (41) and Eq. (43). 

According to Eq. (43), the truncation error is dependent on both the material point size and the number of neighboring material 
points, i.e., horizon size. It is clear that the error diminishes as the material point size approaches zero, while it is not so straightforward 
to draw a conclusion with respect to horizon. But it is also not hard to prove that the L-associated term in Eq. (43) is a monotonically 

Fig. 3. Discretized PD heat equation for 1D rod  
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increasing function. Therefore, qualitatively, larger horizon yields more deviations from the analytical solution. In the following 
section, we will conduct quantitative parametric analyses on the effects of horizon and material point size. 

3.3. Comparisons between PD and analytical solutions for 1D heat conduction problem 

Consider an infinite 1D bar with parameters given as ρ = 1 kg/m3, c = 1 J/kg/◦C and kh = 1 W/m/◦C. The initial temperature of 
the bar Θ0 is set to be 0 ◦C and constant temperature Θ1 = 100 ◦C is applied on one side of the bar as shown in Fig. 3. The analytical 
solution of this problem is given as (Hahn and Özisik, 2012) 

Θ(x, t) = erfc

⎛

⎜
⎜
⎝

x

2
̅̅̅̅̅̅̅̅
kh
ρc t

√

⎞

⎟
⎟
⎠(Θ1 − Θ0) + Θ0 (44) 

With a uniform mesh and a material point size of 0.02 m, numerical solution is obtained for the temporal variation of temperature 
at a material point located one meter away from the heat boundary. Simulations are performed with varied horizon size and the results 
are presented in Fig. 4 with comparison to the analytical solution. Evidently, only the numerical results from δ = Δx match well with 
the analytical solution, while the temperature become much lower than the analytical solution as horizon increases. This can be well 
explained by Eq. (32) and Fig. 2, where a lower dissipation rate is associated with a larger horizon. The discrepancy between PD and 
analytical solutions increases nearly exponentially with the horizon size, which is also consistent with the mathematical formulation in 
Eq. (32). The relative error of the PD heat equation is further assessed using the relative L1 loss which is calculated by e1 = (wa − wn)

/wa, where wa and wn represent analytical and numerical solution of temperature at each material point, respectively. As shown in 
Fig. 4(b), the numerical solution of temperature is almost always lower than analytical one due to a smaller dissipation rate of non- 
local method. Moreover, for δ = 3Δx and δ = 6Δx, the numerical results exhibit significant oscillations. The peaks and valleys of these 
two curves align precisely with the centers of the material points. This phenomenon can be attributed to two factors: (a) the error term 
described in Eq. (43) increases as the horizon expands, contributing to the larger deviations from analytical solution observed for δ =
6Δx; b) for large horizons such as δ = 3Δx and δ = 6Δx, the error term exhibits a highly non-local behavior. In other words, non- 
physical effects, such as the particle-skipping heat flux (i.e., heat flow between a pair of points that jumps intermediate points), are 
introduced with large non-locality which contribute to the oscillation in the solution. Note that discretized PD equation is similar to 
high-order FDM in some ways, where more than three points are used to approximate the derivatives in both methods. However, in 
high-order FDM, it is customary to assign negative coefficients to the non-neighboring points as means to counterbalance the non- 
locality introduced by their inclusion, whereas the weight function in PD is always positive. From this perspective, using PD with 
large horizon to model heat conduction process is not recommended. The numerical results for δ = Δx is clearly noise free and the error 
is generally within 1 %. 

The error in the simulation may also be reduced by refining the mesh as implied by Eq. (43). Its effectiveness is examined and 
presented in Fig. 5(a) for a fixed horizon δ = 3Δx with varied material point size. It is found that while the error is reduced, more severe 
oscillations are presented with finer mesh as the error is associated with the position of each material point. The spatial oscillation of 
result is undesirable. Hence, merely reducing the material point size may be insufficient in minimizing the error in a PD model of heat 
conduction. As a comparison, Fig. 5(b) shows the relative error with a smaller horizon of δ = Δx with different material point size. 
Clearly, a smaller horizon offers a much smoother solution in space. The results imply that reducing the horizon is more effective and 
reliable than reducing material point size when minimizing the error in PD heat conduction model. 

