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Understanding the origin of stress drop of fault gouges may offer deeper insights into many geophysical 
processes such as earthquakes. Microslips of sheared granular gouges were found to be precursors 
of large slip events, but the documented relation between microslips and macroscopic stress drops 
remains largely qualitative. This study aims to quantitatively connect microslips to macroscopic stress 
fluctuations, including both stress recharges and stress drops. We examine the stick-slip behavior of a 
slowly sheared granular system using discrete element method simulations. The microslips are found to 
demonstrate significantly different statistical and spatial characteristics between the stick and slip stages. 
We further investigate the correlation between the macroscopic stress fluctuations and the features 
extracted from microslips based on a machine learning (ML) approach. The data-driven model that 
incorporates the information of the spatial distribution of microslips can robustly predict the magnitude 
of stress fluctuation. A further feature importance analysis confirms that the spatial patterns of microslips 
manifest key information governing the macroscopic stress fluctuations. The generalization of ML across 
granular gouges with different characteristics indicates the proposed model can be applicable to a 
broad range of granular materials. Our findings in this study may shed lights on the mechanisms 
governing earthquake nucleation, microslips, friction fluctuations, and their connection during the stick-
slip dynamics of earthquake cycles.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The frictional stability of fault gouge layers underpins key un-
derstandings to many geophysical processes, including but not 
limited to earthquakes, debris flows, and landslides (Song et al., 
2017; Ren et al., 2019). A granular gouge subjected to slow shear-
ing demonstrates a typical stick-slip behavior, which plays a cru-
cial role in triggering the frictional stability of the fault (Marone, 
1998; Aharonov and Sparks, 2004; Dorostkar and Carmeliet, 2019). 
Therefore, the stick-slip behavior of sheared granular gouges has 
been studied extensively in both laboratory experiments (Marone, 
1998; Niemeijer et al., 2010; Scuderi et al., 2016; Rivière et al., 
2018) and computer simulations (Aharonov and Sparks, 2004; Mair 
& Hazzard, 2002; Ferdowsi et al., 2014; Gao et al., 2018; Ma et al., 
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2020). Particular attention has been placed on the influences of 
controlling factors on the stick-slip dynamics of granular gouges, 
such as the wall geometry and friction (Rathbun et al., 2013), 
presence of liquids (Dorostkar et al., 2018), particle characteristics 
(Mair et al., 2002; Dorostkar and Carmeliet, 2019), boundary vi-
bration (Ferdowsi et al., 2014), normal pressure (Gao et al., 2018), 
particle size polydispersity (Ma et al., 2020), and particle break-
age (Wang et al., 2021). These studies offer novel insights into the 
complex dynamic behaviors of natural fault gouges and earthquake 
physics.

The mechanical response of granular materials is characterized 
by a series of slip avalanches alternating slow elastic loading and 
rapid sliding and relaxation, leading to jerky dynamics and stress 
drops (Houdoux et al., 2021). However, the microscopic origin of 
slip avalanche of slowly deformed granular gouge remains poorly 
understood. To address this issue, Johnson et al. (2013) employed 
a biaxial shear apparatus to investigate the physics of laboratory 
earthquakes and found that the acoustic emission and microslip 
exhibit an exponential increase in the rate of occurrence, reach-
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Fig. 1. (a) Setup of the DEM experiment. Normal pressure and shear displacement are respectively applied on the top and bottom particle walls. Periodic boundary conditions 
are applied in the shear and depth directions. (b) Stress-strain curve resulted from the DEM simulation. The y axis denotes the shear stress σ normalized by the normal 
pressure p. The inset shows an enlarged stick-slip cycle which consists of stress recharge and drop stage represented by the blue and red shaded region, respectively. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
ing a peak at the onset of slip avalanche. The corresponding DEM 
simulations confirmed that the microslip event rate correlates well 
with large slip event onset (Ferdowsi et al., 2013). Microslip is es-
sentially a result of localized particle rearrangements (Ma et al., 
2021). Due to the disordered structure of granular materials, a 
microslip may trigger nearby microslips, and the accumulation of 
these microslips may give rise to a macroscopic stress drop (Cao 
et al., 2019). Thus, microslips are widely regarded as precursors of 
large slip events and can be used to predict frictional weakening 
(Bolton et al., 2020; Trugman et al., 2020).

