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Abstract

This study presents a scalable three-dimensional (3D) multiscale framework for
continuum-discrete modeling of granular materials. The proposed framework fea-
tures rigorous coupling of a continuum-based Material Point Method (MPM) and
a discrete approach Discrete Element Method (DEM) to enable cross-scale model-
ing of boundary value problems pertaining to granular media. It employs MPM to
solve the governing equations of a macroscopic continuum domain for a boundary
value problem that may undergo large deformation. The required loading-path-
dependent constitutive responses at each material point of the MPM are provided
by a DEM solution based on grain-scale contact-based discrete simulations that
receive macroscopic information at the specific material point as boundary condi-
tions. This hierarchical coupling enables direct dialogues between the macro and
micro scales of granular media while fully harnessing the predictive advantages of
both MPM and DEM at the two scales. An effective, scalable parallel scheme is fur-
ther developed, based on the flat Message Passing Interface (MPI) model, to address
the computational cost of the proposed framework for 3D large-scale simulations.
We demonstrate that the proposed parallel scheme may offer up to 32X and 40X
speedup in strong and weak scaling tests, respectively, significantly empowering the
numerical performance and predictive capability of the proposed framework. The 3D
parallelized multiscale framework is validated by an element test and a column col-
lapse problem, before being applied to simulating the intrusion of a solid object. The
multiscale simulation successfully captures the characteristic response of intrusion
as postulated by the modified Archimedes’ law theory. The progressive develop-
ment of the stagnant zone during the intrusion is further examined from a cross-scale
perspective.
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1 INTRODUCTION

Granular media exist in diversified forms pertaining to engineering fields and industries, including geomaterials (including
sand, gravel, and rock), snow, food grains, mining products, chemical powders, and pharmaceutical tablets. The behavior of
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2 W. LIANG ET AL

granular media is important to these various sectors, but is well regarded among the most challenging ones to understand.4

They may exhibit properties of both solid and liquid and undergo transitions between two. As typical porous media, their5

behavior may be further complicated by interstitial liquid or gas or a mixture of them. A concerted effort has been paid across6

many disciplines in an attempt to gain a better scientific understanding of specific or common features of granular media.7

In civil engineering, for example, advanced constitutive models and theories have been established to model the mechanical8

response of granular soils under various loading conditions, including the renowned Mohr-Coulomb failure criterion, the stress9

dilatancy theories1, critical state soil mechanics2,3,4, and the anisotropic critical state theory (ACST)5,6. Various theories have10

been developed in cryosphere science to describe the behavior of snow or glacial ice7,8 and their phase transition9,10,11. These11

theories and models have greatly transformed our understanding on granular media specialized in various loading conditions and12

engineering circumstances. It remains a challenge, however, to develop a general theory or predictive model that may describe13

many complicated aspects of granular media responses (such as anisotropy12, liquefaction and strain localization13) under a14

wide range of different loading conditions (including monotonic, cyclic and rotational shear loading14) and deformation/flow15

regimes (small strain, large deformation, and flow).16

The complexity of mechanical responses of granular material has its grain-scale origin. External loads may mobilize rich17

inter-granular interactions at the particle level of a granular body, presenting in forms of inter-particle friction, sliding, rolling,18

and others to establish force transmissions and deformation fields. Macroscopic phenomena are often collective manifests of19

these grain-scale mechanisms. Accurate understanding and rigorous prediction of the behavior of granular media have to take20

into account the grain-scale physics and mechanics where conventional continuum-based theories prove to be inadequate. Hier-21

archical multiscale modeling represents an emerging recent thrust of research in computational mechanics that attempts to bridge22

key grain-scale interactions and mechanisms with macroscopically observed phenomena via computational modeling. To this23

end, the multiscale modeling approach typically employs a hierarchical structure that couples a continuum and a discrete-based24

methods in providing cross-scale solutions. In treating granular media, for example, Discrete Element Method (DEM) has com-25

monly been used to to provide particle-based micromechanics solution for one of the following continuum approaches, such as26

MPM15, FEM16,17,18,19,20, or Smooth Particle Finite Element Method (SPFEM)21. The hierarchical coupling helps to circum-27

vent the use of phenomenological constitutive laws and enables cross-scale analysis. These approaches have demonstrated great28

potential in modeling various engineering applications, e.g., compaction band in high-porosity sandstones22,23,24, pull-out of29

anchors25 and foundations over anisotropic soil26.30

This study aims to tackle a series of correlated challenges that prevent the further advance of this multiscale approach,31

namely, 3D simulations of large deformation and failure problems as well as the incurred computational cost. First, almost all32

existing studies on hierarchical multiscale modeling of granular media have been two-dimensional (2D) due to various rea-33

sons, expensive computational cost being one of them. Although 2D simulations can indeed capture the key features for a wide34

range of engineering problems, they remain idealized simplifications that cannot offer adequate characterizations of real-world35

problems. Specifically, existing 2D studies commonly use discs (2D) in DEM to represent granular grains, and prohibit all out-36

of-plane grain motions and inter-particle interactions. Though such a setting may still render qualitatively sound predictions of37

the behavior of granular media27, the predictions may not be quantitatively comparable against experimental data (e.g., poros-38

ity, peak/residual stress, and dilatancy). It is also well-known that macroscopic phenomena of granular media are affected not39

only by the mechanical properties of specimens but also by the geometry setting and the loading conditions. A representative40

case is the compression test on the sand. For a densely-packed sample, cross-shaped shear bands are commonly observed under41

a plane strain setting, whereas octopus-shaped shear localization zone and diffuse failure may occur under triaxial compres-42

sion or extension28. Indeed, in the setting of a boundary value problem, material points at different locations of a problem may43

well undergo different loading conditions. To capture the influence of loading conditions on the failure behavior, 3D model-44

ing is required. Moreover, the 2D setting may also prevent modeling of some practical problems with realistic topography29,30.45