Fig. 4. (a) Comparisons of temperature between analytical solution and PD results with different horizons; and (b) Relative error of PD results.  
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Remark 3. The error in the PD heat equation stems from two main sources: (a) the slower heat conduction due to non-locality; and 
(b) the truncation error introduced by the discretization scheme. Both errors can be mitigated by refining the mesh and reducing the 
horizon size. However, it is important to note that the noise in the heat equation, specifically related to particle-skipping heat flux, can 
only be effectively reduced by minimizing the horizon size. 

4. Multi-horizon peridynamics for multi-physics coupling 

In previous sections, we have showed that when solving the peridynamic heat conduction equation, it is important to adopt an 
appropriate horizon. A small horizon is effective in mitigating the numerical oscillations and improving the simulation accuracy for 
heat conduction problem. However, as a typical non-local method, PD is primarily designed to capture non-local effects and long-range 
interactions in material behavior. This includes crack initiation and propagation where the influence of deformation may extend 
beyond the immediate vicinity of a material point. In fact, it is necessary to keep the horizon sufficiently large to capture possible crack 
branching directions in dynamic fracture problems (Ha and Bobaru, 2010). Past studies have also shown that good accuracy can be 
achieved with the horizon size of δ = 3Δx (Madenci and Oterkus, 2014; Silling and Askari, 2005) when modeling mechanical material 
response using PD. 

A dilemma arises when developing the coupled thermo-mechanical PD and modeling thermally induced fracturing (e.g., 
quenching). On one hand, as mentioned earlier, adopting a small horizon may not be effective in capturing possible crack branching in 

Fig. 5. Relative error of different material point sizes for: (a) δ = 3Δx and (b) δ = Δx.  

Fig. 6. Schematic of multi-horizon scheme: (a) Heat conduction process of point j; and (b) Mechanical response of point i.  
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different directions. On the other hand, if a large horizon is adopted, numerical issues such as slower heat conduction rate and 
oscillating thermal field can be expected. This is especially true for computations near the boundary where obvious numerical os-
cillations are found for temperature field. The errors in temperature field will induce unphysical thermal expansion or shrinkage which 
deteriorates the accuracy of the coupled simulation. While the oscillations can be mitigated by numerical means such as smoothing or 
damping (Chang et al., 2022; Gao and Oterkus, 2020; Monaghan, 1994; Yang et al., 2024), applying those numerical stabilization 
techniques for heat conduction can lead to an accelerated dissipation rate of thermal energy and is unpreferred herein. A natural 
solution for the coupled thermo-mechanical PD, as introduced below, is to adopt different horizon sizes for different physics field, to 
accommodate the distinct characters of the physics fields while maintaining a decent simulation accuracy. 

The idea behind multi-horizon PD is straightforward. As shown in Fig. 6, two different horizons are defined. One is the classical 
horizon δ (hereafter referred to as “horizon”) to capture the non-local effects in the mechanical field. Another is the thermal horizon δ́ , 
which can be defined as a constant smaller than the horizon, used to model the local heat conduction. With the thermal horizon δ́ , the 
thermal neighbor list Ωʹ

x is established, and Eqs. (19) and (21) can be recast correspondingly as 

qx = − kh

⎡

⎢
⎣

∫

Ωx́

w〈 ‖ ξ ‖ 〉Θ〈xʹ − x〉ξ dVxʹ

⎤

⎥
⎦M− 1

x (45)  

ρc
DΘ
Dt

=

∫

Ωx́

[
w〈 ‖ ξ ‖ 〉

(
qxM− T

x + qxʹM− T
xʹ
)
ξ + ΘB〈xʹ − x〉 ⋅ Ẏ〈xʹ − x〉

]
dVxʹ + ρΘb (46) 

Note that the mechanical field can still be model by the formulations given in Section 2.1 without any modifications. 
The heat flux equation Eq. (45) and the heat conduction equation Eq. (46), including the heat generated or dissipated by defor-

mation, are solved within the thermal horizon. However, no kinematical unknowns are updated within thermal horizon even for the 
thermally induced stress and deformation. This is illustrated in Fig. 6(a), after solving the thermal field, the shapes of both the horizon 
and the thermal horizon remain unchanged, and the positions of all material points remain unchanged. All the kinematical unknowns 
(displacement, velocity and acceleration) are calculated and updated within the horizon as illustrated in Fig. 6(b). The effects of 
temperature variation on deformation are considered herein, and the shape of both horizon and thermal horizon and positions of all 
material points are updated. 