Furthermore, the statistics of microslips and macroscopic stress 
drops reveal a simple relation between the number of microslips 
and the stress drops (Barés et al., 2017). The spatial characteris-
tics of microslips are also closely correlated with the stress drop, 
where large stress drop is accompanied by a series of connected 
localized zones spanning the entire system, whereas during the 
elastic regime, the microslip events occur with low concentration 
and are spatially dispersed (Cao et al., 2018). Other particle scale 
metrics, such as coordination number, sliding contact ratio, po-
tential energy, kinetic energy, evolves correspondingly during the 
stick phase and slip instability (Barés et al., 2017; Ma et al., 2020). 
Thus, studying the microscopic structure and dynamics of a gran-
ular gouge may help unveil its stick-slip behaviors (Cipelletti et al., 
2019).

Unfortunately, existing findings on the relation between mi-
croslips and macroscopic stress drop remains largely qualitative, 
whereas further advance on the subject matter demands quanti-
tative correlations to be established. In this study, we employ a 
machine learning (ML) approach to quantitatively bridge microslips 
and macroscopic stress fluctuations, including both stress recharge 
(stick regime) and stress drop (slip regime). The stress fluctuation 
is defined as the change of shear stress at the start and end of 
the recharge/drop stages. ML offers data-driven approaches to au-
tomatically investigate the underlying relations between variables 
and facilitate the process of revealing complex and inexplicit pat-
terns of large datasets (Marone, 2018). Particularly, ML has gained 
increasing popularity in recent years and has been widely used 
in many areas of geoscience, such as predicting the timing and 
size of laboratory earthquakes (Rouet-Leduc et al., 2017; Corbi 
et al., 2019), revealing the frictional state of granular fault (Ren 
et al., 2019), estimating earthquake magnitude and GPS displace-
ment rate (Rouet-Leduc et al., 2019; Mousavi and Beroza, 2020), 
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and performing earthquake early warning and earthquake detec-
tion (Hulbert et al., 2019; Trugman et al., 2020).

To do so, we perform the discrete element method (DEM) 
simulations of quasi-static shear of a granular gouge to achieve 
stick-slip dynamics. The microslips are manifested as particle rear-
rangements and quantified by nonaffine particle motions. Then we 
compare the statistical and spatial characteristics of microslips in 
the stick and slip regimes. We use a two-step scheme for feature 
selection to consider both the statistical and spatial characteristics 
of microslips in the ML model training. The trained ML model can 
well predict the macroscopic stress fluctuation from the features 
extracted from the microslips. Finally, we analyze the feature im-
portance of the trained ML model and conclude that the spatial 
patterns of microslips contain key information about the stick-slip 
dynamics of the granular gouge.

2. Materials and methods

2.1. DEM simulation of simple shear

DEM simulations of simple shear tests were performed to ob-
tained data of microslips and macroscopic stress fluctuations dur-
ing the stick-slip cycles of granular gouges. Fig. 1a shows the sim-
ple shear model setup of the granular gouge, which consists of 
20,215 particles with diameters uniformly distributed from 0.8d50
to 1.2d50, where the average particle diameter d50 = 1.0 mm. 
The size of the granular gouge sample is 50d50 (length) × 15d50
(depth) × 20d50 (height). The granular gouge is confined by two 
rough particle walls used to apply the shear loading and normal 
pressure. The top wall is fixed in the shear direction, while the 
normal pressure is maintained constant by a servo-control at 10 
MPa. The granular gouge is sheared by moving the bottom wall in 
the x direction with a constant velocity while the vertical move-
ment is constrained. The shear rate γ̇ , defined as the ratio of shear 
velocity to the undeformed sample height, is set to 0.1 to achieve 
stick-slip dynamics.

