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ABSTRACT

This paper presents a numerical study on suspensions of monodisperse non-Brownian grains in a Couette flow. The fully resolved coupled
smoothed particle hydrodynamics and discrete element method is employed to model the motion of arbitrarily shaped grains in a viscous
fluid. The numerical method is benchmarked against its capability in accurately handling grain–fluid hydrodynamics and inter-grain colli-
sions. It is then used to simulate suspension flows of varying particle Reynolds and Bagnold numbers subjected to different shear rates, solid
concentrations, and solid-to-fluid density ratios. A special focus is placed on the effect of grain shape with different aspect ratios and convex-
ities on the flow behavior. Both the inertia and the grain shape are found to affect the grain–fluid and inter-grain interactions and uniquely
contribute to the overall shear stress and the rheology of the suspension. The local profiles of solid concentration suggest the presence of
grain layering near the boundary walls, which becomes more pronounced with higher solid concentration and inertia, and increased non-
circularity in grain shape. A further examination of the pair distribution function and average particle rotation reveals a strong correlation
between suspension viscosity and grain microstructure and kinematics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161344

I. INTRODUCTION
Suspensions of solid grains in a fluid are prevalent in industrial

processes, including paints, food processing, waste disposal, and fresh
concrete, and present in natural occurring processes such as lavas,
mudflows, and gravity currents. The interactions between solid grains
and fluids are frequently diverse and complex, involving viscous shear,
turbulence, solid–fluid hydrodynamics, and inter-grain contacts.
Indeed, suspension flows remain one of the challenging flow patterns
that are not fully understood.

Dimensionless numbers have been defined to characterize the flow
regime of non-Brownian suspensions. Popular ones include the particle
Reynolds number (Rep) and the Bagnold number (Ba).

1 Most existing
numerical studies on suspensions have focused on the limiting case at van-
ishing Reynolds number using algorithms such as Stokesian dynamics.2–5

Key findings from these studies include the microstructural anisotropy of
grain pair distribution. It is supposed to be a major contributor to the non-
Newtonian behavior of suspensions, often resulting in shear-thickening.6

Among recent advancements in numerical methods, direct
numerical simulation (DNS) has become prevailing for simulating sus-
pensions, e.g., using the Lattice-Boltzmann method (LBM),7–13 the
immersed boundary method (IBM),14,15 and the fictitious domain
method (FDM).16–19 These methods are suitable for analyzing inertial
flows, arbitrarily shaped grains, and non-Newtonian fluids. Focusing
on the weak inertia case, Patankar and Hu20 investigated the effect of
finite Rep on the rheology of a dilute suspension of neutrally buoyant
circular grains and attributed shear-thickening to the slower normal-
ized angular velocity of grains as the Reynolds number increases.
Kulkarni and Morris21 found that inertia magnifies the microstruc-
tural anisotropy and increases the grains’ contribution to the effective
viscosity. To assess the significance of inter-grain interactions and
inertia of fluid and grains, Haddadi and Morris10 computed different
stress mechanisms, and Rahmani et al.18 examined momentum bal-
ance in the fluid and solid phases for different flow regimes.
Nevertheless, there remains limited understanding toward the
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influence of enhanced inertia related to grains heavier than the fluid.
Zhou and Prosperetti22 compared the results of solid-to-fluid density
ratios between 2.5 and 10 at Rep ¼ 20 and 40 and found that an
increased density ratio results in stronger and more frequent collisions
between grains, leading to notable modifications in the grain distribu-
tion, velocity profile, and bulk stress.

Moreover, studies on suspensions of non-spherical grains are rel-
atively scarce, mainly due to the difficulty of dealing with geometrically
complex boundaries. Among non-spherical grain suspensions, fiber
suspensions are the most extensively studied due to their wide indus-
trial applications and the availability of simulation methods, such as
slender body dynamics.23,24 Apart from slender grains, much of the lit-
erature on non-spherical grains in dense suspensions has focused on
interactions dominated by inter-grain contacts. For example, the gear-
like25 and ellipsoidal26 grains have been simulated using the discrete
element method (DEM) considering short-range repulsive contact
forces. However, even though collisional interaction is rare in dilute
regimes, Daghooghi and Borazjani27 have shown that there are still
differences in rheology between suspensions of irregular-shaped and
simple-shaped grains.

Considering the apparent gap in the literature as summarized
above, the aim of this paper is to investigate the role of inertia and
grain shape on the rheology of suspensions. Specifically, the contribu-
tions of fluid, grain–fluid hydrodynamics, and inter-grain collisional
contacts to the effective viscosity will be analyzed for suspensions of
grains with varying aspect ratios and convexities. The smoothed parti-
cle hydrodynamics (SPH) method is employed to simulate the fluid
flow,28,29 and the DEM is used for the modeling of rigid grains.
The interaction between the fluid and solid phases is considered
through the fully resolved coupling between the two methods, which
has been implemented in the high-performance open-source code
DualSPHysics based on the work by Canelas et al.30 The model has
advantages in dealing with suspensions of complex-shaped grains
within a unified meshless framework. Compared to Canelas et al.,30

further improvement in calculating the tangential contact forces has
been made in this study so that the model can be applicable to rela-
tively dense suspensions with persistent inter-grain contacts.