A staggered computational scheme is adopted to solve the fully coupled thermo-mechanical PD equations. Neighbor searching is 
performed at the beginning of the simulation and two neighbor lists, one based on the horizon and another based on the thermal 
horizon, are established and used throughout the simulation. For each step of simulation, the flux and temperature are first solved with 

Fig. 7. Flow chart of computation in the multi-horizon PD.  
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an explicit scheme using forward time difference while other variables remain constant, and the remaining kinematical unknowns are 
updated with the new temperature using the velocity Verlet scheme. The computational flow chart is shown in Fig. 7. 

It should be noted that the proposed multi-horizon PD approach is distinct from the dual-horizon PD introduced by Ren et al., 
(2016, 2017). The dual-horizon PD incorporates variable horizons at different material points and is suitable for the case where 
different material point sizes are used. The proposed multi-horizon PD is for simulation of coupled responses across multiple physical 
fields where a distinct horizon can be selected for each physical field. 

5. Numerical examples 

5.1. Thermomechanical response of 2D slab under thermal loading 

To benchmark the proposed multi-horizon PD, we first simulate the thermomechanical response of a 2D slab subject to thermal 
loadings. A 1m by 1 m finite slab with both thermal and mechanical boundaries is modeled as shown in Fig. 8. The initial temperature 
of the slab is set to be 0 ◦C and constant temperature boundary equal to 1 ◦C is applied on the bottom and left boundaries of the slab. 
The displacement of bottom and left boundaries is fixed in y and x directions, respectively. The material parameters used are sum-
marized as follows: density ρ = 1 kg/m3, Young’s modulus E = 1 Pa, Poisson’s ratio μ = 0.25, liner thermal expansion coefficient β 
= 1 × 10− 6 ∘C− 1, specific heat capacity c = 1 J/(kg⋅∘C), thermal conductivity kh = 0.1 W/(m⋅∘C). The material point size is set as 0.01 
m, with 10,000 material points for the slab in total. The horizon is taken to be δ = 3Δx, while the thermal horizon is adopted as δ́  = Δx. 
Note that applying the temperature boundary requires only one layer of material points with the multi-horizon scheme. This serves as a 
notable advantage, particularly for large-scale 3D models, as it allows for significant reduction in the number of material points 
required for the boundary. Since there is no available analytical solution for this particular transient problem, the commercial software 
COMSOL Multiphysics based on finite element method (FEM) is employed to benchmark the proposed method. 

The temperature and displacement distribution in the slab after 0.5s simulation obtained from FEM and multi-horizon PD are 
shown in Fig. 9. Evidently, the prediction of temperature and displacement distribution by multi-horizon PD is consistent with that by 
FEM. A further quantitative comparison of the temporal evolutions of temperature and displacement magnitude at point (0.5,0.5) is 
shown in Fig. 10. Again, good agreements are observed between FEM and multi-horizon PD. For comparison purpose, we also included 
the results from two additional PD models where a single horizon is adopted for both mechanical and thermal fields. Observably, when 
a horizon of δ = Δx is used, reasonable results for temperature are obtained whereas the displacement is far from satisfactory. When a 
horizon of δ = 3Δx is adopted, mechanical responses are well captured but the temperature is not in good agreement with the FEM 
results. The results justify the necessity of adopting multi horizons for different physical fields. Furthermore, we examine the tem-
perature contours obtained from the multi-horizon thermomechanical PD model with comparison to the original PD model (i.e., where 
a single horizon is used) as shown in Fig. 11. The results from original PD model exhibit significant oscillations due to the reasons 
described in Section 3. In contrast, the temperature contours from the multi-horizon PD model are clearly smooth and noise-free. 
Hence, the results prove the capability of the multi-horizon PD approach in accurately modeling both the mechanical and thermal 
fields by utilization of distinct horizons to capture non-local and local responses effectively. 

