
Mechanics Research Communications 122 (2022) 103890

Available online 27 March 2022
0093-6413/© 2022 Elsevier Ltd. All rights reserved.

Peridynamic modeling of stochastic fractures in bolted glass plates 
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A B S T R A C T   

This paper presents a peridynamics-based computational approach for modeling fractures in bolted glass plates 
that features an explicit consideration of randomly distributed micro-flaws. The glass fabrication procedures are 
assumed to produce a stochastic distribution of a single population of Pareto-distributed surface flaws and mono- 
sized edge flaws. Numerical simulations are presented of the cracking that develops for varying geometrical 
configurations of the glass plates under in-plane loads, using a plane stress ordinary state-based peridynamics 
formulation. The fracture patterns and failure loads predicted by the models agree reasonably well with corre-
sponding experimental observations. The results from a series of simulations suggest that the distribution of 
strength can be fitted by the Weibull distribution or normal distribution, but is strongly dependent on the 
assumed values of edge flaw density and flaw depth.   

1. Introduction 

The use of load-bearing architectural elements made of glass has 
gained increasing popularity in the past decades, particularly in façade 
structures. The glass components are designed to resist various types of 
loads including those associated with wind, snow, impact, vibration, and 
thermal effects. Determination of the appropriate strength is a critical 
task for design, because past studies have made it abundantly clear that 
the strength of glass is highly uncertain and is dependent on a variety of 
factors associated with its production, transportation, and handling. The 
ambient service environment, such as temperature and humidity, is also 
known to degrade glass strength through subcritical crack propagation 
referred to as static fatigue [1–3]. The presence of randomly distributed 
surface flaws is generally accepted as a dominating factor to the statis-
tical nature of glass strength, and numerous statistical strength models 
have been proposed to provide a theoretical basis for engineering 
design. It is most common to assume that the failure probability of a 
glass plate follows the Weibull distribution [4], which can be derived 
from stochastic distribution of either volume or surface flaws [5,6]. 
Experimental strength data has shown that the traditional 
two-parameter Weibull model, which assumes a lower bound strength 
equal to zero and non-interacting cracks, is severely limited in charac-
terizing the strength distribution of glass. The three-parameter Weibull 

model [7,8] was therefore proposed by considering a lower bound of the 
glass strength, while bimodal Weibull statistics [9] was proposed to 
account for the bimodality of the failure probability curve observed in 
experiments [10]. The glass failure prediction model (GFPM) [11] offers 
a link between the Weibull failure probability equation [4] with the 
stress condition in glass with consideration of various factors such as 
flaw orientation and stress duration. 

When bolted connections are used to transfer load between two glass 
panels or between a glass panel and another structural component, the 
holes introduced in the glass to accommodate the bolt produce stress 
concentrations. Therefore, extra care must be taken to ensure adequate 
strength at the glass-bolt connections. The strength of such connections 
is known to be strongly dependent on the method used to cut the holes. 
For instance, the holes drilled by a waterjet generally have the lowest 
capacity as compared with other cutting methods [12,13]. Measure-
ments of micro-crack sizes using confocal microscopy have further 
revealed that different edge finishing procedures result in largely 
different depths and sizes of edge flaws [14], which together with sur-
face flaws (the upper and lower surfaces of the glass panels), dictate the 
load-bearing capacity of bolted glass connections. 