The remainder of this paper is organized as follows: Section II
details the methodology with formulations of the SPH and DEM and
their coupling strategy. In Sec. III, the method is validated through five
benchmark tests, including the water entry of a single disk, sedimenta-
tion of an ellipse, periodic flow around a sunflower-shaped object,
pair-disk trajectories in a shear flow, and settlement of two disks
exhibiting the drafting-kissing-tumbling phenomenon. Section IV
analyzes the role of inertia and grain shape on the rheology of suspen-
sions, in terms of effective viscosity, stress contributions, flow profile,
pair microstructure, and grain rotation. Finally, Sec. V concludes the
main findings of the study.

II. METHODOLOGY
A. SPH discretization

SPH is employed to discretize the problem domain using a set of
smoothed particles that carry the information of field variables (e.g.,
mass, density, pressure, and velocity) and their gradients. The particles
interact with their neighbors and move according to the governing
equation. The integral representation of an arbitrary function f xið Þ at

point xi is approximated from the contributions of neighboring par-
ticles through the weighted kernel functionW

f xið Þ ¼
ð

X
f xjð ÞW xi $ xjj j; h

" #
dV %
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f xjð ÞW jxi $ xj j; h

" #
Vj;

(1)

where h is a smoothing length defining the kernel’s influence size and
taken as approximately 1:7dp with dp being the initial particle spacing
in the study and Vj is the volume occupied by particle at xj. The
Wendland kernel is used in this study,31
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where aD ¼ 7=ð4ph2Þ for 2D cases and 21=ð16ph3Þ for 3D cases.
The discretized momentum conservation equation is written as
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The first term on the right-hand side of Eq. (3) is a symmetric bal-
anced form of the pressure term32 where q!,m!, and p! (! ¼ i or j)
denote the particle density, mass, and pressure, respectively. riW is
the gradient of kernel function with respect to xi. The second and third
terms represent the viscous stress33 and sub-particle-scale (SPS)
stress,34 respectively, where !0 is the fluid kinematic viscosity and ss!
is the SPS stress tensor, which introduces the effect of turbulent
motion at smaller scales than the kernel scale. g is the gravitational
acceleration.

To avoid solving the Poisson pressure equation, the equation of
state is employed to find the pressure

pi ¼
q0c

2
0

n
qi
q0

$ %n

$ 1

" #
; (4)

where q0 is a reference density at the initial state and n ¼ 7 typically
for incompressible fluids. c0 is an artificial sound speed which should
be set at least 10 times of the maximum fluid velocity to guarantee
fluid density fluctuations below 1%.

The continuity equation is discretized as

dqi
dt

¼
X

j

mj vi $ vjð Þ (riW

þ 2dhc0
X

j

mj

qj
qj $ qið Þ

xi $ xjð Þ(riW

xi $ xjj j2 þ 0:01h2
; (5)

where the second term of the right-hand side is a diffusive term35

introduced to stabilize the density field during high-frequency oscilla-
tions. The parameter d is set to 0.1 in this study.
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In addition, the particle shifting technique is used to evenly dis-
tribute SPH particles in the whole domain, especially at the solid–fluid
moving interfaces, and to prevent numerical cavity.36

B. SPH-DEM coupling
Following the work of Koshizuka et al.,37 the rigid DEM grain I

is also discretized by a series of SPH particles for SPH-DEM coupling,
as shown in Fig. 1. The motion of DEM grains is governed by the
Newton’s second law,

MI
dVI

dt
¼
X

k2I
mk

dvk
dt

; (6)

II
dXI

dt
¼
X

k2I
mk xk $ XIð Þ ) dvk

dt
; (7)

where grain I possesses the mass MI , velocity VI , moment of inertia
II , angular velocity XI , and center of gravity XI . The right-hand side
of Eq. (6) is the resultant force on grain I summed from the unit forces
applied to each discretizing particle (with mass mk, position xk, and
velocity vk), which mainly include (1) the body force (i.e., gravity), (2)
the hydrodynamic force exerted by fluid particles, and (3) the contact
force from other DEM grains. Since the rigid grains are discretized by
ordinary SPH particles, the hydrodynamic force on a solid particle k
can be calculated following the same manner in SPH using Eq. (3).
The calculation of contact force from other DEM grains is detailed in
the following.

The normal contact force is given by a modified, non-linear,
Hertzian model,

Fn ¼ knd
1:5
n n$ cnd

0:25
n

_dnn; (8)

where kn is the normal contact stiffness, dn is the interparticle overlap,
n is the unit normal vector at the contact, and cn is the normal damp-
ing ratio. The first exponent 1.5 is derived for contacts between 3D
spheres but also roughly applicable for 2D simulations. Hunt and
Crossley38 suggested its range of [1, 1.5] for the contact between two
parallelly aligned cylinders. The stiffness and damping ratio are given
by Canelas et al.,30

kn ¼
4
3
E* ffiffiffiffiffi

R*
p

; (9)

cn ¼
2 ln eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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knM*

p
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where e is the coefficient of restitution, and the other parameters are
determined as

1
E* ¼

1$ !2I
EI

þ
1$ !2J
EJ

; (11)

R* ¼ RIRJ

RI þ RJ
; (12)

M* ¼ MIMJ

MI þMJ
; (13)

where E!, !!, and R! (! ¼ I or J) are the Young’s modulus,
Poisson’s ratio, and radius of the two contacting DEM grains,
respectively.