5.2. Thermomechanical response of 3D beam under thermal loading 

A thermomechanical model for a 3D beam has been created to further test the performance of the proposed multi-horizon PD as 
shown in Fig. 12. One end of the beam is subjected to a constant temperature boundary condition where the temperature is kept at 1 ◦C 
and the other end of the beam is fixed. The beam has dimensions of 1m × 1m × 4m and is discretized into 62,500 uniform material 
points, with each point having a size of 4 cm. The temperature boundary is applied by one additional layer of material points (625 

Fig. 8. Mesh and boundary conditions of a 2D slab.  
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Fig. 9. Results obtained from FEM for: (a) temperature; (b) displacement in x direction; (c) displacement in y direction; and results obtained by 
multi-horizon PD for: (d) temperature; (e) displacement in x direction; (f) displacement in y direction. 

Fig. 10. Evolutions of: (a) temperature and (b) displacement magnitude at point (0.5,0.5) (u and v represent displacement along x and y directions, 
respectively). 
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material points) outside the left surface of the beam. All the material parameters used in the 3D case are the same as those used in the 
2D case in the last section except for thermal conductivity kh, which is set to 1 W/(m⋅∘C). Again, the horizon is taken to be δ = 3Δx, 
while the thermal horizon is adopted as δ́ = Δx. 

The obtained results are presented in Fig. 13. Significant temperature noise can be observed both along the length and inside the 
beam when employing the original thermomechanical PD. Further examination of the temperature distribution at various cross- 
sections is given in Fig. 14(a)–(d). The observed temperature noise, primarily resulting from the truncation error and excessive 
number of neighbors, appears to manifest as a random pattern. With the introduction of the multi-horizon scheme, the oscillation is 
significantly mitigated and much smoother temperature profiles both along and inside the beam are obtained as shown in Figs. 13(d)– 
(f) and 14(e)–(f). 

Quantitative comparisons with FEM results at the point (1,0.25,0.25) are depicted in Fig. 15. The FEM results are obtained from 
COMSOL Multiphysics. The multi-horizon PD demonstrates superior performance compared to the original thermomechanical PD 
method, regardless of whether a horizon size of δ = 3Δx or δ = Δx is used. Moreover, the multi-horizon method seems to offer even 
smoother results for in the displacements in x direction than FEM as can be seen in Fig. 15(b). 

5.3. Fully coupled responses of plate subjected to combined force and temperature 

Although based on the fully coupled multi-horizon PD method, the above two cases only involve thermally induced thermal and 
mechanical responses. The case in this section will focus on a plate subjected to coupled thermal and mechanical loads. As shown in 
Fig. 16, the left boundary of the plate is subjected to a 1 Pa normal pressure and a constant temperature equal to 1 ◦C, while the right 
boundary is fixed along the x direction. The geometry of the plate and discretization are the same as the 2D case in Section 5.1. The 

Fig. 11. Temperature contours of multi-horizon PD and original PD at t = 0.5 s.  

Fig. 12. Mesh and boundary conditions of a 3D beam.  
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material parameters used are summarized as follows: density ρ = 1 kg/m3, Young’s modulus E = 1 Pa, Poisson’s ratio μ = 0.25, liner 
thermal expansion coefficient β = 1 × 10− 6 ∘C− 1, specific heat capacity c = 1 J/(kg⋅∘C), thermal conductivity kh = 0.5 W /(m⋅∘C). 
Again, the horizon is taken to be δ = 3Δx, while the thermal horizon is adopted as δ́ = Δx. 

The same problem was analysed by Hosseini-Tehrani and Eslami (2000) using boundary element method (BEM), and therefore 
their results are used to verify the proposed multi-horizon scheme. Results of the simulation are presented in Fig. 17 for the evolution of 
temperature and magnitude of displacement for a point at (0.2, 0.5). The results obtained from the multi-horizon PD are in good 
agreement with the BEM results with respect to both temperature and displacement, confirming the capacity of the proposed method in 
simulating fully coupled thermo-mechanical response of material. 