The stochastic behavior of glass strength can also be quantified 
through micromechanics based computational approaches. These can 
generally be classified into two categories – the elemental strength 
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approach and the flaw size approach [15]. The former considers a sto-
chastic distribution of strength of elements in a material domain [16, 
17]. It does not directly model the size or orientation of flaws and 
considers the strength in each element to be isotropic. For the model to 
be valid, the flaws must be randomly orientated. The elemental strength 
model may be regarded as an indirect description of the stochastic dis-
tribution of discrete flaws. In contrast, the flaw size approach explicitly 
models discrete and non-interacting surface flaws of randomly distrib-
uted size [18–21]. When implemented in Finite Element Method (FEM) 
analyses, the strength of an element is determined by the largest flaw 
within it, and according to the weakest-link principle, the material fails 
when the weakest element does. The flaw size approach has gained 
popularity with improved computing power that allows Monte Carlo 
simulations of various scenarios of glass failure [19,21]. An advantage of 
explicitly modeling the stochastic distribution of flaws is that the 
physical origin of the glass strength variation can be directly quantified. 
However, in most existing studies, although the flaws are explicitly 
considered, the fracture initiation and propagation in the material have 
not been properly considered. Instead, the material failure is considered 
through a stress-based criterion where the critical stress is inferred from 
the Griffith theory. The challenges in modeling material fractures arise 
from the difficulties in modeling the continuum-discrete transition using 
traditional methods such as FEM where the partial differential equations 
cannot be solved in the presence of large numbers of growing and 
interacting flaws (i.e., discontinuities). The recent development of novel 
particle-based computational methods offers potential alternatives to 
the FEM. Notably, the peridynamics (PD) theory, which is a reformu-
lation of continuum mechanics in non-local form [22,23], offers promise 
for modeling discontinuities and the continuum-discrete transition. The 
governing equation in PD is formulated in an integral form that can 
naturally incorporate complex geometric discontinuities. Therefore, the 
flaw size approach described above can be embedded in a PD model to 
simulate fracture in glass with the benefit that the initiation and prop-
agation of flaws can be explicitly modeled. In this way, the numerical 
model can fully capture the physics underlying the macroscopic strength 
variation without having to resort to phenomenological laws. 

In this paper, we employ the PD theory to model fracture and 
strength statistics of bolted glass panels subjected to in-plane loads. The 
surface flaws and the edge flaws are incorporated statistically. The 
failure loads and fracture patterns obtained from simulation are 
compared with experimental records. This paper is organized as follows. 
Section 2 presents the methodologies used for the model, including the 
PD theory, a contact model that accounts for the interaction between the 
bolt and the glass plate, and statistical models of flaws. Section 3 pre-
sents the numerical simulations and validations. The results are sum-
marized in Section 4. 

2. Methodology 

2.1. Peridynamic theory 

The PD theory is an alternative formulation of classical continuum 
mechanics, in which a continuum material domain is modeled with 
interactive material points. Several types of PD formulations have been 
developed to define the interaction between material points. The early- 
stage PD theory, which is bond-based, assumes that material points 
interact through independent elastic bonds. The formulation is 
restricted to specific values of the Poisson ratio: 1/3 and 1/4 for 2D and 
3D models, respectively. The state-based PD (SBPD) formulation lifted 
the restriction on Poisson ratio by allowing a material bond to depend on 
neighboring bonds. The SBPD can be further classified into ordinary and 
non-ordinary types. The former is a pure PD formulation and the latter 
recasts the PD formulation within the traditional continuum mechanics 
framework so that classical constitutive models of complex material 
behavior can be conveniently incorporated within it [23]. For this study, 
the ordinary SBPD has been employed for modeling the elastic and 

brittle behaviors of glass. The governing equation can be expressed by 

ρxüx =

∫

Ωx

[T < x’ − x> − T < x − x’ > ]dVx’ + bx (1)  

where ρ is material density, u denotes deformation, Ω defines the family 
of a point and Vx’ represents the volume of a neighboring point. The 
family of a material point is defined by a radius named horizon. All points 
within the horizon are considered within the family of a material point. 
The horizon is taken to be three times the element size in this study. The 
element size refers to the size of a cube (square for 2D) having the same 
volume (area for 2D) as the material point. As will be mentioned sub-
sequently, an adaptive scheme for the element size is used in this study 
to reduce computational cost. Consequently, each point has a specific 
horizon and family. The formulation is referred to as dual-horizon PD 
formulation for which the conservation of linear and angular mo-
mentum has been proved [24]. b represents body force density. The 
subscript denotes a material point and the angled brackets denote a bond 
vector. T is a force state that maps the bond deformation into bond force 
density. In the present study we adopt the linear peridynamic solid (LPS) 
model [23] to simulate glass in plane stress conditions. The force state T 
is defined following [25] by 

T < x’ − x >= t
Y

‖ Y ‖
(2)  

t =
2k’ϑ

m
ω< ‖ ξ ‖>‖ ξ‖ +

8μ
m

ω < ‖ξ‖ > ed (3)  

where ξ and Y represent the undeformed and deformed bond vectors, 
respectively and t is a scalar force state representing the magnitude of 
the bond force density. x′ − x in the angle brackets denotes the vector 
originating from point x and pointing to a neighbor point x′. These 
concepts are illustrated in Fig. 1. ω〈||ξ||〉 is an influence function 
computed at bond ξ. The influence function is defined to be ω〈||ξ||〉 =
δ/||ξ|| in the present study. μ denotes the shear modulus of the glass and 
k′ = E/2(1 − ν) represents the equivalent bulk modulus for plane stress 
condition where E and ν are the Young’s modulus and Poisson ratio, 
respectively (refer to [26]). The weighted volume m and dilatation ϑ at a 
material point are computed by 

mx =

∫

Ωx

ω< ‖ ξ ‖>‖ ξ‖2 dVx’ (4)  