Regarding the tangential contact force, the Coulomb law is modi-
fied with a sigmoidal function to render the force continuous with the
tangential velocity,39,40

Ftrialt ¼ Fprevt þ ktdt t $ ct _dt t; (14)

Ftj j ¼ min l Fnj jtanh 8 _dt
" #

; Ftrialt

'' ''
( )

; (15)

where Fprevt is the previous tangential force, kt is the tangential contact
stiffness, dt is the relative tangential displacement, ct is the tangential
damping ratio, t is the unit tangential vector, and l is the friction coef-
ficient. In the study, kt ¼ 2

7 kn, ct ¼
2
7 cn:

30 It is noted that the contact
model also applies to grains with complex shapes, as they are approxi-
mately represented by clumped spheres in the study (see Fig. 1). The
radius of constituent spheres in the clump model is set to about dp.
The DEM parameters used in all the tests presented in this study are
listed in Table I, which are generally applicable for relatively hard
grains with negligible deformation.

The symplectic algorithm is applied to carry out time integration.
Adaptive time steps30 are calculated according to the Courant–
Friedrichs–Lewy (CFL) condition as below

Dt ¼ C )min
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where the CFL coefficient is set to C¼ 0.2 in the study to guarantee
numerical stability. The first term on the right-hand side is based on
the force per unit mass (f i) applied on the SPH particle i, the second
term combines the CFL condition and the viscous time step control,
and the third term is the constraint of DEM stability. The SPH-DEM

FIG. 1. Illustration of SPH discretization of fluid domain and solid grains.

TABLE I. DEM parameters in the coupled SPH-DEM simulations.

Young’s
modulus E (Pa)

Poisson’s
ratio !

Friction
coefficient l

Coefficient
of restitution e

108 0.2 0.45 0.6
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coupling algorithm is illustrated in Fig. 2. The main calculation steps
are parallelized and executed on GPU, which is a welcome feature
available in DualSPHysics.

III. VALIDATION
To validate the fully resolved SPH-DEM model for fluid–grain

mixture flows, five benchmark tests including water entry of a disk,
sedimentation of an ellipse in a vertical channel, periodic flow around
a sunflower-shaped object, pair-disk trajectories in a shear flow, and
settlement of two vertically aligned disks have been conducted and
compared with the available experimental and numerical results from
the literature. All the simulations in the study are performed in 2D.

A. Water entry of a disk
The water entry problem of a disk is simulated with the SPH-

DEM method. The problem was experimentally investigated by
Greenhow and Lin41 and later modeled using the constrained interpo-
lation profile (CIP) method by Zhu et al.42 The disk has a diameter
D¼ 0.125 m and is dropped at a height of 0.5m above the water sur-
face, as shown in Fig. 3. The water depth is 0.3m. The solid-to-fluid
density ratio is either 0.5 or 1, corresponding to the half-buoyant or
neutrally buoyant case, respectively. Sensitivity analysis on discretiza-
tion is performed considering different initial SPH particle spacing dp
(i.e., dp=D¼ 1/20, 1/25, and 1/40, respectively).

Figure 4 gives the evolution of water-entry depth in both half-
buoyant and neutrally buoyant cases, comparing the present SPH-

DEM results with those from the experimental41 and CIP42 studies.
The SPH-DEM results converge to the CIP simulation and experimen-
tal results with the refinement of discretization. Specifically, when
dp=D is no greater than 1/25, the SPH-DEM and CIP methods have
comparable performances and both correctly capture the evolution of
water-entry depth in the two buoyant cases. Therefore, the initial SPH
particle spacing is set to be dp=D ' 1/25 in the following tests. It is
also observed that the disk de-acceleration is slower when its density is
larger. At the entry depth of 0.3m, the neutrally buoyant disk
rebounds after it comes into contact with the container bottom.

B. Sedimentation of an ellipse in a vertical channel
A tilted ellipse falling under gravity in a closed vertical channel

fully filled with fluid is considered. The problem configuration is

FIG. 2. The flow chart of SPH-DEM coupling algorithm.

FIG. 3. Numerical model of the water-entry problem.

FIG. 4. Evolution of water entry depth from the experimental,41 CIP,42 and present
SPH-DEM studies (the question mark put by Greenhow and Lin41 indicates that this
data point is unreasonable).
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shown in Fig. 5. The domain width and height are L (0.004m) and
17.5L, respectively. The ellipse has an aspect ratio AR¼ 0.5 and its
major diameter is L/4 (i.e., the blockage ratio is 4). Its center is initially
2.5L below the top surface with an inclination angle of 45+. The
solid-to-fluid density ratio is 1.5. The initial SPH particle spacing is
dp¼ L/104.

Figure 6 plots the horizontal position and orientation of the
ellipse vs the vertical position, respectively. Reasonable agreements are
observed in comparison with the LBM results of Xia et al.,43 IB-LBM
results of Suzuki and Inamuro,44 and incompressible SPH (ISPH)
results of Khorasanizade and Sousa.45

C. Periodic flow around a sunflower-shaped object
Aiming to demonstrate the SPH-DEM capability in coping with

complex geometries with sharp concave corners, the flow around a 13-
petal sunflower-shaped object is analyzed. This test was described in
Pan et al.,46 consisting of periodic flow through a plane channel with
dimension 0.1) 0.1 m2 and a sunflower-shaped body fixed at the cen-
ter. Flow is driven by a body force of 1.5) 10$8 m/s2 imposed in the
longitudinal x-direction. The initial SPH particle spacing is set to
dp¼ 0.0005m, same as in Pan et al.46

A steady flow solution is obtained for the specified conditions.
The contour of longitudinal velocity is portrayed in Fig. 7, along with
the result from Pan et al.46 A good agreement is found between the
two studies from the comparison. More detailed assessment is per-
formed in Fig. 8, where the longitudinal velocity profiles along the
transverse y-direction are displayed at two distinct locations: across
the center of the object (i.e., x¼ 0.05 m) and at the outlet boundary
(i.e., x¼ 0.1 m). The present results agree well with both the SPH and
finite element method (FEM) predictions reported by Pan et al.46