Therefore a true 3D multiscale modeling framework is highly desirable. Second, though the extension from 2D to 3D is con-46

ceptually straightforward, it remains challenging from an implementation perspective. A crucial issue to be addressed for 3D47

multiscale modeling is to mitigate the tremendous computational cost involved. Taking the MPM-DEM multiscale modeling48

as an example, for a typical 3D problem, the amount of material points involved is at least one order of magnitude larger than49

that in 2D. The RVE is embedded in each material point also needs to have more grain particles in the DEM solver in 3D than50

2D. These two factors interplay in a multiplying manner in increasing the demand for computational resources, causing several51

order of magnitude increase in computational cost for 3D modeling as compared to its 2D counterpart. It is mandatory that a52

high-performance solution has to be developed to make 3D multiscale approach entirely feasible for practical simulation.53
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W. LIANG ET AL 3

This study aims to propose a three-dimensional (3D) framework for continuum-discretemodeling of granular media to ease the54

limitations of existing 2D approaches. To accommodate the enormous computational cost of 3Dmultiscalemodeling, we propose55

a scalable and efficient parallel scheme for accelerating the computation.We further port the integrated modeling framework into56

a high-performance supercomputer facility (Tianhe-2) for large-scale computations. The rest of the paper is organized as follows.57

The 3D MPM-DEM multiscale framework is firstly introduced in Section 2. Section 3 elaborates the proposed parallel scheme58

and its implementation. Numerical examples, including a unit element test, a column collapse simulation, and the intrusion of59

a solid object, are presented and discussed in Section 4. Section 5 finally concludes this study with major findings and some60

further work.61

2 METHODOLOGY: HIERARCHICAL CONTINUUM-DISCRETE COUPLING62

Themultiscale framework in this study is established through a hierarchical coupling of a continuummethodMPM and a discrete63

method DEM. The MPM is used to solve a macroscopic boundary value problem (BVP) that may undergo large deformation.64

Attached to each material point of the MPM is a DEM assembly to serve a Representative Volume Element (RVE). The RVE65

receives boundary conditions from its attached material point to provide history-dependent mechanical responses for MPM66

through grain-scale, contact-based DEM simulations. The two-way, two-scale information passing helps to avoid assuming phe-67

nomenological constitutive models in solving large deformation problems. The 2D concept has been introduced in our previous68

work15. For sake of completeness, the following presents a brief recap of the hierarchical modeling framework emphasizing the69

general 3D case.70

2.1 MPM solver71

The kinematics and deformation of a continuum are assumed to be governed by the following the conservation of mass and
momentum:

D�
Dt

=0 (1)

�Dv
Dt

=∇ ⋅ � + �g (2)

where � is the density; v denotes the velocity; � is the Cauchy stress tensor and g is the gravity. In MPM, the continuum domain72

is discretized into a number of Lagrangian points (material point) which carry the mass, momentum, and other internal variables,73

e.g., stress �, deformation gradient F and void ratio e. Since these material points retain their mass throughout the computation,74

the mass conservation is automatically satisfied. To facilitate the computation of the spatial derivatives, MPM adopts an Eulerian75

grid as its background mesh, allowing the mapping of information from the material points to the grid nodes and vice versa.76

Moreover, with the background mesh as a scratch pad, the aforementioned momentum conservation can be derived in following77

weak form:78

ṗI = f intI + f extI (3)
with

ṗI =
∑

p
ṗpSIp (4)

f intI = −
∑

p
�p ⋅ ∇SIpVp (5)

f extI =
∑

p
mpbSIp + ∫

)Ω

NI�dS (6)

where the subscript ‘p’ and ‘I’ denote the properties associated with material point and grid node, respectively; ṗI is the material79

time derivative of nodal momentum; f intI and f extI are the internal and external nodal forces, respectively; ṗp is the material time80

derivative of momentum for material points; �p is the Cauchy stress; Vp and mp are the volume and mass of the material point,81

respectively; � is the boundary traction; NI is the shape function; SIp and ∇SIp are the weighting function and its gradient,82

respectively31. Once the nodal forces are computed, they are further distributed to its surrounding material points to update their83

states.84
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4 W. LIANG ET AL

With the nature of conventional continuum-based method, MPM relies on a constitutive model to link deformation and stress.85

However, granular media are high nonlinear and history-dependent due to their discrete nature. Phenomenological models for86

granular media have gained certain success in specific loading conditions, e.g., monotonic loading of pure rotational shear,87

it remains challenging for a single model (with one set of calibrated model parameters) to capture more complicated mate-88

rial response such as strain localization13, anisotropy12,6 and liquefaction under complex loading conditions such as general89

dynamic loading14 as in earthquake. DEM has been proven to be versatile and robust in reproducing highly nonlinear response90

of granular media under different loading conditions, directly from an assembly of particles. Using DEM to replace the use of91

conventional constitutive models in MPM can not only preserve the discrete nature of granular media but also bypass the need92

for phenomenological assumptions. The hierarchical coupling of MPM with DEM is hereby a perfect match for granular media93

modeling.94

2.2 DEM Solver95

DEM provides a numerical solution to each RVE attached to a material point in MPM for each incremental deformation at the96

macroscopic BVP. In DEM, the normal contact force f n and tangential/shear contact force f t are computed as follows:97

f n = − kcn�n (7)
f t = − min(kct ut,f n tan')t (8)

where kcn and k
c
t are normal and tangential contact stiffness, respectively; � is the contact overlap; ut is the relative shear incre-98

mental displacement; ' is the inter-particle friction angle, and n and t are the unit normal vector and unit tangential vector of99

the contact, respectively.100

In DEM simulation, two models, i.e., the linear spring model and the Hertz-Mindlin contact model32,33 are commonly used to101

describe the interaction between two contacted particles. The linear spring model assumes the contact stiffnesses to be constant,102

while the latter considers these stiffnesses varying with the contact overlap. It has been found that both models yield similar103

results on both microscopic and macroscopic mechanical behaviors of granular materials34. In our study, the linear spring model104

is adopted due to its computational efficient. In the linear spring model, the contact stiffnesses (kcn, k
c
t ) are given by:105

kcn =Er
∗ (9)

kct =�Er
∗ (10)

where E is the Young’s modulus; r∗ = 2rirj∕(ri + rj) is the harmonic mean of radii of the contacting particles; � = kct∕k
c
n is106

the stiffness ratio. Note that rolling resistance is not considered in the current study.107