ϑx =
2

mx

∫

Ωx

ω< ‖ ξ ‖>‖ ξ ‖ e dVx’ (5)  

where e = ‖ Y‖ − ‖ ξ‖ represents extension of a bond. It can be further 
divided into an isotropic part, ei, and a deviatoric part ed where ei =

ϑ‖ ξ ‖/2 and ed = e − ei. 
The initiation and propagation of cracks are modeled by allowing the 

peridynamic bonds to break irreversibly. Once a bond is broken, the load 
that was originally borne on that bond is redistributed to neighboring 
bonds and such process may trigger additional breakage of peridynamic 

Fig. 1. Schematic illustration of peridynamic bonds.  
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bonds; thus cracks can initiate and propagate. For elastic brittle mate-
rials modeled in this study, a critical stretch damage model [27,28] is 
employed to simulate bond breakage. The model assumes that a bond 
breaks when its strain reaches a critical value. The critical bond strain 
can be related to critical energy release rate of the material through 

sc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Gc

/{[
6
π μ +

16
9π2 (k

′
− 2μ)

]

δ
}√

(6)  

where Gc is a material constant representing the critical energy release 
rate. For mode I fracture, Gc is related to the fracture toughness Kc by Gc 
= Kc

2/E. The critical stretch is not a constant in the present study due to 
the varied element size (and subsequently the varied horizon) adopted. 
Bonds originating from a material point will have their critical stretch 
calculated based on the horizon at that point. In the framework of per-
idynamics, the damage of a material point can be expressed by a 
weighted percentage of broken bonds as 

φ = 1 −

∫

Ωx
g < ξ > dVx’
∫

Ωx
dVx’

(7)  

where g〈ξ〉 indicates the status of a bond. If g〈ξ〉 is equal to unity the bond 
is intact, and when it is equal to zero it is broken. Therefore, the damage 
φ equals zero for an intact material point and rises to a maximum value 
of 1.0 when all the connecting bonds are broken. The damage parameter 
of material points is used to locate fracture surfaces. 

2.2. Contact model 

At the bolt connections, a metal ring is inserted between the bolt and 
the hole cut in the glass. An elastic contact model is used to model the 
interactions between the ring and the glass. The contact model has a 
similar form to the short-range force model used in previous PD studies 
[29,30] which writes 

f c = min{0, kn(‖ Y ‖ − dc)}
Y

‖ Y ‖
(8)  

where the computed contact force fc is added into the momentum 
equation, i.e., Eq. (1), dc represents a critical distance below which the 
two points are considered in contact (set equal to the element size). kn 
denotes the stiffness at contact which is selected to be 30 N/mm in the 
present study. In this study, the contact model is mainly used to transfer 
the loads from the metal ring to the glass panel. It was found that the 
magnitude of the stiffness does not significantly influence the failure 
load and fracture patterns of the glass plates. Nonetheless, the stiffness 
should not be selected too high since this may lead to numerical stability 
issues. It should also not be chosen too small because this may cause 
overlapping of contacting material points. Moreover, one should be 
aware that the contact stiffness may affect material strength if fracture is 
initiated from the contact region, which, however, is not the case in the 
present study. It can be inferred from Eq. (8) that the contact force al-
ways acts along the bond direction as a repulsive force. The applied 
contact model is a local model where the material interacts with its 
immediate surrounding points. Non-local type contact models [31] are 
also worth future investigation to test their performance when used in 
the non-local PD framework. 