5.4. Thermally induced fracturing in granite 

To further demonstrate the capability of the proposed multi-horizon PD in modeling the fracturing process induced by various 

Fig. 13. Temperature colormap obtained from original TM PD at (a) t = 0.1 s; (b) t = 0.5 s; (c) t = 1 s; and from multi-horizon PD at (d) t = 0.1 s; (e) 
t = 0.5 s; (f) t = 1 s. 

Fig. 14. Snapshots of temperature distribution at different cross-sections obtained from original TM PD: (a) x = 0.2; (b) x = 0.5; (c) x = 1.0; (d) x =
1.7; and from multi-horizon PD (e) x = 0.2; (f) x = 0.5; (g) x = 1.0; (h) x = 1.7. 
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Fig. 15. Evolutions of: (a) temperature and (b) displacements at point (1, 0.25, 0.25) (u and v represent displacement along x and y directions, 
respectively). 

Fig. 16. Model of a 2D plate subject to combined thermal and mechanical loadings.  

Fig. 17. Evolutions of: (a) temperature and (b) displacement magnitude at point (0.2,0.5).  
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physical fields beyond mechanical loading, the thermally induced fracturing in an unconfined granite is modeled. The model setup 
follows an experiment conducted on Lac Du Bonnet (LDB) granite (Jansen et al., 1993), which has a density of 2650 kg/m3, an elastic 
modulus of 67 GPa, a Poisson’s ratio of 0.33, a thermal expansion coefficient of 3.5 × 10− 6 ◦C-1, a specific heat of 1015 J/kg/◦C, and a 
thermal conductivity of 3.5 W/m/◦C. The rock specimen is a 15-cm cube with a 1-cm-diameter vertical borehole drilled at the center of 
the specimen, which can be well simplified into a 2D plane strain numerical model as shown in Fig. 18(c). The numerical model is 
discretized into 22,384 material points, with each material point size equal to 1 mm. Note that the mesh is not totally symmetric owing 
to the fact that the granite in experiment is not isotropic and homogenous. The granite is modeled by the multi-horizon PD with 
horizon set as three times the material point size and thermal horizon set as 1.2 times the material point size, along with the critical 
stretch damage model and tension failure model as described in Section 2.3. The critical energy release rate and tensile strength of LDB 
granite are adopted as 70 J/m2 (Wang et al., 2018b) and 9 MPa (Martin, 1994), respectively. Note that the critical energy release rate 
and, consequently, the critical stretch can both be temperature dependent. For example, the fracture toughness of granite was found to 
decrease with rising temperature (Feng et al., 2019; Ge et al., 2021). Nonetheless, such effect is apparent only after a long duration 
heating process. In the present study, all the material properties are assumed to be temperature-independent constants. When 
necessary, the temperature-dependency of material fracture strength can be further considered by incorporating a relationship be-
tween temperature and critical energy release rate into the damage model presented in Section 2.3. The initial temperature and 
temperature of the four outer boundaries of the model are set as 20 ◦C, while thermal loading with a rate of 0.05 ◦C/s is applied on the 
inner circular boundary. Simulation is performed to 2,000 s with time step of 2 × 10− 7 s. 