In the proposed MPM-DEM framework, the essential information retrieved from the DEM solver is the Cauchy stress tensor108

�, which can be obtained by homogenizing over the deformed RVE based on Love-Weber formula35,36:109

� = 1
V

∑

Nc

d ⊗ f c (11)

where “⊗” denotes the dyadic product; V is the total volume of the assembly; Nc is the whole contact inside the RVE; d110

is the branch vector joining centers of the contacting particles, and f c is the contact force. Given the homogenized stress, the111

mean stress p and the deviatoric stress q can be defined as:112

p =1
3
tr(�) (12)

q =
√

3
2
s∶ s (13)

where “tr” indicates the trace of a tensor; “:” is the double contraction operator; s = � − pI is the deviatoric part of the stress113

tensor �, and I is an identity tensor. Likewise, the volumetric strain "v is calculated as follows:114

"v = tr(") = − ln
V0
V

(14)
where " is the strain tensor; V are the volume of RVE and V0 is its initial value. Positive volumetric strain denotes dilatancy.115
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W. LIANG ET AL 5

Averaged particle rotation � is another quantity that could be extracted from RVE to examine the micro-mechanical behavior116

of granular media, which is given by:117

� = 1
N

∑

N
�p (15)

whereN is the number of DEM particle in a RVE; �p is the accumulated rotation of an individual particle inside the assembly.118

3 HIGH-EFFICIENCY PARALLEL SCHEME AND ITS IMPLEMENTATION FOR119

COUPLED MPM-DEM120

The MPM-DEM multiscale framework comprises two simulation components: the macroscopic MPM solver handling the121

motion and deformation of the continuum body, and the mesoscopic DEM solver providing mechanical material responses based122

on particle-scale solutions. In particular, two popular open-source codes, CB-Geo MPM37,38 and YADE39 are employed for the123

MPM and DEM solvers, respectively.124

To integrate these two modules for granular media modeling, a specified interface is required for two-way information125

exchanging of the deformation and mechanical response. As computational cost may be a concern, the interface engine should126

also accommodate potential high-performance computing schemes for multiscale computation. In this study, the interface engine127

has been designed as a coupler to serve as an external executable to manage the overall workflow of the simulation. Both the128

MPM and DEM solvers are attached to the coupler as libraries. The coupler is programmed in Python to facilitate code inte-129

gration. This coupler has also been so designed to be sufficiently general and adaptable for other functionality enrichments, e.g.,130

adopting specialized SudoDEM26,40 for considering particle morphology. The implementation has been made noninvasive and131

user-friendly to avoid detailed refactoring for both solvers when it only needs to bind several C++ functions to Python to link132

with the coupler. Part of the code will be made publicly available.133

Apply loading to RVEs in each MPI process 

Scatter deformations to each MPI process

Gather stress from each MPI process

Load RVEs onto each MPI process 

Solve momentum equation  and update 
material points' state in MPM 

Compute deformation gradient for 
material points in MPM 

Rank#0 Rank#1 Rank#2 Rank#3 ... Rank#n

flat MPI model

Node#0 Node#1 Node#mDEM Mechanical solver 

t > tend ?

Start analysis

End analysis

DEM Mechanical solver 

Yes

No

FIGURE 1 The workflow for the proposed MPM-DEM multiscale framework. Also shown is a schematic for flat MPI model
in the DEM mechanical solver in which separate single-threaded MPI processes are executed on each core of cluster nodes.
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6 W. LIANG ET AL

Algorithm 1 Pseudocode for parallel MPM-DEM approach
1: if t = 0 then
2: if rank = 0 then
3: // In master MPI process
4: MPM.initialization()
5: end if
6: MPI.Scatterv(rve_index)
7: // In each MPI process
8: for i in rve_index segment do
9: DEM.addScene()
10: DEM.loadRve(i)
11: end for
12: end if
13: while 0 < t < tend do
14: if rank = 0 then
15: MPM.computeDeformation()
16: end if
17: MPI.Scatterv(rve_deformation)
18: // In each MPI process
19: for i in rve_index segment do
20: DEM.switchToScene(i)
21: DEM.shearRve()
22: DEM.computeStress()
23: end for
24: MPI.Gatherv(rve_stress)
25: if rank = 0 then
26: MPM.updateParticleState()
27: end if
28: t = t + Δt
29: end while

The workflow and the implementation for the parallel MPM-DEM multiscale framework are illustrated in Fig. 1 and134

Algorithm 1, respectively. Since the DEM simulation is the most computationally expensive part of the entire multiscale mod-135

eling, we have implemented the large-scale parallelization in distributed high-performance computing nodes based on Message136

Passing Interface (MPI) to accelerate this part solely, while leaving the less intensive MPM computation handled among differ-137

ent threads within a single node using Intel R© oneAPI Threading Building Blocks (oneTBB)41 for simplicity. In what follows,138

emphasis is placed upon the large-scale parallel computing scheme for DEM and we will use parallel scheme to denote this139

inter-node parallelization unless stated otherwise.140

Python package mpi4py is exploited for implementation of the parallel scheme. This implementation is based on the single-141

level flat MPI model, in which separate single-threaded MPI processes are executed on each core of multiple nodes42. Prior to142

the explicit time integration, theMPM solver will undertake the task of initialization, including parsing the input file and creating143

the background mesh. At this stage, a number of MPI processes are launched by the coupler with each running an independent144

DEM solver. The set containing the entire RVEs/material points index is then divided nearly evenly into ‘n’ partitions (‘n’ is145

the amount of MPI process) which are distributed to all MPI processes. With the assigned index, DEM solver on each MPI146

process will load the corresponding RVE packings into local memory. It is noted that loading packing into separated processing147

unit helps to achieve data parallelism, minimizing subsequent data exchange between the master and slave processes, and hence148

reducing communication overhead.149

Similar operations are executed in subsequent coupling cycles. First, the incremental displacement gradients dH t+1
p for all150