The numerical simulation is performed by the DEM code 
LIGGGHTS (Kloss et al., 2012). The Hertz-Mindlin contact model 
with Coulomb sliding friction is employed to simulate the contacts 
and deformation between particles. The particles have a density 
of 2900 kg/m3, a Poisson’s ratio of 0.25, Young’s modulus of 65 
GPa, a friction coefficient of 0.5, and a restitution coefficient of 
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0.87 (Ma et al., 2020). The wall particles adopt the same mate-
rial properties as those in the shear body. The friction coefficient 
between the particle walls and the shear body is set to 0.9 to en-
hance surface friction. To collect enough data for the subsequent 
machine learning, we shear the granular gouge up to a shear strain 
of 2. The evolution of normalized shear stress, defined as the ra-
tio of shear stress σ to the applied normal pressure p, is shown in 
Fig. 1b. When it is sheared into the steady-state regime, the gouge 
is found to undergo typical intermittent dynamics and serrated 
plastic flow. This phenomenon is seen to be universal in many 
amorphous solids like metal glasses (Cao et al., 2018), and porous 
materials (Baró et al., 2013).

The enlarged view of the dotted box shown in Fig. 1b demon-
strates that each stick-slip cycle starts with a nonlinear recharge of 
shear stress and is followed by a rapid drop. The recharge and drop 
of shear stress correspond to the stick and slip stages, respectively. 
We define stress fluctuation as the change of shear stress at the 
start and end of the recharge/drop events. Thus, the stress fluctu-
ation of a drop event is positive, and the recharge event negative. 
Only the magnitude of stress fluctuation greater than a threshold 
of 10−5 is considered. During the slow shearing of granular gouge, 
we recorded 4,232 stress drop and recharge cycles.

2.2. Characterization of microslip

Due to the disordered nature and varying local structure of 
granular gouge, the displacements of particles show a localized 
and nonaffine pattern. The microslips that occurred during the 
recharge and drop events are manifested as irreversible particle 
rearrangements which are hereby quantified by the nonaffine par-
ticle displacements D2

min (Ma et al., 2021). It should be noted that 
many other quantities, such as local displacement, local energy 
fluctuation (Barés et al., 2017; Zheng et al., 2018), granular tem-
perature (Ma et al., 2019), local acoustic emission (Trugman et al., 
2020), force chain bulking (Gao et al., 2019) can also be used for 
characterizing microplasticity. Here we use the squared nonaffine 
displacements D2

min , which describes the deviation of a particle’s 
position from the best fit affine transformation of its neighborhood. 
The nonaffine displacement D2

min over a given stage with the strain 
�γ is calculated as (Chikkadi and Schall, 2012; Cao et al., 2019):

D2
min (γ ,�γ ) = 1

Ni

Ni∑
j

{
r j (γ + �γ /2) − ri (γ + �γ /2)

−�
[
r j (γ − �γ /2) − ri (γ − �γ /2)

]}2 (1)

where γ denotes the macroscopic shear strain of a given time, the 
subscript i denotes the designated particle, Ni denotes the number 
of neighbors of the reference particle, and the index j iterates over 
the neighbors of the reference particle. A larger D2

min denotes a 
larger microslip. � is the best fit affine transformation tensor that 
minimizes the quantity D2

min and can be calculated as:

X =
Ni∑
j

[
r j (γ + �γ /2) − ri (γ + �γ /2)

]

⊗ [
r j (γ − �γ /2) − ri (γ − �γ /2)

]
(2)

Y =
Ni∑
j

[
r j (γ − �γ /2) − ri (γ − �γ /2)

]

⊗ [
r j (γ − �γ /2) − ri (γ − �γ /2)

]
(3)

� = X · Y−1 (4)
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The spatial correlation of microslips that occurred during the 
recharge or drop stage can be quantified using the normalized spa-
tial correlation function (Ma et al., 2019, 2021):

C D2
min

(r) =
〈
D2

min(0)D2
min(r)

〉 − 〈
D2

min

〉2
〈[

D2
min

]2
〉
− 〈

D2
min

〉2 (5)

where the brackets denote averaging over all particles. The normal-
ized spatial correlation function represents the spatial similarity of 
D2

min between two particles separated by the distance r. A larger 
value corresponding to a stronger correlation over space.