D. Pair-disk trajectories in a shear flow
In this subsection, the pair-disk trajectories in a Newtonian fluid

are studied. This case is relevant to suspension flows where hydrody-
namic interactions are of primary importance. The problem is sche-
matically shown in Fig. 9 with the same geometric parameters as in
Choi et al.,47 i.e., the domain length L¼ 4 and width H¼ 1 (in the
simulation, 1 length unit corresponds to a physical length of 0.12m).
Two equally sized (R¼ 0.1) smooth disks are freely suspended in a lin-
ear shear flow, and their initial positions are $Lx; Lyð Þ and Lx;$Lyð Þ
with Lx ¼ 0:5 fixed in the study. The top and bottom walls move at
opposite constant velocities to generate a laminar Newtonian flow
with periodic boundary condition applied in the shear direction. The
Reynolds number is measured to be about Rep ¼ 0:0288 [see Eq. (17)]
so that the inertia effect is regarded as negligible. The original SPH
particle spacing is dp¼ L/600.

Trajectories for varying initial vertical positions of the two disks
(6Ly) are depicted in Fig. 10, compared with the available FEM

FIG. 5. Depiction of an ellipse falling in a vertical channel closed by four walls on
all the boundaries (not to scale).

FIG. 6. Ellipse (a) horizontal position and (b) orientation vs its vertical position (LBM,43 IB-LBM,44 and ISPH45).
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solutions.47 It shows that the two disks repel each other and their tra-
jectories are reversed like U-turns when their initial separations are
small (e.g., Ly ¼ 0.02, 0.04, and 0.06). However, the two disks keep
going in their sheared directions and pass each other when their initial
separations become larger (e.g., Ly ¼ 0.08 and 0.10). The comparisons
exhibit good match between the present SPH-DEM and existing FEM
predictions, implying that the hydrodynamic forces are accurately
computed when the particles get close. The minor difference between
the two studies may be attributable to the small inertia effect (Rep
slightly larger than 0) and particle artificial roughness resulting from
discretization in this study.

E. Settlement of two vertically aligned disks
To further demonstrate the predictive capability of the proposed

SPH-DEM for inter-grain collision problems, the settlement of two
disks in a closed container filled with Newtonian fluid is investigated.
The two disks have identical density and radius and are originally ver-
tically aligned with some offset and released from rest. The model
parameters are summarized as follows: the domain length 2 cm and
height 6 cm, disk radius 0.125 cm and initial center positions (1 cm,
4.5 cm) and (1 cm, 5 cm), solid-to-fluid density ratio 1.5, fluid kine-
matic viscosity 10$6 m2/s, and initial SPH particle spacing
dp¼ 0.006 25 cm.

The drafting–kissing–tumbling (DKT) phenomenon is clearly
displayed in Fig. 11 at different time instants. First, the trailing disk
catches up with the leading one due to reduced drag in the wake of the
leading disk (t¼ 0.15 s). Next, the two disks are close enough to be
almost touching, corresponding to the kissing stage (t¼ 0.2 s).
Nevertheless, the contact is unstable and will be broken easily, leading
to the tumbling of the two disks (t¼ 0.3 s).

FIG. 7. Contours of the longitudinal velocity at the steady state from (a) [Reproduced with permission from Pan et al., J. Comput. Phys. 259, 242 (2014). Copyright 2014
Elsevier.]46 and (b) present SPH-DEM study.

FIG. 8. Longitudinal velocity profiles along the transverse direction (FEM and SPH
results from Pan et al.46). FIG. 9. Geometry for pair-disk trajectories in a simple shear flow.
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Figure 12 presents the evolution of vertical position and velocity
of the two disks, comparing with the FDM results of Glowinski et al.17

and IBM results of Uhlmann.48 The present results are generally in
good agreement with existing ones, except for some deviations in the
tumbling separation stage as expected. The difference mainly arises
from the distinct grain collision strategies adopted in these numerical
methods. Glowinski et al.17 and Uhlmann48 simply considered a
short-range repulsive force in the normal direction to prevent inter-
grain penetration, whereas the contact model adopted in this study is
more accurate in describing the collision behavior considering contact
forces in both normal and tangential directions.

IV. SUSPENSION FLOW
In this section, suspensions of monodisperse solid disks of radius

R confined between two parallel no-slip walls are simulated to analyze

their viscometric behavior under constant shear rate. Gravity is
ignored in the simulation. The computational domain has a size L in
the flow direction (x) and a width H in the gradient direction (z). The
size relations are L ¼ 2H ¼ 100R. The x-directed shear flow is gener-
ated by moving the top wall with a speed of Uw so that the equivalent
shear rate is _c ¼ Uw=H. The periodic boundary condition is applied
in the x direction. The 2D solid fraction is denoted by /. In addition,
two dimensionless numbers are used to describe the inertia effect of
suspensions. The particle Reynolds number is defined as the ratio of
the fluid inertial stress to the fluid viscous stress,

Rep ¼
4R2 _cqf
lf

; (17)

where qf and lf are the fluid density and dynamic viscosity,
respectively. Another important parameter characterizing the sus-
pension behavior is the Bagnold number, defined as the ratio of
the grain inertial stress due to collision to the fluid viscous
stress,49,50

Ba ¼
/

1$ /
4R2 _cqs
lf

¼ /
1$ /

qs
qf

Rep; (18)

where qs is the solid grain density. It is seen from Eq. (18) that the
solid fraction, density ratio, and particle Reynolds number all contrib-
ute to the suspension flow properties. Hence, their effects will be
examined separately in the following.