RVEs are computed in the MPM solver:151
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W. LIANG ET AL 7

from particle to grid: mtI =
∑

p
SIpmp, ptI =

∑

p
SIpptp, vtI = p

t
I∕m

t
I (16)

from grid to particle: dH t+1
p = Δt

∑

I
∇SIpvtI (17)

where mtI , p
t
I and vtI represent mass, momentum and velocity at grid node I , respectively; mp, ptp and v

t
p denote the mass,152

momentum and velocity of material point p, respectively. SIp and ∇SIp are the shape function and its gradient. The computed153

incremental displacement gradients (dH t+1
p ) are then distributed to all MPI processes by a collective communication routine154

MPI.Scatterv(). Based on these deformation information, the task of shearing RVE, which is the most computationally155

intensive part within the entire workflow, is undertaken by multiple DEM solvers held in different MPI processes. Once the156

loading of RVE is accomplished across all processing units, the material responses, e.g., Cauchy stress (Eqn. 11), and averaged157

particle angular velocity (Eqn. 15), are retrieved from the deformed RVE and sent back to the master rank (via MPI.Gatherv())158

to allow MPM solver to solve the momentum equation at grid node (Eqn. 3 - 6). Finally, with the updated grid node variables,159

the velocity vp and position xp for material points in MPM can be updated accordingly:160

vt+1p = vtp + Δt
∑

I
SIpṗt+1I ∕mtI (18)

xt+1p = xtp + Δt
∑

I
SIpvt+1I . (19)

161

Another commonly used parallel scheme is the multi-level hybrid parallel model43 in which coarse-grain parallelization162

is realized through MPI communication across nodes while fine-grain parallelization is achieved via loop-level parallelism163

inside each node using compiler optimizations such as OpenMP44. Although this hybrid MPI-OpenMP model may reduce the164

communication overhead over flat MPI model due to its allowing each thread directly access the shared memory within the165

same node, such performance enhancement may not compensate its complex programming. It is important to note that in the166

hierarchical multiscale framework, each RVE is independent of the others and thus only two collective communications, i.e.,167

MPI.Scatterv() and MPI.Gatherv(), are required in each computation step as shown in Algorithm 1. This favorable feature168

leads to a considerably low communication overhead as compared to those achieving parallelization via domain decomposition169

that requires frequent exchange of data for halo region (region shared between sub-domains).170

Load balancing is also one of the key aspects for achieving an optimal parallel performance. In the present parallelism imple-171

mentation, dynamic load balancing during runtime is not applicable, since RVEs are bound to specified MPI process before the172

main loop. Therefore, it is necessary to determine an optimal workload for assigned resources. One efficient and straightfor-173

ward approach is randomly numbering material points during the pre-processing, so that RVE with different deformation could174

be distributed evenly, and consequently, each MPI process could handle a DEM task with similar computational intensity (note175

that the computational speed of DEM solver is slightly affected by the configuration of an RVE, e.g., shearing a regular RVE is176

slightly faster than a skewed one). Such techniques are employed throughout this work.177

The proposed 3Dmultiscale framework implemented with the above parallel schemes has further been ported to Tianhe-2, the178

National Supercomputer Center in Guangzhou, China (NSCC-GZ) for large-scale 3D simulations. Tianhe-2 has around 16,000179

nodes with each equipped with 2-way 12-core Intel Xeon E5-2692v2 CPU, 3x Intel Xeon Phi co-processor and 64GB memory.180

It is also customized with internal high-speed interconnection TH-2 Express-2 within a torus network. Notably, although the181

proposed framework is run on massively large-scale architectures such as Tianhe-2, it is also suitable for medium-size clusters182

and common desktops since it is developed for the standard Linux environment, constrained only by the accessible memory.183

4 NUMERICAL EXAMPLES184

Numerical examples are presented in this section for three-fold purposes: (1) to validate the accuracy of the overall three-185

dimensional MPM-DEM framework, (2) to examine the performance of the proposed parallel scheme, and (3) to demonstrate186

the predictive capability of the multiscale approach empowered by efficient parallelism for engineering problems pertaining to187

granular media. A number of problems with increasing complexity have been selected, from a simple unit element test to the188
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8 W. LIANG ET AL

intrusion of solid objects into granular matter, to verify the accuracy, efficiency and versatility of the proposed 3D multiscale189

approach.190

4.1 Unit element test191

Unit element test is useful for validating the accuracy of numerical approaches including both FEM and MPM (see16,18,15). We192

herein use the unit element test to verify the accuracy of the overall three-dimensional framework including the information193

passing scheme between the macroscale and mesoscale under diverse boundary conditions. The configuration of the problem194

is shown in Fig. 2 . The cube sample has an element size of 1 m, the vertical displacement for bottom surface is fixed, the195

lateral surfaces are subjected to surface tractions t̄ = 100kPa and top surface is subjected to displacement loading Δu. The196

element is loaded to a state with a axial strain of "yy = 50% to validate the accuracy of the apporach at finite strain level. The197

unit cell comprises eight material points witch each attaching to an identical RVE. The RVE is generated with the following198

typical microscopic parameters: number of DEM particle N = 800, grain density � = 2650kg∕m3, radii of spherical particles199

r range from 3 to 7 mm (r̄ = 5 mm), Young’s modulus E = 100MPa, stiffness ratio � = kt∕kn = 0.8, and inter-particle friction200

� = 0.5. Each RVE packing is consolidated to a medium-dense initial state with a porosity n = 0.373 and a confining pressure201

pc = 100kPa prior to the global loading. It is noteworthy that the number of DEM particles we use in each RVE is slightly202

smaller than those in28,17 as our trail test show that the generated RVE also offer representative responses.203

u

t

FIGURE 2 Model setup for the unit element test. The vertical displacement for bottom surface is fixed, the lateral surfaces are
subjected to surface tractions t̄ and top one is subjected to displacement loading Δu.