The spatial correlation of microslips can also be quantified by 
global Moran’s I:

I = N∑
i

∑
j

wij

×

N∑
i=1

N∑
j=1

wij

(
D2

min,i −
〈
D2

min

〉)(
D2

min, j −
〈
D2

min

〉)

N∑
i=1

(
D2

min,i −
〈
D2

min

〉)2
(6)

where N is the number of particles. wij is the spatial weights ma-
trix. wij = 1 for ri j ≤ 2.3d50 (cutoff distance 2.3d50 defines the 
second nearest neighborhood shell), otherwise wij = 0. Moran’s I
evaluates whether the pattern expressed is clustered (0 < I ≤ 1), 
dispersed (−1 ≤ I < 0), or random (I ≈ 0).

2.3. Introduction to extreme gradient boosting (XGBoost)

In order to establish a quantitative relation between microslips 
and the magnitude of macroscopic stress fluctuation, we resort 
to use the Extreme Gradient Boosting (XGBoost) technique to in-
terrogate the data (Chen and Guestrin, 2016). Gradient boosting 
decision is an extensively used machine learning ensemble method 
(Friedman, 2002). By changing the weights of training samples, 
gradient boosting improves the prediction performance by learning 
multiple simple models and linear combination of these models. 
XGBoost was introduced as a robust decision tree based on the 
gradient boosting decision. The methodology of XGBoost is briefly 
introduced below.

Given the data {(xi, yi), i = 1, 2, ...m}, the decision function of 
XGBoost which consists of K additive functions can be expressed 
as:

ŷi = f (xi) =
K∑

k=1

fk (xi) (7)

where xi is the vector of the input features and yi is the corre-
sponding output value. f1, f2, ..., fk is a sequence of classification 
and regression trees (CARTs). XGBoost uses the additive training 
strategy. Specifically, the structures of all trees in XGBoost are not 
determined at the same time. Instead, the tree structure is fixed at 
each step and then a new tree is added to fit the residual error. 
ft is added into the ensemble trees by minimizing the objective 
function as follows:

L(t) =
m∑

i=1

l
(

yi, ŷ(t−1)
i + ft (xi)

)
+ �( ft) (8)

where l is the desired loss function which describes the difference 
between the predicted response value and the actual response 
value. The commonly used loss function is the Mean Square Error 
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Fig. 2. Schematic of XGBoost (a supervised ML approach) based on the gradient 
boosting decision.

(MSE). m is the total sample size, yi is the measured value, ŷ(t−1)
i

is the ith predicted response at the (t − 1) step. � is the penalty 
function to limit the model complexity, which can be described as:

�( f ) = γ T + 1

2
λ

T∑
j=1

w2
j (9)

where γ denote the complexity of each leaf, T is the number of 
leaves in a tree, λ is a penalty parameter, and w denotes the vector 
of scores on leaves. A typical structure of a XGBoost is depicted in 
Fig. 2.

The training and validation process of XGBoost is described as 
follows. The dataset is divided into the training set, validation set, 
and test set. XGBoost model has several hyperparameters, such as 
learning rate, maximum depth and number of trees. The validation 
set is used to evaluate the performance of XGBoost model with dif-
ferent hyperparameter values. However, tuning machine learning 
models manually can be a very time-consuming task. In this paper, 
we employ Bayesian Optimization to automatically tune the hyper-
parameters of XGBoost (Snoek et al., 2012). Bayesian Optimization 
builds a surrogate for this objective and quantifies the uncertainty 
in that surrogate using the Gaussian process regression, and then 
uses an acquisition function to decide the next combination to be 
tried. Once the optimal set of hyperparameters are determined, we 
can guarantee the XGBoost model has good generalization perfor-
mance and prediction accuracy. The test set is finally used to test 
the prediction performance of the tuned XGBoost.