2.3. Surface and edge flaws 

The variation in the strength of glass is predominantly attributed to 
the stochastic distribution of surface flaws. It has been derived that a 
Pareto distribution in the size of surface flaws leads to a Weibull dis-
tribution of strength [32], with evidence that the surface flaw sizes can 
indeed be described with a Pareto-like distribution [33,34]. Kinsella & 
Persson [21] further employed a dual-population model for surface 
flaws to account for the bimodality in glass strength where the large and 

small flaws are modeled with Pareto and Fréchet distributions, respec-
tively. In the present study, we consider a Pareto distributed population 
of surface flaws whose cumulative distribution follows 

P(x) = 1 −
(a

x

)c
(9)  

where P(x) represents the cumulative probability of a flaw with size 
equal or less than x. The scale parameter a and the shape parameter c are 
taken to be 0.01 (mm) and 2.0, respectively with reference to [15]. The 
surface flaw density is assumed to be 2 per cm2 as suggested by optical 
measurements [35] for flaw size not less than 8 μm. Surface flaws with 
size of 200, 150, 100, 50, and 20 μm are assumed. The largest flaw size of 
200 μm is adopted from past works [19]. Flaws smaller than 20 μm are 
not explicitly modeled in view that the discretization adopted in the PD 
model does not offer such resolution. The flaws are rendered indepen-
dent of each other by partitioning the material domain into square units 
with size of 1 cm2 and inserting them at random positions and extending 
them at a random direction within each unit. 

The flaws at the edges of glass panels are known to be strongly 
dependent of the machining process. Existing studies show that the flaw 
size ranges from tens of microns to over 100 microns and can be 
described by a normal distribution [14]. The edge flaws are modeled at 
the outer edge and near the holes in the glass panel, and their density is 
assumed to be the same as that of the surface flaws. The edge flaws are 
perpendicular to the edge. In the PD model, each flaw is modeled as a 
pre-existing crack by setting as broken, at the beginning of the analysis, 
a portion of bonds crossing the crack (which we denote as p) [36]. The 
parameter p ranges between zero and unity for all cracks and an assumed 
p = 1.0 implies a cut-through crack in the glass. In the simulations, it has 
been assumed that p = 0.3 for all surface flaws and p = 0.1 for all edge 
flaws. p can be generally treated as a numerical parameter that depends 
on the depth of the flaw. For the edge flaws at the bolt hole, assuming p 
= 0.1 may be roughly interpreted as a flaw with depth of 0.1 times the 
element size (0.2 mm in this study) thus a flaw depth of 20 microns. The 
parameter can of course be further calibrated and correlated with 
different types of flaws. 

3. Modeling fractures in bolted glass 

3.1. Model setup 

Numerical models are created to study the fracture of bolted glass 
panels under in-plane loads. The scenarios studied include single-bolt 
connection with varying bolt-to-end and bolt-to-edge distances, and 
multi-bolt connection with varying hole distance. Fig. 2 shows a sche-
matic illustration of the simulated glass specimens. The length and 
width of the specimen are 400 mm and 150 mm, respectively, with a 
thickness of 10 mm. The holes have a diameter of 30 mm. An aluminum 
ring is positioned inside the hole to host the bolt. Three series of simu-
lations are carried out for the specimen as summarized in Table 1. The 
first series, denoted by “E”, deals with varying bolt-to-end distance with 

Fig. 2. Schematic illustration of the studied glass specimen.  
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the ratio s/d varying from 0.75 to 2.0. The second series, as denoted by 
“S”, models glass fracture with different side distances and the ratio of a/ 
d varies from 1.0 to 2.0. The last series, as denoted by “M”, investigates 
multi-bolt connections with different hole spacing. For each case, 20 
simulations are performed where the flaws are generated following 
statistical distributions. 

The numerical simulations have been set up according to the pulling 
tests performed at Tongji University [37], China on ultra-clear glass 
panels with bolt connections [37]. A total of 61 specimens sharing the 
same geometrical configurations as listed in Table 1 were tested. From 
the tests, the bolt-to-end distance s, the bolt-to-side distance a, the hole 
spacing k as well as the gap between the bolt and the aluminum ring are 
found to be the key parameters affecting the fracture pattern and the 
bearing capacity of the glass panels. In the present study, the simulation 
results are compared with the experimental records for validation 
purpose. 

The properties of the glass used in numerical models are summarized 
in Table 2. For the soda-lime glasses, the toughness typically ranges at 
0.72~0.82 MPa•m1/2 [38] for mode I fractures. The range of Young’s 
modulus and Poisson ratio are found to be 70~74 GPa and 0.22~0.23, 
respectively [15,38]. The adopted values therefore reflect typical glass 
properties. The aluminum ring is assumed to have a density of 2,700 
kg/m3, a Young’s modulus of 70 GPa and a Poisson ratio of 0.33. 