Fig. 3 compares the MPM-DEM multiscale solutions, in terms of the stress-strain response and the dilatancy curve, with204

pure DEM simulations under the same loading condition of the unit test. It is evident that the multiscale solutions and pure DEM205

simulations consistently capture both the pre-peak and the strain softening responses and the dilatancy characteristics of the206

granular sample, confirming that the multiscale framework is well benchmarked. Note that the pure DEM simulations exhibit207

mild fluctuations due to the limited number of particles used for the RVE for intended computational efficiency.208

4.2 Granular column collapse209

Three-dimensional granular column collapse has been frequently investigated in both experiments45,46,47 and numerical sim-210

ulations47,48,49,50, which can be used as another benchmark test for the proposed framework. During the collapse process, the211

soil may simultaneously exhibit solid-like and fluid-like characteristics, making it challenging to predict by a single constitutive212

model. We hereby present a multiscale prediction of the column collapse problem and benchmark it with experimental test46,213

to showcase the potential of MPM-DEM approach in capturing material response across both static and dynamics regimes. A214

series of scaling tests are further conducted to evaluate the performance of the proposed parallel scheme.215

The model setup for the simulation shown in Fig. 4 follows exactly its experimental counterpart outlined in46. The initial216

height and length of granular column are set asHi = 60mm andLi = 100mm, respectively, with an aspect ratio of a = Hi∕Li =217

0.6. The dimension of the final deposition are measured byHf andLf . The granular column is placed on a rectangular chamber218
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W. LIANG ET AL 9

(a) (b)

FIGURE 3 Benchmark of multiscale predictions by pure DEM simulations: stress response and dilatancy curve for the unit
element test

Final
deposition

y
x

zHf 

Lf 

 Li 

Hi 

Initial
configuration

W 

FIGURE 4 Model setup for the 3D column collapse problem

with a width of W = 45mm. The microscopic parameters for the RVEs are selected as: number of DEM particle N = 800,219

grain density � = 2500kg∕m3, radii of spherical particles r = 1.8 ∼ 4.2mm (r̄ = 3 mm), Young’s modulus E = 600MPa,220

stiffness ratio � = kt∕kn = 0.5, inter-particle friction � = 0.384, and initial porosity n = 0.401. Specifically, the key parameter221

inter-particle friction � is determined according to the experiment46. In this simulation, the bottom surface is assumed to be222

nonslip whereas the side walls are frictionless. Before the collapse is triggered, an additional Dirichlet boundary condition223
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10 W. LIANG ET AL

(displacement constraint in y direction) is imposed at the outer lateral surface of the column to achieve an equilibrium stress state.224

This constraint is then removed to allow the column freely collapse and flow down. Following the experiment46, a dimensionless225

characteristic time �c is adopted in the analysis, which is related to the free fall of the granular column via �c =
√

Hi ∕ g, where226

g is the gravity. Accordingly, the characteristic time herein is computed as �c = 0.0782s, and t = 0 denotes the commencement227

of collapse process.228

4.2.1 Flow patterns229

Fig. 5 shows a comparison of the velocity field obtained by our simulation and the experimental data from46. It is evident that230

the slumping initiates from the upper edge of the outer surface of the column. The whole column is divided into two distinct231

portions by a clear failure surface above which the soil slides down as almost an intact bulk mass while the lower part remains232

still. The development of the collapse process is so swift that at t = 3�c , the majority of the soil ceases to move except the portion233

in the vicinity of the front and that close to the surface. The collapse process nearly ends t = 7�c as indicated by the extremely234

low velocity magnitude. Fig. 6 , further presents a quantitative comparison of the numerical predictions and the experimental235

measurements46 in terms of the scaled distance traveled by the collapsing mass. Again, the multiscale simulation yields a good236

agreement with the experimental study despite a slight delay in the collapse evolution.237
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FIGURE 5 Snapshots (front view) of velocity field obtained from the simulation and experiment46 at t = 0.5�c , 2�c , 3�c and
7�c .
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W. LIANG ET AL 11

FIGURE 6 Scaled travelling distance of the collapsing mass (experimental data from46)

4.2.2 Parallelism performance: strong scaling238

To evaluate the scalability and numerical performance of the proposed parallel scheme, a series of scaling tests are performed.239

We firstly examine the strong scaling test which is commonly used to measure the parallel efficiency for fixed workload problems240

(i.e., fixed number of material points/RVEs). In this test, the granular column has the same geometry as the aforementioned one241

and consists of 50, 000 RVEs. The simulation runs 100 steps with varying number of computers (which we refer to as node(s)242

hereafter). While the number of steps is relatively small, it has a minor influence on the drawn conclusion since the explicit243

integration used in both MPM and DEM solvers renders a stable computational time in each step. To obtain a detailed profile244

for analyzing the runtime behavior of the multiscale framework, the elapsed time for MPM, DEM and MPI communication245

are recorded separately. In particular, the cost of MPM computing includes locating material points in the background mesh,246

computing deformation gradient for all RVEs, and updating momentums and positions of material points; the DEM cost refers to247

the time for shearing all RVEs; and the cost ofMPI comprises scattering the deformation information and gathering homogenized248

stresses from all MPI process. Note that the file I/O routine (e.g., output .vtk file) is not included in the scaling test since it249

is only called every thousand steps in typical practice. The strong scaling test is performed with 1 to 420 computing nodes250

(corresponding CPU cores ranging from 24 to 10, 080), leading to a patch size (number of RVE per MPI process) roughly251

varying from 2083 to 5. Due to constraints by memory, the scaling test with one node is conducted in the same system with a252

larger memory (128 GB).253

For the strong scaling test, the average running time per step for each part of the simulation is shown in Fig. 7 . For the test254

without applying the parallel computing across multiple nodes, each DEM solution takes over 10 seconds, accounting for more255

than 97.7% of the overall elapsed time. It is thus reasonable to improve this specified part instead of the whole framework. Uti-256

lizing more nodes, it can be seen that the cost of the DEM drops substantially, approaching ideally to be inversely proportional257

to the number of nodes. On the other hand, as the MPM computation does not invoke any MPI-based parallelization, its con-258

suming time stably varies between 0.27 s and 0.37 s. As for the MPI part, the communication overhead is comparatively low,259

around two orders of magnitude lower than that of the MPM part when the node number is small, i.e. smaller than 32. As more260

computing nodes are involved, the MPI cost increases dramatically. For example, the MPI overhead is around half of that of261