3. Results

3.1. Statistical and spatial characteristics of microslips

Fig. 3a and 3b show the spatial distributions of D2
min during 

the recharge and drop stages of a typical stick-slip cycle. Particles 
with higher D2

min are colored in red. Due to the discrete nature 
and corporative particle motion of granular materials, the defor-
mation of granular assembly occurs as a succession of localized 
microslips distributed within the system. Intuitively, the microslips 
are scattered throughout the granular system during the recharge 
stage. During the drop stage, the microslips are more spatially 
concentrated and tend to generate a large stress drop inside the 
granular system. Fig. 3c compares the statistical features of mi-
croslips that occurred during the recharge (blue) and drop stages 
(red). The microslips demonstrate significantly different statistical 
characteristics at the recharge and drop stages. For example, the 
99.5th percentile, max, variance, skewness, and kurtosis are larger 
4

for drop stage. The difference in statistics of microslips may sug-
gest different underlying mechanism for stress recharge and stress 
drop. The stick-slip dynamics of granular materials can be seen as 
a jamming-unjamming process accompanied by the formation and 
buckling of force chains, which are triggered by localized particle 
rearrangements known as microslips (Barés et al., 2017; Gao et al., 
2019).

The spatial correlation of microslips that occur during the 
recharge and drop stage can be further quantified using the nor-
malized spatial correlation function. We group the recharge and 
drop events according to the magnitude and sign of stress fluc-
tuation. Logarithmic binning is used. Fig. 3d shows the normal-
ized correlation function C D2

min
(r) for recharge and drop events 

of different magnitudes. The spatial autocorrelation decays rapidly 
within a short distance of several d50, showing a short-range or-
dering. Solid lines indicate that the decay of correlations with 
r are reasonably well fitted by the Ornstein-Zernike function as 
C D2

min
(r) ∝ r−0.5 exp(−r/ξr). We can see that the correlation length 

of microslips ξr remains nearly unchanged for recharge events and 
increases rapidly for large stress drop (see red line and left axis of 
Fig. 3e). This trend indicates that a more cooperative and concen-
trated distribution of microslips constitutes the microscopic origin 
of global slip avalanche.

The spatial autocorrelation of microslips can also be quantified 
by global Moran’s I . The Moran’s I of particle D2

min for recharge 
and drop events of different magnitudes show a very similar trend 
as the correlation length ξr (see blue line and right axis of Fig. 3e). 
The spatial correlation analysis of microslips indicates that the spa-
tially correlated microslips forming large shear transition zones 
are responsible for the stress drop and frictional weakening. The 
stress drop increases with the increasing degree of aggregation of 
microslips. The spatial distribution of microslips during recharge 
stages shows on average a plateau over different bins.

3.2. Machine learning predicts stress fluctuations

In this paper, we utilize XGBoost to link microslips and macro-
scopic stress fluctuations, i.e., the input of XGBoost is the statis-
tical features of microslips occurred during a recharge stage or a 
drop stage, and the output is the corresponding macroscopic stress 
fluctuation. Thus, the time window over which the microslips are 
defined and the statistics are computed varies in the dataset. The 
above analysis demonstrates a clear difference of microslips be-
tween recharge and drop events. Therefore, it is necessary to con-
sider both the statistical and spatial characteristics of microslips 
in the feature extraction. For each particle, we define its medium-
range statistics within its neighborhood (see Fig. 4a). Specifically, 
we calculate the maximum, mean, variance, skewness, and kurtosis 
of particle D2

min within each particle’s neighborhood. The symbols 
in Fig. 4 and their meanings are illustrated in Table A1. Thus, each 
particle is characterized by five medium-range features, contain-
ing information about how it moves and the collective motion of 
neighboring particles. We then calculate the statistical features of 
each particle’s medium-range statistics (see Fig. 4b). The statisti-
cal operator includes mean, max, variance, percentiles, and various 
higher-order moments. These statistical features are connected as 
the medium-range feature vector (MRF). Thus, the MRF is depen-
dent on the neighborhood size and may influence the ML perfor-
mance.

To investigate the influence of neighborhood size on the per-
formance of ML, we extract the MRFs with different neighborhood 
sizes for the downstream ML regression. Fig. 5a shows the pair 
correlation function g(r) of the granular gouge. Pair correlation 
function is calculated as g(r) = N(r)

ρ0 V ≈ N(r)
4πr2ρ0�r

, where N(r) de-

notes the number of particles in a shell with the thickness of �r
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Fig. 3. Statistical and spatial characteristics of microslips occurred during recharge and drop stages. Spatial maps of D2
min occurred during the (a) recharge stage and (b) drop 

stage of a typical stick-slip cycle. (c) Comparison of the statistical quantities of D2
min during the recharge and drop stage. (d) Normalized spatial correlation function of D2

min: 
C D2

min
(r) between two particles separated by distance r , where r is in unit of the mean particle diameter. The data points are averaged over the recharge or drop stages 

falling into each bin. Solid lines are fits to the Ornstein-Zernike function. The data points and fitting lines of the different bin are shifted vertically for better visualization. (e) 
Evolutions of correlation length ξr and Moran’ I with the magnitude of stress fluctuation. The error bar represents the standard deviation. Note that (d) and (e) are calculated 
over all stick-slip cycles.