Setup of the numerical model is illustrated in Fig. 3. In view of the 
symmetrical features of the specimen, in the numerical model we only 
consider half of the specimen with a boundary condition applied at the 
original mid-length restricting the displacement along the longitudinal 
direction. The specimen is discretized into elements with size ranging 
from 0.2 mm to 1.0 mm, where finer discretization is adopted around the 
hole and coarse discretization near the edges. Using a fine discretization 
around the hole is necessary since fractures are expected to initiate from 
that region and the edge flaws can be modeled more accurately. On the 
other hand, a fine discretization also mitigates the surface weakening 
effect in ordinary SBPD [39], improving the accuracy of simulation. 
Adopting a varying element size can significantly reduce computational 
cost while maintaining the simulation accuracy. The total number of 
material points modeled in the different cases ranges from 57,000 to 
121,000. It is important to discretize the domain adapting to the spec-
imen geometry especially near the hole area. In this study we use the 
open-source FEM mesh generator Gmsh [40] for the discretization. The 
mesh was then converted to discretized points by assigning a material 
point at the centroid of each element which carries the corresponding 
element area. 

Load is applied by applying a constant rate of displacement to the 
metal ring. It is assumed that the response is quasi-static. A parametric 
study was performed to determine the maximum displacement rate that 
does not introduce apparent inertial effects. It was found that the failure 
load remains practically constant with a loading rate up to 0.4~0.5 m/s. 

Therefore, a displacement rate of vy = 0.3 m/s was used. The load is 
transferred to the glass through the contact model introduced in Section 
2.2. 

3.2. Results and discussion 

We first examine the results in terms of fracture patterns and failure 
load for the simulations with varying bolt-to-end distances. The fracture 
pattern is exhibited in Fig. 4 with comparison to experimental obser-
vations [37] in Fig. 5. The shallow color dots in the model indicates the 
modeled flaws in the glass. The numerical model is seen to reasonably 
capture the major features in the fracture pattern for both small and 
large ratios of s/d. For s/d = 0.75, the pattern features a vertical fracture 
in the strip between the hole and the bottom edge and two tilted frac-
tures angled at approximately 30~40 degrees extending from the hole to 
the bottom edge. For s/d = 1.0, similar fracture patterns remain except 
for the branched cracks that are seen extending to the two sides of the 
specimen. With larger s/d ratios, the vertical crack does not occur. 
Fractures initiate at the side of the hole and extend to the two side edges, 
with crack branching observed in some of our other simulations. The 
findings imply that bolt connections may be placed with bolt-to-end 
distance greater than 1.5 times the hole diameter to eliminate the 
bolt-to-end type of failure. As will be shown later, with s/d ≥ 1.5, the 
capacity of the glass panel is dependent of the tensile type of fractures 
extending laterally and is no longer a function of the bolt-to-end 
distance. 

The numerical model allows detailed investigation on the initiation 

Table 1 
Geometrical configurations of the numerical models.  

Case s/d a/d k/d Case s/d a/d k/d 

Base 2.0 2.5 - S-2 2.0 1.5 - 
E-1 0.75 2.5 - S-3 2.0 2.0 - 
E-2 1.0 2.5 - M-1 2.0 2.5 1.5 
E-3 1.5 2.5 - M-2 2.0 2.5 2.0 
S-1 2.0 1.0 - M-3 2.0 2.5 3.0  

Table 2 
Properties of the glass used in simulation.  

Property Unit Value 

Density 
Young’s modulus 
Poisson ratio 
Fracture toughness 

kg/m3 

GPa 
- 
MPa•m1/2 

2,500 
70 
0.23 
0.8  

Fig. 3. Schematic illustration of the numerical model setup.  

Fig. 4. Fracture patterns of glass with different bolt-to-end distances (the base 
case and cases E-1 through E-3). 
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of fractures which may not be easily identified in experiment without a 
highspeed camera. Shown in Fig. 6 is the position of fracture initiation 
recorded in the numerical simulations. The initiation of a fracture is 
herein defined as the material point that first reaches a damage value of 
0.6 or above. Obviously, the fracture initiates near the bottom edge of 
the specimen when the bolt is positioned close to the bottom edge. With 
larger ratio of s/d, the fractures are most likely to initiate from the two 
sides of the hole at positions slightly below the centerline. 