DEM when using 128 nodes. However, this communication overhead becomes one order higher than the latter when using 420262

nodes, and gradually becomes the bottleneck of the multiscale simulation. While not presented for brevity, we also observed263

the communication overhead of scattering the incremental displacement gradient is slightly higher than that of gathering the264

stresses due to the former has larger message size.265

With the running time profile, it is straightforward to measure the performance of the parallelism. It is noted that, we use266

the computational cost with 1 computer node (24 CPU cores) as our scaling reference as our focus is placed on the inter-node267
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12 W. LIANG ET AL

FIGURE 7 Averaged execution time per step for each part of the computation in the strong scaling test

parallelization. Herein, ‘speedup’ and ‘parallel efficiency’ are used to quantify the scalability and the efficiency of the proposed268

parallel scheme, which could be straightforwardly defined as:269

speedup = t1∕tNnode
(20)

parallel efficiency = t1∕(tNnode
×Nnode) (21)

(22)

where t1 and tNnode
denote the time needed to accomplish the computation using 1 and Nnode node(s), respectively. In strong270

scaling test in parallel computing, the upper limit of speedup prescribed by Amdahl’s law51 reads:271

speedup = 1
s + p∕Nnode

(23)

where s is the fraction of serial part of the computation not amenable to parallelization referring to the MPM computational272

cost herein, while p is the proportion of parallelized computation. According to aforementioned time profile, p and s are taken273

as 0.977 and 0.023, respectively.274

Fig. 8 (a) depicts the speedup for the overall computation (MPM + DEM +MPI) and DEM standalone parts. It can be seen275

that the DEM achieves an ideally linear enhancement of performance for all running configurations due to the independence of276

RVE with no communication overhead, demonstrating the efficiency of the proposed parallelism strategy. However, as for the277

overall performance, the speedup appears to approach the upper limit (Eq. 23) for the medium nodes size (e.g., 128 nodes), and278

drops slightly with more nodes. Such a performance degradation is more noticeable in the parallel efficiency shown in Fig. 8 (b),279

especially when the node number increases from 32 to 128. Clearly, this reduction of efficiency is attributed to the exponential280

increase in communication overhead which overwhelms the performance enhancement pertaining to DEM. Fig. 8 , revealing281

that the proposed parallelism scheme based on flat MPI model is suitable for medium node size (e.g., 64), and the bottlenecks in282

communication overhead eventually arise for larger node size and prevent the scheme from achieving an efficient scaling. For an283

extremely large number of nodes, devising more advanced multi-level parallelization may reduce the communication overhead284

and help leverage the strong scaling performance, which is, however, out of the scope of this work.285

4.2.3 Parallelism performance: weak scaling286

A weak scaling test is also conducted to investigate the scalability of the parallelism. It is designed to examine whether the size287

of problems can be scaled up with the amount of available computational resources, which is of great importance in designing288
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(a) (b)

FIGURE 8 The parallel performance in the strong scaling test: (a) speedup, (b) parallel efficiency

the model setup. The simulation with 1 computer node is taken as the reference test which contains 4.800 RVEs. While other289

model systems increase by a factor of 2 in the problem size. The fully running configuration on Tianhe-2 invokes up to 512290

nodes and 12, 288 CPU cores, resulting in a problem size of 2, 457, 600 RVEs which is at least two orders of magnitude larger291

than our previous multiscale simulations15,52.292

FIGURE 9 Averaged execution time per step for each part of the computation in the weak scaling test

Fig. 9 presents running time profile of the scaling test. It is evident that the DEM cost in each step stabilizes at around 1.3 s293

for different problem sizes. This is not surprising since the problem size is linearly proportional to the amount of nodes and the294

patch size (number of RVE per MPI process) remains constant during the course of scaling. In contrast, without implementing295

any MPI-based parallelism among distributed nodes, the MPM cost increases with the problem size and eventually exceeds the296

DEM part when the scaling factor is up to 64 (307, 200 RVEs). Likewise, the cost of MPI part also increases with the amount297
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14 W. LIANG ET AL

of MPI processes, but remains approximately two orders lower than that of MPM. It is also noted that the increasing rate of298

MPI communication overhead appears to be faster once the node number is larger than 64, indicating a growing complexity of299

message communication with a larger number of MPI processes53. Similarly, we use ‘scaled speedup’ and ‘parallel efficiency’300

for measuring the performance of parallelization in weak scaling, which could be defined as:301

scaled speedup = t1∕tNnode
×Nnode (24)

parallel efficiency = t1∕tNnode
(25)

where Nnode is incorporated in the scaled speedup to reflect different problems size involved. In weak scaling test of parallel302

computing, Gustafson’s Law54 provides an estimation of the upper bound of scaled speedup, which reads:303

scaled speedup = s + p ×Nnode (26)
where s and p have the same definition as those in Eq. 23.304

(a) (b)

FIGURE 10 The parallel performance in the weak scaling test: (a) scaled speedup, (b) parallel efficiency

The parallel performance in the weak scaling test is plotted in Fig. 10 . Again, the parallel scheme manifests itself as the DEM305

computation, the kernel component of the multiscale framework, achieves almost ideal performance enhancement. Because of306

the relatively high value of p (p = 0.977), the bound obtained from Gustafson’s Law54 nearly converges to the ideal linear curve.307

The overall scaled speedup exhibits an almost linear increase when the node size is smaller than 64, where the problem has308

been enlarged up to 307, 200 RVEs. However, with the increase in both node size and the problem size, the parallel efficiency309

drops gradually and goes below 0.2 when the number of node increase to 256. Moreover, it is also observed that the scaled310

speedup diverges fromGustafson’s Law prediction and reached only 40 at the fully running configuration. Clearly, this deviation311

is attributed to the characteristic of our parallel scheme which only implements MPI-based parallel computing on distributed312

nodes for the DEM part while the MPM computation is handled on a single node. Although this strategy is straightforward and313

efficient, it can hardly guarantee an optimal load balance. As shown in this weak scaling test (c.f. Fig. 9 ), when the problem size314

and node size are sufficiently large, the DEM computational task is accomplished as fast as or even faster than that of the MPM315

part, resulting in the occurrence of process idling and inevitable performance degradation. Though one could further improve316

the overall performance via implementing MPI-based parallelism for the MPM solver, it requires more advanced coding skills.317
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4.3 Intrusion of solid object318