By varying the grain number (i.e., solid fraction), density ratio,
and shear rate, different particle Reynolds and Bagnold numbers can
be realized, resulting in different inertia effects of suspension flows. To
further consider the influence of grain shape, suspensions of elliptic
and sunflower-shaped grains are simulated for comparison, where two
shape descriptors, i.e., aspect ratio and convexity, are used for quanti-
tative analysis. These grains have the same area as the circular ones
with an equivalent radius equal to R. The grain convexity (CV) is

FIG. 10. Pair-disk trajectories in a shear flow from SPH-DEM and FEM.47

FIG. 11. Drafting–kissing–tumbling phenomenon at different time steps using the (a) FDM17 [Reproduced with permission from Glowinski et al., J. Comput. Phys. 169,
363$ 426 (2001). Copyright 2001 Elsevier.] and (b) present SPH-DEM method.
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defined as its area divided by the area after filling all the concavities in
its perimeter.51

The model parameters of different test cases are summarized in
Table II. Results are collected and analyzed after the mixture flow
reaches a statistically steady state, as shown in Fig. 13. The shear stress
s is directly obtained from the shear force acting on the boundary
walls, and the effective viscosity of the suspension is calculated from

ls ¼
s
_c
: (19)

Sensitivity analysis on the effect of SPH particle discretization is
conducted for a typical high-concentration (/ ¼ 47% and
Rep ¼ 0:15) suspension of circular grains, considering dp/D¼ 1/15, 1/
20, 1/25, 1/30, and 1/35, respectively. The evolution of relative viscosity

lr , defined as the ratio of effective viscosity of the suspension to that
of the fluid, i.e., lr ¼ ls=lf , is shown in Fig. 14, which suggests appar-
ent convergence of the results as dp decreases. In particular, when dp/D
decreases from 1/30 to 1/35, the deviation of results is smaller than
5%. Therefore, dp is set to D/30 in the tests of this section, which
strikes a good compromise between numerical efficiency and
accuracy.

A. Relative viscosity
Figure 15 illustrates the relative viscosity flow curves for suspen-

sions of circular grains with different ranges of solid concentration
and density ratio. The shear-thickening phenomenon is observed in all
cases as lr increases steadily with _c, especially for large solid

FIG. 12. Comparison of vertical (a) positions and (b) velocities of the two falling disks.

TABLE II. Parameters for suspension flows.

Solid concentration: / Particle Reynolds number: Rep Density ratio: qs=qf Bagnold number: Ba Remark

14% 0.15 2.65 0.06 Bold-font cases include tests on
suspensions of elliptic

(AR¼ 0.33, 0.66) or sunflower-
shaped (CV¼ 0.91, 0.84, 0.74)

grains.

0.30 0.13
0.45 2.65, 10 0.19, 0.73

25% 0.15 2.65, 10 0.13, 0.48
0.30 0.25, 0.96
0.45 2.65, 10 0.38, 1.44

36% 0.15 2.65, 10 0.21, 0.81
0.225 2.65 0.32
0.30 2.65, 10 0.43, 1.62
0.375 2.65 0.54
0.45 2.65, 10 0.64, 2.43
4.5 2.65 6.44

47% 0.15 2.65 0.34
0.225 0.51
0.30 0.68
0.375 0.85
0.45 1.03
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concentrations (e.g., / , 36%) when the upsurge of viscosity with _c
becomes noteworthy. The non-Newtonian behavior becomes more
distinct with larger / and density ratio. With qs=qf increasing from
2.65 to 10, the viscosity flow curves for the two solid fraction cases
/ ¼ 25% and 36% shift upward. Zhou and Prosperetti22 reported sim-
ilar observations for suspensions of noncolloidal particles albeit with
larger Reynolds numbers in their study.

The dependence of lr on solid concentration / for suspensions
of both circular and non-circular grains with qs=qf ¼ 2:65 is shown
in Fig. 16. Results are presented together with the experimental data of
Zarch et al.52 for soil–water mixture with qs=qf ¼ 2:62 and
10$3 < Rep < 10, Mueller et al.53 for mixture of silicone oil and glass
beads with qs=qf ¼ 2:74 and Rep < 10$6, and numerical data of
Gallier et al.16 with neutrally buoyant Stokes suspensions of spheres.
The volume fraction in 3D suspensions is transformed to the area frac-
tion by multiplying 3/2 according to previous studies for comparison
between 2D and 3D results.54 It is evident from Fig. 16 that lr

increases at a greater rate with larger Rep which partly explains the
more rapid increasing lr $ / curve in Zarch et al.52 compared to the
results of Gallier et al.16 and Mueller et al.53 The curve of Rep ¼ 0:3 in
the present study fits well with the data of soil–water mixture in Zarch
et al.52 In addition to the role of inertia, the grain shape also has a sig-
nificant impact on the non-Newtonian flow property. At the same Rep
and /, a prominent increase in lr is found with decreasing AR and
CV. The effects of inertia and grain shape will be further explored in
Secs. IVB–IVE.