The evolution of bolt force with the displacement of the metal ring is 
extracted from a typical model in each of the four cases and is shown in 
Fig. 7. The bolt force is recorded as the vertical contact force acting on 
the metal ring. The force-displacement curves show a non-linear pattern 
at small displacements. The stiffness at the glass-ring contact appears to 
increase with load application, due likely to the increased contact area. 
The curves show an approximately linear behavior until failure and the 

contact force is lost quickly afterwards. The force level at failure is found 
to rise with the ratio of s/d but such trend is mitigated when s/d is 
greater than 1.5. The observation can be attributed to the change of 
failure mechanism from cracking the bottom edge to cracking the side 
edges as shown in Fig. 4. The force levels at failure recorded in all 
simulations are plotted with their upper and lower bounds as well as the 
average values in Fig. 8 in comparison with the experimental mea-
surements. The upper and lower bounds of the failure force levels ob-
tained from simulation mostly fall within the range of experiment data, 
although it appears that the simulation does not capture some of the 
high strength cases in the experiment. This may be attributed to the 
assumption made on the edge flaws. If a more dispersed distribution of 
edge flaw density is used, the strength of the bolt connection would be 
more dispersed which may offer a better match with the experimental 
records. 

Similarly, for the cases with varying distances between the bolt and 
side edge (the “S” series), the failure loads obtained from the simulation 
are compared with the experimental measurements in Fig. 9. The pre-
dicted failure loads are found within the range of experimental data 
except for the case with a/d = 1.0 where the simulation predicted lower 
failure forces than those in experiment. For this case, the edge flaws are 
expected to have a more pronounced influence on the failure of the glass 

Fig. 5. Experimentally observed fracture patterns for small (top) and large 
(bottom) ratios of s/d. 

Fig. 6. Location of fracture initiation with different bolt-to-end distances (the 
base case and cases E-1 through E-3). The circle represents the hole and dot 
represents the position of fracture initiation. 

Fig. 7. Bolt force evolution with time for the base case and cases E-1 through 
E-3. 

Fig. 8. Failure force levels recorded in simulations for the base case and cases 
E-1 through E-3. Experimental measurements are also shown in the plots. 
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since the bolt is close to the edge. The result suggest that the assumed 
edge flaws are denser and/or weaker than the those in the physical 
experiment. It can also be noted that larger a/d generally offers higher 
capacity at the bolt connection. The fracture patterns for the cases S-1 
through S-3 are exhibited in Fig. 10 together with the experimental 
records [37]. When a/d = 1.0, the fracture pattern is featured by hori-
zonal cracks between the hole and the side edges. For larger a/d ratios, 
crack branching and tilted fractures were observed in the experiments. 
Similar features were captured in our simulations.` 

For the cases with two bolts (the “M” series), the glass strength ob-
tained from simulations are compared with experimental data in 
Fig. 11, where a reasonable agreement is found. The strength obtained 
from experiments show an apparent dispersion over a side range for 
each case. For k/d = 1.5 the maximum failure force is more than twice 
the minimum. This could imply a highly dispersed distribution with 
respect to the size and/or density of the edge flaws around the holes. It is 
interesting to note that the numerically predicted glass strengths tend to 
be slightly lower than what measured. The k/d = 1.5 case is selected as a 
representative case and two representative fracture patterns from sim-
ulations and experiments [37] are shown in Fig. 12. The fracture pat-
terns can be rather different even with the same geometry owning to the 
stochastic distribution of the flaws. As demonstrated in the figure, the 

fracture may propagate from the upper hole to the side edges, with or 
without branching. Complex fractures connecting the holes were also 
observed in both the numerical models and experiment. We cannot 
claim exact match in the fracture patterns since we cannot model the 
exact flaws that may present in a real glass panel (which affects the trace 
of fracture path). Meanwhile, other fracture patterns are entirely 
possible and an exhaustive presentation of those fracture patterns is not 
pursued here. 

We further examine the strength statistics for the base case, where a 
single bolt is located at s/d = 2.0 and a/d = 2.5. A total of 200 re-
alizations were analyzed with stochastic distributions of the surface and 
edge flaws. The results are presented in Fig. 13. Strengths in the range of 
4 kN to 6 kN were predicted by the simulations with an average value of 
5.3 kN. The data is fitted with both the Weibull distribution and the 
normal distribution. The Weibull modulus is above 30. The results thus 
imply a glass material with relatively small variation in strength. In 
reality, the flaws and particularly the edge flaws at the holes are strongly 
dependent of the machining procedure used to create them, and there-
fore this exercise which assumed a mono-sized distribution of edge flaws 

Fig. 9. Failure force levels recorded in simulations for the base case and cases 
S-1 through S-3. Experimental measurements are also shown in the plots. 