The multiscale modeling framework empowered by the proposed parallel scheme renders it possible for efficient simulation of319

large-scale boundary value problems. A demonstration is presented on its simulation of the intrusion of a solid object into the320

granular media. Motivated by a recent study by55, where the drag forces are examined experimentally by driving the intruder321

quasi-statically into the granular matter, e.g., glass beads, quartz and millet. The same topic has attracted a series of interesting322

studies recently56,10,57,58.323

FIGURE 11 Model setup for the intrusion of solid object into granular media: (a) rectangular and circular cross-sections of the
intruders (b) the background mesh and (c) the material points used to discretize the intruder and the soil

Fig. 11 illustrates the simulation setup involving two types of intruders with a dimension of 1 meter in both height and324

diameter: cylinder and cuboid. Given the symmetry nature of the problem, only one quarter of the domain is simulated with a325

dimension of 5 × 5 × 5 m. Fig. 11 (b) and (c) show the mesh and the associated material points, respectively. The minimum326

element/cell has a size of 0.0625 m in each dimension, and each cell comprises 8 material points. During the simulation, the327

intrusion velocity first linearly increases to 0.25 m/s, and is then kept constant to alleviate the stress oscillation caused by the328

potential dynamic effect. Note that the selected loading velocity is sufficiently small to maintain a quasi-static penetration.329

Without losing generality, the RVEs are prepared with typical microscopic parameters that have the same values as those in the330

unit element test (Section 4.1). The initial porosity n of the RVE is around 0.397. In this example, the problem size allows a total331

simulation of up to 287, 496 RVEs and equivalently 229, 996, 800 DEM particles. Each simulation takes around 39.6 hours to332

accomplish on 40 nodes (960 CPU cores).333

We firstly investigate the deformation patterns of the granular media during the intrusion. Fig. 12 shows the displacement334

fields for both cases of cylindrical and the cuboid intruders. Despite the difference in the cross-section shape, both simulations335

share a similar deformation pattern: a cone-shaped stagnant zone is developed ahead of the intruders, displacing aside the frontal336

soils and penetrating downward alongside the intruders. As the penetration proceeds, the soil immediately on the side of the337

intruder is squeezed upwards, forming a mild heave on the ground surface. Since the soil used in the simulation is in a medium-338

dense state and does not exhibit apparent dilatancy, such heaving is insignificant. Also, it can be seen that the influencing region339

of the cuboid intruder, i.e., the stagnant zone and the mobilized mass, is slightly larger than that of the cylindrical intruder340

because of the larger cross-section area.341

Fig. 13 presents the vertical resistant force during the intrusion. In particular, dimensionless quantities, i.e., normalized342

force p̃u = pu∕(�gR) and normalized displacement d̃ = d∕R, are introduced according to55. For the cuboid intruder, the343

equivalent radiusRe =
√

4S∕� is taken, where S is the area of intruder cross-section and the constant 4 accounts for the quarter344

model adopted. Fig. 13 shows that the p̃u − d̃ relation for intruders with different cross-section shapes collapses to a single345

curve consisting of an initial nonlinear regime and a steady-state linear regime, in excellent agreement with the experimental346

observation55,57. Following past studies55,57, we then fit this force-depth relation in steady regime by p̃u = K�d̃ + p̃0. It is clear347

that the linear law fits the normalized forces of both intruders well with a gradient K� of 23.024. As pointed out in the recently348
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16 W. LIANG ET AL

FIGURE 12 Contours of displacements for (a, c) cylindrical and (b, d) cuboid intruders at the final state

proposed modified Archimedes’ law55, K� is independent of the intruder shape. Instead, it depends only on the internal friction349

angle (repose angle) � of the intruded media, and could be formulated by following equation:350

K� =
2(1 + sin�)
1 − sin�

e� tan�
1

∫
0

�A(�, �)d� (27)

where A(�, �) could be expressed as351

A(�, �) =
(r1+tan

2 �
1

rtan
2 �

2 r3

)sin�
esin� tan �Z(�,�) (28)
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FIGURE 13 Normalized force versus normalized displacement

and coefficient �, r1, r2, r3 and Z(�, �) are computed as follows:352

� = �
4
−
�
2

(29a)

r1 = R
(

1 +
2(1 − �)
tan �

e
�
2
tan�

)

(29b)

r2 = R
(

1 +
R(1 − �)
tan �

e
�
2
tan�

)

(29c)

r3 = R� (29d)

Z(�, �) =

�∕2

∫
0

(� − 1)e tan� cos( + �)
cos�[sin � + (1 − �)e tan� sin ( − �)]

d (29e)

In an attempt to further compare our numerical solution with the above theoretical prediction, the repose angle � of the RVE353

packings is measured as 26.8◦ with a standard deviation is 1.5. We plot (�,K�) from current multiscale modeling onto Fig.354

14 in a comparison with the theoretical prediction55 and experimental data55,56,58. It is clear that our multiscale solution is in355

an excellent agreement with the prediction by the modified Archimedes’ law, providing another strong support for this newly356

proposed theory from a numerical perspective beyond a pure DEM study57.357

In addition to theK� −� relation, the modified Archimedes’ law also implies that the resistant force during the intrusion into358

a granular matter is linearly proportional to the effective penetrating volume V (d) = Sd + Vsz(d) that comprises the immersed359

volume of the intruder Sd and the growing volume of the stagnant zone Vsz(d). Specifically, the latter governs the initial360

nonlinear regime of the resistance force. To date, the growing mechanism of the stagnant zone remains open.58 postulates that361

the stagnant zone extends its volume from a flat disc to a cone wedge, analogous to a fixed-base frustum with increasing height.362