B. Stress contributions
The different roles of inertia and grain shape on suspension viscosity

can be better understood by studying their contributions to the overall shear
stress. We implemented the procedure developed by Batchelor55 to calculate
the bulk stress generated by a flowing suspension in terms of area averages.
The relative viscosity can be written as21

FIG. 13. Steady-state suspension flows
(/ ¼ 36%, Rep ¼ 4:5) mixed with (a)
disks, (b) ellipses (AR¼ 0.33), and (c)–
(e) sunflower-shaped grains (CV¼ 0.91,
0.84, and 0.74, respectively).
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lr ¼ 1þ Rg
xz; (20)

where Rg
xz represents the grain-induced stress defined as follows:

Rg
xz ¼

1
lf _c

sxz þ r̂c
xz

" #
$ 1$ /ð ÞBa ~ug

x ~u
g
z

* +
$ 1$ /ð ÞRep ~uf

x ~u
f
z

D E

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reynolds stress

;

(21)

where !h i denotes the ensemble averaged quantity. The first term on
the right-hand side denotes the hydrodynamic and collisional stresslets
defined by

sxz ¼
1

2LH

X
rzf hx þ rxf hz

( )
; (22)

r̂c
xz ¼

1
2LH

X
rzf cx þ rxf cz
" #

; (23)

where f h! and f c! (! ¼ x or z) are the hydrodynamic force and inter-
grain collisional force exerted on the grain, respectively; r! is the
branch vector connecting the grain centroid and the point of force
application. The summation is carried out over all the grains. The last
two terms represent the Reynolds stress from fluctuations of grains
and fluid particles. The acceleration stress is ignored in the study due
to its insignificant contribution. The velocity fluctuations of grain and

fluid (~ug
! and ~uf

!) are calculated as ~ug
! ¼ ug! $ u! and

~uf
! ¼ uf! $ u! , where u! is the undisturbed velocity for a uniformly

sheared fluid.56 The Reynolds stress cannot be ignored when the bulk
Reynolds number is out of the range of laminar flows.57

The relative viscosity obtained from both the shear stress on the
walls [i.e., Eq. (19)] and the bulk stress calculated using Eq. (20) for
different cases is displayed in Fig. 17. The two measures show an over-
all reasonable agreement although there is a deviation of about 7% for
the AR¼ 0.66 case which owes to the increased boundary effect as to
be shown in Fig. 23(a), consistent with the findings in Kulkarni and
Morris.21

The contributions of each term (i.e., fluid viscous stress, grain
hydrodynamic stress sxz , collision stress r̂c

xz , and Reynolds stress) to
the overall viscosity are evaluated for various Rep and / in Fig. 18.
Irrespective of Rep, the contributions from both grain hydrodynamics
and collision increase, resulting in an increase of total relative viscosity.
The grain-related stress (sxz þ r̂c

xz) is dominant to the total stress
when / , 36%. More specifically, for 14% ' / ' 36%, the contribu-
tion of particle–fluid interaction (sxz) plays a leading role in the
enhancement of overall viscosity. However, the collision (r̂c

xz) contri-
bution to viscosity significantly rises when / increases from 36% to
47% and eventually occupies 39.5% of the overall viscosity in the case
Rep ¼ 0:45. The inter-grain collision, therefore, accounts for the expo-
nential growth of lr presented in Fig. 16.

FIG. 14. Sensitivity analysis on discretization for a sheared suspension of circular
grains.

FIG. 15. Viscosity flow curves for different ranges of solid concentration and den-
sity ratio for suspensions of circular grains.

FIG. 16. Relationship between relative viscosity and solid concentration.
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By comparing the results of different Rep in Fig. 18, it is found
that increasing Rep leads to the rising of both hydrodynamic and colli-
sion stresses. The inter-grain collision contribution increases dramati-
cally with the growth of Rep, especially for / , 36%, which may
explain the more significant shear-thickening phenomenon for /
, 36% in Fig. 15.

Figure 19 indicates that the grain-related contribution (Rg
xz) to

viscosity is affected by grain density for both / ¼ 25% and 36% cases.
As grain density becomes larger, both collision and grain hydrody-
namics show a gradual rise while Reynolds stress caused by distur-
bance of grains enhances greatly, especially at large Rep. It well
explains the observation in Fig. 15. In spite of the surge of velocity fluc-
tuations caused by grain inertia, the contribution of Reynolds stress to

the total stress is generally below 15% and the flow is still in the inertial
shear-thickening regime, far from the turbulent-like regime.

The rheology of suspensions with elliptic and sunflower-shaped
grains is investigated to explore the influence of grain shape. Figure
20(a) shows that as AR decreasing, the grain-related stresslet
(sxz þ r̂c

xz) grows which results in the steady increase of total relative
viscosity, whereas AR has less significant effect on Reynolds stress.
Moreover, the effect of AR on inter-grain collision intensifies for larger
Rep. Conversely, the contribution from grain hydrodynamics increases
when AR decreases from 1 to 0.66 and remains roughly constant with
further decreasing of AR. The role of CV to the relative viscosity of
suspension is displayed in Fig. 20(b). A growth of particle-related con-
tribution is found as CV decreases. Such increases are more notable
when CV drops from 1 to 0.91 and from 0.84 to 0.74, compared with

FIG. 18. Contributions of Reynolds stress, inter-grain collision, grain hydrodynam-
ics, and fluid viscosity to the overall viscosity for suspensions of circular grains.FIG. 17. The instantaneous relative viscosity of a sheared suspension measured

from the wall and the bulk.