Fig. 10. Fracture patterns for the cases S-1 through S-3 from simulation (top) 
and comparison with experimental observations (bottom). 

Fig. 11. Failure force levels recorded in simulations for the cases M-1 through 
M-3. Experimental measurements are also shown in the plots. 

Fig. 12. Fracture patterns for the case M-1 and comparison with experimental 
observations. 
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on the hole surface for all specimens is most likely not realistic. To 
further examine the influence of flaw assumptions, an extra set of 100 
simulations were carried out for the base case, where the edge flaw 
density is assumed to be randomly distributed among all specimens in 
the range of 0.5 to 10 per cm2 with a depth up to 50 μm. Indeed, the 
resulted strength distribution, as shown in Fig. 14, is more dispersed 
with a Weibull modulus below 20. The range of strength spans from 4.3 
kN to 6.2 kN and is in good agreement with the experimental results in 
Fig. 8. It is beyond the scope of this work to determine which statistical 
distribution works best for bolted glass. A faithful model for the glass 
strength requires a deep understanding of the statistics of micro flaws in 
glass for which further inputs from experimentalists are needed. The 
parameters and statistical models for the flaws will be further studied 
and calibrated in future works. 

4. Conclusions and outlook 

In this paper, a peridynamic-based computational approach is pre-
sented and validated for predicting the strength of bolted glass panels 
with explicit consideration of the flaws introduced in their production. 
The ordinary state-based PD theory is employed with a critical stretch 
failure criterion to describe the elastic brittle failure. A contact model is 
implemented at the bolt connection. The present study assumes a Pareto 
distributed single population surface flaws and a mono-sized population 
of edge flaws. The flaws are explicitly considered in the PD simulations 
with preset broken material bonds. Simulations are carried out for glass 
specimens subjected to in-plane loads imposed by single or multi bolts 
with different geometrical configurations. The predicted failure loads, as 
well as the fracture patterns, agree reasonably well with the corre-
sponding experiments. The approach is also shown to reflect strength 
statistics of glass with a series of Monte Carlo simulations. The glass 
strength distribution is found strongly dependent on the assumptions on 
the density and size of edge flaws. It is worth mentioning that the PD 
theory can be applied for modeling fractures of brittle materials under 
complex loading conditions and failure modes such as blasting [41], 
impact [42], fatigue [43] where chemical reactions and corrosions may 
also be considered. The presented study can be further extended to 
simulate other types of glasses such as laminated glass, aircraft glazing, 
explosion-proof glass, etc. to suit the need from a broad range of in-
dustrial sectors. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The work was financially supported by the Research Grants Council 
of Hong Kong through GRF project 16208720. 

References 

[1] S.M. Wiederhorn, Influence of water vapor on crack propagation in soda-lime glass, 
J. Am. Ceram. Soc. 50 (8) (1967) 407–414. 

[2] E. Orowan, The fatigue of glass under stress, Nature 154 (1944) 341–343. 
[3] S.M. Wiederhorn, L.H. Bolz, Stress corrosion and static fatigue of glass, J. Am. 

Ceram. Soc. 53 (1970) 543–548. 
[4] W. Weibull, A statistical theory of the strength of materials, Proc. R. Acad. Engr. 

Science 15 (1939). 
[5] A. Freudenthal, A. Fracture, An Advanced Treatise, 2, Academic Press, New York, 

1968. 
[6] G. Pisano, G. Royer-Carfagni, A micromechanical derivation of the macroscopic 

strength statistics for pristine or corroded/abraded foat glass, J. Eur. Ceram. Soc. 
37 (2017) 4197–4206. 

[7] C. Przybilla, A. Fernández-Canteli, E. Castillo, An iterative method to obtain the 
specimen-independent three-parameter Weibull distribution of strength from 
bending tests, Procedia Eng 10 (2011) 1414–1419. 

[8] R. Ballarini, G. Pisano, G. Royer-Carfagni, The lower bound for glass strength and 
its interpretation with generalized Weibull statistics for structural applications, 
J. Eng. Mech. 142 (12) (2016), 04016100. 

[9] C. Klein, Flexural strength of infrared-transmitting window materials: bimodal 
Weibull statistical analysis, Opt. Eng. 50 (2) (2011), 023402. 