Fig. 4. Machine learning builds the bridge between microslips and macroscopic stress fluctuation. (a) The statistical characteristics of particle D2
min within each particle’s 

second-neighbor shell. (b) Feature extraction process: particle-scale feature vector (red column) and medium-range feature vector (blue columns). These two feature vectors 
are fed as input to the downstream XGBoost model to predict macroscopic stress fluctuation.
5
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Fig. 5. Evolution of the ML performance with varying neighborhood size. (a) Pair correlation function g(r) of the granular gouge. (b) The ML performance versus different 
size of particle neighborhood. The inset shows the definition of the neighborhood surrounding the center particle colored by red.
at the distance r from the center particle. ρ0 is the number den-
sity of the granular system. The pair correlation function shows 
no long-range ordering and periodic peak pattern. The first and 
second minimum of g(r) corresponding to the first- and second-
neighbor shell of a given particle. Fig. 5b shows the variation of 
ML performance with varying neighborhood sizes. The error bar 
denotes the standard deviation over 50 independent training and 
prediction processes. The ML performance in terms of R2 shows a 
nonmonotonic behavior. The MRF extracted from the neighborhood 
between 1.3d50 and 2.3d50, corresponding to the first and second 
minimum of the pair correlation function, gives the best perfor-
mance. Finally, a neighborhood size of 2.3d50 is used in this study. 
Such a short-range characteristic length indicates that the parti-
cles are involved in localized structures and the nonaffine motion 
becomes localized (Ma et al., 2021).

To highlight the importance of the spatial pattern of microslips 
in the prediction of macroscopic stress fluctuation, we also calcu-
late the statistical features of particles D2

min as the input vector 
for XGBoost model training. This feature vector does not contain 
any information about the spatial distribution of microslips, and 
is referred to as particle-scale feature vector (PSF). MRF and PSF 
are extracted for each recharge/drop event, and the correspond-
ing output of XGBoost is the macroscopic stress fluctuation of the 
recharge/drop event.

During the shearing process, a total of 4,232 stick-slip cycles 
are recorded and used to construct the dataset for XGBoost. Thus, 
the dataset contains 8,464 samples, and the first 60% is set as the 
training set, the next 20% as the validation set for the hyperpa-
rameters tuning of XGBoost, and the last 20% as the test set for 
the final evaluation of the tuned XGBoost. These three sets do not 
overlap each other to avoid “information leakage”. The loss func-
tion of XGBoost for regression problems is the mean square error 
(MSE). The hyperparameters of XGBoost are tuned using Bayesian 
Optimization (Snoek et al., 2012). The performance of XGBoost 
model using PSF and MRF as inputs are shown in Figs. 6a and 6b, 
respectively. As can be seen, the trained XGBoost models not only 
classify the recharge and drop event from the microslips, but also 
predict the magnitude of stress fluctuation with good accuracy. By 
taking into account both statistical and spatial characteristics of the 
microslips, the trained XGBoost model exhibits better performance 
with a coefficient of determination R2 = 0.941.
6

3.3. Feature importance analysis

We further analyze the feature importance of the XGBoost 
model trained by MRF. The feature importance is quantified by 
Shapley Additive Explanation (SHAP) value (Lundberg and Lee, 
2017). The SHAP value for each feature is the average marginal 
contribution of a feature value across all possible coalitions, repre-
senting their contribution towards a higher or lower final predic-
tion. Fig. 7a shows the mean absolute SHAP values of the top 10 
important features. The 3rd moment of φskew is the most important 
feature, which significantly changes the predicted value of stress 
fluctuation over other features. φskew measures the tail-heaviness 
of D2

min of a particle’s second nearest neighbors (von Hippel, 2005). 
The closer φskew is to 0, the considered particle and its neighbors 
move in a more corporative manner, i.e., particles with either high 
D2

min or low D2
min are spatially clustered.