FIG. 19. Contributions of Reynolds stress, inter-grain collision, grain hydrodynamics, and fluid viscosity to overall viscosity with different solid concentrations for suspensions
of circular grains: (a) / ¼ 25% and (b) / ¼ 36%.
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that when CV varies in the range between 0.91 and 0.84, which exhib-
its a similar trend as average grain rotation to be shown in Fig. 28(b).
More specifically, the marked growth from CV¼ 1 to 0.91 is mainly
due to the increase of fluid–grain interactions ðsxzÞ for both Rep. As
CV decreases from 0.84 to 0.74, the surging velocity fluctuations
resulting from grain concavity play a significant role in the increase of
bulk viscosity.

C. Profiles of solid concentration and velocity
The solid concentration profile is first presented to characterize

the grain layering and the near-wall effects on suspension flows, as it is
a possible cause to shear-thickening of suspensions. This is achieved
by dividing the computational domain into 250 equally sized layers
parallel to the walls and calculating the time-averaged solid area frac-
tion in each layer during the steady state.

A local concentration peak near the stationary wall (z/H¼ 0) is
clearly visible with / ¼ 47% for the case Rep ¼ 0:45 and qs=qf
¼ 2:65 shown in Fig. 21, though not as pronounced as in 3D systems
reported elsewhere.11 The formation of stable solid layers near the wall
may be resulted from the strong grain–wall interaction. The local con-
centrations grow to the bulk concentration values faster and peaks
closer to the wall as / increases, in agreement with the results of
Kromkamp et al.,11 Picano et al.,58 and Yeo andMaxey.59

Figure 22 presents the flow profiles for / ¼ 36% with different
Rep and qs=qf , indicating that the local solid fraction tends to rise
slightly faster and higher with increasing Rep and grain density.
Nevertheless, Rep and grain density play an insignificant role in the
distribution of local solid fraction in the bulk region away from the
boundary walls, which is consistent with the finding in Zhou and
Prosperetti.22

FIG. 20. Contributions of Reynolds stress, inter-grain collision, grain hydrodynamics, and fluid viscosity to overall viscosity with different grain shapes: (a) aspect ratio and (b)
convexity.

FIG. 21. Time-averaged solid area fraction across the domain width with varying
bulk concentrations for suspensions of circular grains.

FIG. 22. Time-averaged solid area fraction across the domain width with varying
Rep and qs=qf for suspensions of circular grains.
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In addition, to show the influence of grain shapes, the flow pro-
files for / ¼ 36%, Rep ¼ 0:30, and qs=qf ¼ 2:65 with varying AR
and CV are displayed in Fig. 23. The local concentration near the sta-
tionary wall increases as both AR and CV deviate from unity.
However, the three cases with CV in the range between 0.91 and 0.74
show similar near-wall peak concentration values.

Additionally, the velocity profiles of fluid (nearly identical for
solid grains) for different solid concentration, inertia, and shape of
grains are shown in Fig. 24 to further explore the influence of wall
effect. Near the two walls (0 . z/H . 0.04 and 0.96 . z/H . 1), the
slopes of the curves are steeper than the 1:1 reference line. The
enhancement of velocity gradient is more pronounced in higher solid
concentration and smaller aspect ratio and convexity cases, where
strong layering of grains near the walls is also observed. It seems that
the presence of grains near the wall may create a region of increasing
velocity gradient, known as the slip layer. The smaller velocity gradient
in the bulk of the system (i.e., away from the walls) explains the lower
bulk stress than the wall stress presented in Fig. 17.

D. Pair microstructure
The pair microstructure is characterized by the pair distribu-

tion function g r; hð Þ defined as the probability of finding a grain at
the distance r and polar angle h to a given grain. Particularly, the
probability of the nearest neighbors, i.e., 2R < r < 2:1R, is exam-
ined in the study.

As previously shown in Fig. 10, the pair-particle trajectories are
fore-aft symmetric in the dilute pure hydrodynamic limit (Rep % 0)
owing to the reversibility of Stokes equations.47 However, the symme-
try can be broken by the Brownian motion,5 inter-grain contacts,16,58

and finite inertia.21 In this study, the effects of the latter two factors are
analyzed as presented in Figs. 25 and 26 with varying Rep, /, qs, and
CV. Considering the radial symmetry, only results in the range 0
' h < 180+ are shown.

As shown in Fig. 25, the pair distribution functions exhibit a clear
asymmetric pattern with elevated probability density in the compres-
sional quadrant (h > 90+) and a marked depletion zone around the
extension axis. When / increases, there are accumulating probabilities

FIG. 24. Time-averaged velocity profiles across the domain width with varying (a) solid concentration and Rep and (b) grain shape.

FIG. 23. Time-averaged solid area fraction across the domain width with varying (a) aspect ratio and (b) convexity.
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for a given grain to encounter another one in the compression zone
and along the shear direction (h % 0+). The probabilities in the com-
pression zone also increase with Rep, especially at low /. The effect of
Rep, however, diminishes with / as seen from Fig. 25(d) that the pair
distributions are close when Rep increases from 0.15 to 0.45 at
/ ¼ 47%. To further explore the role of particle inertia, pair distribu-
tion functions for suspensions of different density ratios

(qs=qf ¼ 2:65 and 10) are also presented in Figs. 25(a)–25(c). Similar
to the influence of Rep, the increase of grain density magnifies the
anisotropy in the pair microstructure and fore-aft asymmetry.

The influence of grain convexity is further examined. As seen
from Fig. 26 that the chance to find a neighbor at around 2R for a
given grain in the compression zone is reduced with decreasing CV,
which is especially evident when CV drops from 0.91 to 0.84. It is
probably because of the additional excluded areas near contact due to
grain concavities.