Fig. 19 shows the distribution of several crucial variables, including temperature, displacement in x direction, damage and major 
principal stress at different times. As the temperature applied to the borehole increases, heat is conducted from the inner boundary 
towards the outer boundary. This results in the formation of compressive stress near the borehole, while tensile stress is induced in 
certain areas of the free surface. These stresses result from temperature gradient between inner and outer part of the model and 
relatively high transverse thermal expansion of inner part with respect to outer part. When the borehole is heated to 102.88 ◦C at about 
1657.6 s, the tensile stress exceeds the tensile strength of the granite and therefore fracture is initiated from the outer surface first. 
Extensive tests conducted by Jackson et al. (1989) reported that the critical fracture temperature for LDB granite falls in the range of 
80◦C-125◦C, which concurs with the numerical results. Once the initial crack forms, the tensile stress becomes localized at the crack 
front, which drives the crack to propagate continuously, while the tensile stress at other positions tends to dissipate. Additionally, a 
significant jump in displacement is observed along the two sides of the crack. This displacement jump is a result of the release of stored 
elastic energy during crack propagation. With further increase in temperature, a second crack is initiated at the lower surface and the 
two cracks finally propagate nearly parallelly to the edge of borehole. The fracturing pattern is consistent with that reported by lit-
eratures (Jackson et al., 1989; Jansen et al., 1993), and the morphology of crack as shown in Fig. 19 match well with the test results 
given in Fig. 18(b). The presence of the crack hinders the conduction of heat but does not completely interrupt it. As depicted in the 
top-right figure of Fig. 19, heat is still able to transfer outwards after the penetration cracks have formed. However, the temperature 
distributions on different sides of the crack are no longer symmetric due to the hindrance caused by the crack. The asymmetry in 
temperature distribution is a direct consequence of the presence and effects of the crack on the heat transfer process. This example well 
demonstrates the capability of the multi-horizon PD in modeling evolving discontinuities subject to thermal loading. 

6. Conclusions and discussion 

This paper presents a new fully coupled thermomechanical state-based PD model that combines non-local operators to solve the 
heat conduction equation with a thermoelastic PD solid model. The dispersion analysis based on spectral approach and error analysis 
based on Taylor expansion reveal that using large horizons induces more error and noise, resulting in a decrease in the conduction rate. 

Fig. 18. (a) Experiment setup (Jansen et al., 1993); (b) Sketches of major fractures in the experiment (Jansen et al., 1993); and (c) Numeri-
cal model. 
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To address this issue, this paper proposes an innovative multi-horizon scheme that uses different horizons for different physical fields. 
For thermomechanical cases, a smaller horizon for thermal field and a larger horizon for the mechanical field are adopted to ensure the 
accuracy of heat conduction simulation while maintaining the capability of capturing non-local effects in mechanical responses. The 
numerical results show that the multi-horizon scheme offers noise-free and more accurate solutions. The scheme allows for the 
adoption of distinct horizon sizes that are most suitable for capturing the specific characteristics and phenomena associated with a 
particular physical field and serves a useful tool when coupling different physical fields in PD. Although the presented approach fo-
cuses on the TM PD, the generality of this paper is not lost owing to the complete analogy between different physical fields within solid 
(Mitchell and Soga, 2005). The presented approach can indeed be used to derive more sophisticated multi-physics PD-based 
computational framework in the future, including but not limited to coupled hydromechanical, electromechanical, and 
mechanical-chemical processes. 

Due to limited length of this paper, it has not been possible to exhaustively explore all aspects of the multi-horizon PD. One po-
tential issue that requires further investigation is the mesh dependency of the model. The presented numerical examples utilize a 
uniform mesh for optimal performance. However, when using an irregular discretization pattern, instability issues may arise, 
particularly when dealing with physical fields other than the mechanical field. This might be partially attributed to the poor evaluation 
of derivatives from integration over irregularly distributed material points. Further efforts are needed to study the influence of mesh on 
numerical stability. Additionally, in scenarios involving coupled heat contact and cracking problems across different materials or 
phases, the development of a multi-resolution scheme (Yao et al., 2023; Wang et al., 2022b) may become necessary. However, this 
topic is beyond the scope of the current study and will be addressed separately in future research. Another concern is the computational 
cost for the pure PD-based framework, particularly for 3D simulations with a large material stiffness and a small thermal conductivity. 
In such scenarios, a small time step may be necessary which would trigger overwhelming computational cost. Adopting an implicit 
scheme and/or GPU-based parallel computing may be beneficial. In addition, coupling PD with local methods such as FEM (Ni et al., 
2021, 2022) may also be advantageous for saving computational cost by splitting computations of different physical fields between PD 
and other methods. 

Fig. 19. Evolutions of temperature, displacement in x direction, damage and major principal stress at different times.  
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