[10] F. Veer, C. Louter, F. Bos, The strength of annealed, heatstrengthened and fully 
tempered float glass, Fatigue Fract. Eng. Mater. Struct. 32 (2009) 18–25. 

[11] W.L. Beason, J.R. Morgan, Glass failure prediction model, J. Struct. Eng. 110 
(1984) 197–212. 

[12] I. Maniatis, Numerical and Experimental Investigations on the Stress Distribution 
of Bolted Glass Connections Under in-Plane Loads, (Doctoral Dissertation, 
Technische Universität München), 2006. 

[13] K. Sanders, F. Bos, E. ten Brincke, J. Belis, Edge strength of core drilled and 
waterjet cut holes in architectural glass, Glass Struct Eng 6 (2) (2021) 131–145. 

[14] M. Lindqvist, Structural glass strength prediction based on edge flaw 
characterization, Thesis, EPFL, (2013). 

[15] D.T. Kinsella, Modelling of Annealed Glass Fracture. Licentiate Dissertation, Lund 
University, 2018. 

[16] G. Pisano, G. Royer-Carfagni, A micromechanical derivation of the macroscopic 
strength statistics for pristine or corroded/abraded oat glass, J. Eur. Ceram. Soc. 37 
(2017) 4197–4206. 

[17] J.R. Matthews, F.A. McClintock, W.J. Shack, Statistical determination of surface 
flaw density in brittle materials, J. Am. Ceram. Soc. 59 (1976) 304–308. 

[18] A. Rufin, D. Samos, R. Bollard, Statistical prediction models for brittle materials, 
AIAA Journal 22 (0.1) (1984) 135–140. 

[19] D.Z. Yankelevsky, Strength Prediction of Annealed Glass Plates - A new model, 79, 
Eng Struct, 2014, pp. 244–255. 

Fig. 13. Glass strength distribution for the base case from 200 simulations.  Fig. 14. A parametric study of glass strength distribution for the base case. 
Hole edge flaws are assumed to be randomly distributed with flaw density 
ranging from 0.5 to 10 per cm2 with depth up to 50 μm. Results of 100 
simulations. 

F. ZHU et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0001
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0001
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0002
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0003
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0003
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0004
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0004
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0005
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0005
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0006
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0006
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0006
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0007
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0007
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0007
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0008
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0008
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0008
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0009
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0009
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0010
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0010
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0011
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0011
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0012
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0012
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0012
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0013
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0013
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0014
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0014
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0015
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0015
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0016
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0016
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0016
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0017
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0017
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0018
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0018
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0019
http://refhub.elsevier.com/S0093-6413(22)00044-1/sbref0019


Mechanics Research Communications 122 (2022) 103890

8

[20] M. Pathirana, N. Lam, S. Perera, L. Zhang, D. Ruan, E. Gad, Risks of failure of 
annealed glass panels subject to point contact actions, Int. J. Solids Struct. 129 
(2017) 177–194. 

[21] D.T. Kinsella, K. Persson, A numerical method for analysis of fracture statistics of 
glass and simulations of a double ring bending test, Glass Struct Eng 3 (2018) 
139–152. 

[22] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range 
forces, J. Mech. Phys. Solids 48 (1) (2000) 175–209. 

[23] S.A. Silling, M. Epton, O. Weckner, J. Xu, A. Askari, Peridynamics states and 
constitutive modeling, J. Elasticity 88 (2) (2007) 151–184. 

[24] H. Ren, X. Zhuang, R. Rabczuk, Dual-horizon peridynamics: a stable solution to 
varying horizons, Comput. Methods Appl. Mech. Engrg. 318 (2017) 762–782. 

[25] H. Zhang, P. Qiao, A state-based peridynamic model for quantitative fracture 
analysis, Int. J. Fract. 211 (2018) 217–235. 

[26] H. Zhang, P. Qiao, A two-dimensional ordinary state-based peridynamic model for 
elastic and fracture analysis, Eng. Fract. Mech. 232 (2020), 107040. 

[27] E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications, Springer, New 
York, NY, USA, 2014. 

[28] G. Fang, S. Liu, M. Fu, B. Wang, Z. Wu, J. Liang, A method to couple state-based 
peridynamics and finite element method for crack propagation problem, Mech. 
Res. Commun. 95 (2019) 89–95. 

[29] F. Zhu, J. Zhao, A peridynamic investigation on crushing of sand particles, 
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