On the other hand,59 argued that the stagnant zone starts as a short wedge and gradually ‘fanning out’, converging eventually to363

a trapezoid-like shape. Therefore, it is of interest to investigate the initial nonlinear regime of force-displacement curve and its364

underlying development mechanism for the stagnant zone.365

A critical step of investigating the development mechanism of stagnant zone is to select an appropriate quantity to measure366

the stagnant zone. As pointed out in55,58, the formation of stagnant zone is largely attributed to the jamming of grain particles367

ahead of the flat plate, and the material close to the side surface of the stagnant zone would fall into plastic flow regime, showing368

a strong tendency of shearing. From the particle-scale perspective, shearing commonly takes the form of particle rolling, and369

therefore, the averaged particle angular velocity �̇ (obtained via �̇ = (�t+1 − �t)∕Δt, where � represents the averaged particle370
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FIGURE 14 Relation of K� and �

rotation as indicated in Eqn.15) serves as an ideal indicator for visualizing the dynamic development of the stagnant zone. Fig.371

15 compares the averaged particle angular velocity for the cylindrical intruder in various stages of the intrusion. Those for372

the cuboid intruder show similar patterns and are not presented here for brevity. It is observed that a stagnant zone is formed373

in front of the intruder, being partitioned by those with noticeable averaged particle angular velocity. In particular, during the374

initial period of intrusion (Fig. 15 a-d), the stagnant zone takes a shape of frustum whose base is coincident with the bottom375

of the intruder. As the intrusion proceeds, the height of the frustum gradually increases, and at d̃ = 0.10, the frustum eventually376

develops into a cone and maintains its shape afterward till the end of the intrusion at d̃ = 2.0. This observation is in line with377

the postulation by58, while the ‘fanning out’ mechanism of the wedge59 has not been observed from our simulations.378

The DEM solutions at particle scale enable us to further examine the complex evolution of stagnant zone. In Fig. 16 , we379

show the contact force chain network for three probing RVEs at different stages during the formation of the stagnant zone. As380

marked in Fig. 11 c, the three selected RVEs 1 are located underneath the center of the intruder with varying depths (and indeed381

they are eventually enclosed within the final stagnant zone). Before the commencement of the intrusion, the RVE buried deeper382

has a slightly stronger contact force because of the larger geo-static pressure. Shortly after the intrusion (i.e., d = 0.007m), the383

RVE on the top is firstly compacted while the other two do not experience noticeable compression. As the penetration continues384

(i.e., d = 0.0437m), the compression propagates to the intermediate RVE while leaving the bottom RVE roughly intact. The385

evolution of the force chain in Fig. 16 clearly reveals the propagation of the compaction during the intrusion process, which is386

previously reported in high-porosity sandstones22,23. Again, this mesoscopic analysis further confirms the postulation by58 that387

the stagnant zone forms in the mechanism of growing frustumwhose height keeps increasing due to the downward solidification.388

5 CONCLUSIONS389

This study presents a scalable three-dimensional (3D) multiscale framework for continuum-discrete modeling of granular media.390

The proposed multiscale framework rigorously couples Material Point Method (MPM) and Discrete Element Method (DEM)391

for cross-scale simulation of large-scale boundary value problems. The MPM is used to solve the governing equations of a392

macroscopic boundary value problem that may enter a large deformation regime, while the DEM serves as a surrogate model393

for the continuum history-dependent constitutive response at each material point of MPM. The innovative bridging of MPM394

1coordinates for RVEs: (0.0156, 0.0156, 4.86), (0.0156, 0.0156, 4.80), (0.0156, 0.0156, 4.70)
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FIGURE 15 Averaged particle angular velocity magnitude �̇ for the cylindrical intruder in various stages of the penetration:
(a) d̃ = 0.0062, (b) d̃ = 0.025, (c) d̃ = 0.050 (d) d̃ = 0.10, (e) d̃ = 1.0 and (b) d̃ = 2.0

and DEM allows us to easily tackle geomechanical problems characterized by large deformation and strain localization while395

respecting their grain-scale physics. The major findings are summarized as follows:396

1. The proposed multiscale framework has been well validated by unit element tests and its application to modeling 3D397

granular column collapse. The multiscale model offers consistent predictions with pure DEM simulations of the used RVE398

for the unit element test and comparable data with experimental tests on the column collapse problem.399

2. To accommodate the high computation cost pertaining to 3D multiscale simulations, an effective and scalable parallel400

scheme has been propoised based on the flat MPI model. Through loading and shearing individual RVE in a specified401

MPI process, task parallelism and data parallelism are achieved. It is demonstrated that parallel scheme could achieve402

around 32X and 40X speedup in strong and weak scaling tests, respectively.403

3. A large-scale complex intruder problem is simulated by our proposed multiscale approach empowered by the parallelism404

schemes. It is found that the resistant force and penetration depth relation during the intrusion exhibits an initial non-linear405

response before becoming linear, and the slope of the steady-state response K� depends only on the internal friction of406

the intruded granular media, providing a strong numerical support for the recently proposed modified Archimedes’ law407

theory55. Further cross-scale analyses also reveal that the stagnant zone develops downwards from the top, following a408

frustum shape with a fixed base and an increasing height.409

Although the parallel scheme based on the flat MPI model eases the implementation and helps to achieve excellent numerical410

performance for the proposed multiscale approach, it is suitable only for moderate resources (MPI process number ∼ (103))411

and problem size (RVE number ∼ (106)). When both sizes of nodes and the problem dimension increase, the communication412

overhead and the MPM cost gradually grow and become the bottleneck of the entire computational framework, affecting its413

overarching performance. It deserves further investigations on the overall parallelism to gain better performance. This may414

include the implementation of multiple CPU-based60 or GPU-based61,62 parallelism for the MPM solver and optimization of415

the communication overhead for massively large scaling.416
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FIGURE 16 The evolution of force chains for three selected RVEs

Some modeling issues related the multiscale approach itself are also noteworthy. Because of large deformation or strain417

localization, it is observed that some attached RVEs to the material points (e.g., inside shear band) deform severely, becoming418

excessively thin and slender to require a reinitialization. This treatment unavoidably results in the loss of material loading history419

and introduces inaccuracy to some extends. It is noted that some effort have been make recently to address such issue, for420

example, using a rotating framework of reference and developing an adaptive RVE with evolutionary periodic boundary63,64,65.421

It would be encouraging to incorporate these attempts into the proposed approach to further advance the multiscale modeling422

of granular media.423
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