Fig. 7b shows the frequency distribution of φskew during the 
recharge stage and drop stages of a stick-slip cycle. The drop stage 
contains more particles with smaller φskew , resulting in a larger 3rd

moment φskew . To investigate how the 3rd moment φskew affects 
the model prediction, we present the SHAP dependence plot in 
Fig. 7c. Each dot denotes a recharge/drop event in the ML dataset, 
and the scatters are colored according to the global Moran’s I of 
particle D2

min. The smaller 3rd moment φskew results in a smaller 
and negative SHAP value, pushing the XGBoost prediction towards 
a recharge event. In contrast, microslips of a drop event demon-
strate stronger spatial correlation and thus have higher 3rd mo-
ment φskew . This feature helps XGBoost to distinguish between the 
recharge and drop events and predict the magnitude of macro-
scopic stress fluctuation. This study reveals that the spatial distri-
bution of microslips contains key information on the stress state of 
a granular system such that microslips (e.g., local acoustic emission 
signal and local seismic wave) detected inside the natural gouge 
faults may also be useful to predict its frictional stability.

3.4. Generalization capability of machine learning approach

It should be noted that many particle characteristics, including 
but not limited to particle shape, size distribution, surface rough-
ness, moisture content, and mineralogy, have been shown to have 
influences on the frictional instability of granular system (Mair et 
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Fig. 6. Performance of XGBoost model trained by (a) PSF and (b) MRF, respectively.

Fig. 7. Feature importance analysis. (a) SHAP values for the top 10 important features. (b) Frequency distributions of φskew during the recharge and drop stages of a stick-slip 
cycle. The 3rd moment φskew of recharge and drop stage are −2.41 and 1.80, respectively. Solid lines are Kernel Density Estimations used to smooth the distributions. (c) 
Dependence plot for the 3rd moment of φskew , colored by the global Moran’s I .
al., 2002; Anthony and Marone, 2005; Ikari et al., 2011; Scuderi 
et al., 2014). For example, the shearing of non-spherical particle 
assembly usually shows a distinct shear band, and microslip activ-
ities mainly occur within or near this thin layer.

To investigate whether particle shape could influence the main 
conclusions of this study, we slowly sheared an assembly of ellip-
soidal particles using the same simple shear setup as that of the 
spherical particle assembly. As a simple yet efficient representa-
tion of non-spherical particle shape, ellipsoidal particles are often 
used in the studies of granular materials (Kou et al., 2018; Murphy 
et al., 2019). As shown in Fig. 8a, the particle assembly consists 
of 17,764 prolate ellipsoids with an aspect ratio of 1.5. Figs. 8b 
and 8c show the spatial maps of particle velocity for assemblies of 
spherical and ellipsoidal particles and their corresponding veloc-
ity profiles. Fig. 8d shows the spatial maps of particle nonaffine 
particle displacements during two stress drops of similar sizes, 
respectively, for spherical (top) and ellipsoidal (down) particle as-
semblies. The ellipsoidal granular assembly has a more distinct 
shear band along the shear direction, as confirmed by the sharp 
transition of the velocity profile (Fig. 8c). Following the procedures 
described above, we train the ML model to predict the stress fluc-
tuations from the microslips of ellipsoidal particle assembly. Fig. 8e 
shows the performance of the ML model trained by MRF. The ML 
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model has a good performance with a coefficient of determination 
R2 = 0.913, which indicates that the connection of microslips with 
macroscopic stress fluctuations using ML model is still valid for 
non-spherical granular systems.

To further demonstrate the applicability of the proposed ap-
proach, we performed several DEM simple shear simulations of 
granular gouges with different particle size distributions and parti-
cle friction coefficients. Four particle size distributions are consid-
ered, i.e., particle diameters uniformly distributed on the interval 
0.8-1.2d50, 0.9-1.1d50, 0.7-1.3d50, and 0.3-1.7d50. The first one is 
used in the main text, and the latter three are added here. Three 
levels of particle friction coefficients are considered, i.e., 0.1, 0.5, 
and 0.9.