E. Grain rotation
Grain rotation plays an equally important role in the interactions

among grains and between grains and fluid. The grain rotation is mea-
sured by X* defined as the mean grain angular velocity X normalized
by the bulk shear rate of the mixture, i.e., X* ¼ X=_c.

For the results of circular grain suspensions presented in Fig. 27,
X* decreases with increasing / for all Reynolds numbers, in agree-
ment with previous studies.18 It can be understood that higher volume
fraction leads to more significant constraints from neighbors on grain
rotation. The comparisons between different grain density qs for /
¼ 25% and 36% show reduced grain rotation at higher qs. Similarly,
grain angular velocity declines as Reynolds number rises in accordance
with that reported by Mikulencak and Morris60 using data collected
from the literature. It may be attributed to the enhanced inter-grain
contacts at large Rep that suppresses the shear-induced grain rotation.

FIG. 26. Pair distribution function of / ¼ 36% and qs=qf ¼ 2:65 with varying Rep
and CV.

FIG. 25. Pair distribution function: (a) / ¼ 14%, (b) / ¼ 25%, (c) / ¼ 36%, and (d) / ¼ 47% with varying Rep and qs=qf for suspensions of circular grains.
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The reduction in grain rotation at higher Rep and qs has resulted in
the rise of shear stress or viscosity of the suspensions because of the
steeper velocity gradients of interstitial fluid.20

Figure 28 shows the normalized average grain rotation in suspen-
sions with non-circular grains at / ¼ 36% and Rep ¼ 0:3 and 4.5.
Regardless of the particle Reynolds number, grain rotation decreases
monotonically with both decreasing AR and CV although at different
declining rates. The drop is faster with respect to decreasing AR and
the trend is accelerating. Contrarily, a mild descent of grain rotation is
observed with decreasing CV, especially when CV becomes smaller
than 0.91, which is similar to the increasing trend of relative viscosity
in Fig. 20(b). Moreover, the rate of descent is repressed by inertia
which results in flatter curves when Rep increases from 0.3 to 4.5.

Based on the above analyses, it can be concluded that grain shape
has a significant impact on the viscosity of suspensions due to the
interplay among inter-grain collisions, fluid–grain interactions, and

the non-uniform flow profiles. Grains with lower AR or CV tend to
have a larger surface area and can, thus, intensify inter-grain and fluid-
grain interactions. Specifically, concave grains increase the grain
hydrodynamic stresslet by augmenting fluid–grain interactions.
Contrarily, the grain hydrodynamics first increases with decreasing
AR before declining, possibly because grains with lower AR are more
likely to align with the flow direction. When the Reynolds stress
becomes non-negligible, concave particles play a more significant role
in perturbing the flow field while AR has less impact. Moreover, both
AR and CV can suppress grain rotation, leading to higher shear
stresses.

V. CONCLUSIONS
The rheology of 2D fluid–grain mixtures in a Couette flow has

been studied using a fully resolved SPH-DEM method, with an
emphasis on the roles of inertia and grain shape. The model has been
rigorously validated through several benchmark problems, including
water entry of a disk, sedimentation of an ellipse, periodic flow around
a sunflower-shaped object, pair-disk trajectories in a shear flow, and
the DKT phenomenon of two settling disks. The test results have ade-
quately verified the accuracy of the present SPH-DEMmethod in sim-
ulating grain–fluid hydrodynamic interaction and inter-grain
collision, as well as in dealing with complex grain shapes. The main
findings from the study are summarized below.

(1) In the macroscale, the suspension effective viscosity intensifies
with increasing particle Reynolds number Rep, solid concentra-
tion /, and solid-to-fluid density ratio qs=qf , leading to more
pronounced shear-thickening behavior. Additionally, suspen-
sions of grains with lower AR and CV present greater effective
viscosity.

(2) The transitional behavior of suspensions is analyzed by separat-
ing the contributions to the bulk shear stress. It is found that
the increase of effective viscosity is mainly attributable to the
enhancement of fluid–grain hydrodynamic interaction, inter-
grain collision, and Reynolds stress, whereas the contribution
from fluid viscous stress remains largely unaltered with increas-
ing Rep, /, and qs=qf . Additionally, the contribution of
Reynolds stress magnifies when the inertia increases.

FIG. 27. Relationship between normalized mean grain angular velocity and Rep at
different / and qs=qf for suspensions of circular grains.

FIG. 28. Normalized mean grain angular velocity with different (a) aspect ratio and (b) convexity.
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The elongation and concavity of suspended grains will also
increase both the particle-fluid hydrodynamic and inter-grain
collision contributions to the overall effective viscosity. The
grain concavity will intensify the Reynolds stress when the iner-
tial effect becomes nonnegligible.

(3) Grain clustering is found near the walls in suspension flows.
Inertia and grain elongation and concavity will increase the
solid concentration near walls. As for near contact pair struc-
tures, the fore-aft symmetry breaks in the sheared suspension
flow. Such asymmetry becomes more evident as Rep, /, or qs
increases or grain convexity decreases.

(4) Average particle angular velocities show dependence on Rep, /, qs,
AR, and CV. Grain rotations are suppressed by increasing inertia
and non-circular grain shapes. The microstructural anisotropy and
grain kinematics characteristics play a crucial role in the shear-
thickening behavior observed in noncolloidal suspension flows.

Although microscopic analyses are presented in the study, there
is still a need for quantitative correlations between the macroscopic
viscosity and microscopic quantities such as pair distribution, grain
rotation, and grain shape. It is possible to develop such correlations by
extending existing semi-empirical formulas (e.g., Eilers formula61),
which will be explored in future studies.
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