Fig. 9a and 10a show the stress-strain curves of granular gouges 
with different particle size distributions and particle friction co-
efficients, respectively. The curves have been shifted vertically to 
facilitate visual inspection. Fig. 9b to 9d and Fig. 10b to 10d
demonstrate the performance of ML methods on these granular 
gouges. Except for the granular gouge with particle friction coeffi-
cient of 0.1, other ML models have R-Squared values higher than 
0.9. Together with the case of ellipsoidal particle assembly, we can 
conclude that the proposed ML approach to connect particle scale 
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Fig. 8. (a) Simple shear of an assembly of ellipsoidal particles. Normal pressure and shear displacement are respectively applied on the top and bottom particle walls. Periodic 
boundary conditions are applied in the shear and depth directions. Spatial maps of particle velocity for assemblies of (b) spherical and (c) ellipsoidal particles and their 
corresponding velocity profiles. (d) Spatial maps of nonaffine particle displacements particle nonaffine displacements during two stress drops of similar sizes, respectively, 
for spherical (top) and ellipsoidal (down) particle assemblies. (e) Performance of XGBoost model trained by MRF of the ellipsoidal particle assembly.
microslips and macroscopic stress fluctuations is applicable to a 
broad range of granular materials.

4. Discussion

It is worth mentioning that the microslips are manifested as 
particle rearrangements and quantified by nonaffine particle mo-
tions. Compared to other common interpretations of microslips, 
such as acoustic emission, emitted seismic waves and shear fail-
ures, this particle-scale measure provides a novel approach to 
quantitatively analyze the statistical properties, spatial character-
istics of microslips and their relationship with macroscopic stress 
drops. However, such approach is not without limitations. The 
characterization of microslips using particle nonaffine displace-
ments is limited in computer simulations or experiments with 
x-ray tomography (Xing et al., 2021), light scattering (Le Bouil et 
al., 2014), etc. Therefore, there is still a long way before we could 
apply the proposed ML approach to natural fault gouges.

Previous studies have revealed that particle rearrangements and 
far field acoustic signal are different aspects of the force chain dy-
namics (Gao et al., 2019; Ma et al., 2021; Tordesillas et al., 2016). 
The spatial analysis carried in this study can facilitate future un-
derstanding into the acoustic emission process in natural fault 
8

gouges. With the rapid development of reliable geophysical mon-
itoring, we believe the spatial information of local seismic waves 
inside natural faults may be used to evaluate the frictional sta-
bility of faults. Furthermore, many other ways can also be used 
to extract the spatial patterns of microslips, such as Convolutional 
Neural Network, Graph Embedding for feature extraction, and com-
plex network analysis.

5. Conclusions

We quantitatively investigate and establish the relations be-
tween microslips and macroscopic stress fluctuations of a slowly 
sheared granular gouge. The microslips are manifested as particle 
rearrangements and quantified by nonaffine particle motions. The 
statistical features and spatial distributions of microslips that oc-
curred during the recharge and drop stages of a stick-slip cycle 
demonstrate apparently different characteristics. Both the Moran’s 
I and the correlation length of particle D2

min indicate that mi-
croslips in drop stages are spatially correlated to form large stress 
drops and frictional weakening. The differences in the microscopic 
dynamics of recharge and drop events suggest that we can quanti-
tatively connect the microslips and macroscopic stress fluctuations.
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Fig. 9. (a) Stress-strain curves of different size distributions. The two upper curves have been shifted vertically by 0.1, 0.2, respectively, to facilitate visual inspection. The 
prediction performances of XGBoost trained on these datasets are shown from (b) to (d), respectively. Here we only show the results based on MRF.
The use of XGBoost boosts to build the bridge between mi-
croslips and macroscopic stress fluctuation. Two sets of input frac-
tures are extracted from the raw data to train the ML models. By 
using the input feature vector containing both statistical and spa-
tial information of microslips, the trained XGBoost model can not 
only distinguish between recharge and drop events but also pre-
dict the magnitude of stress fluctuation with good accuracy. The 
proposed ML approach is applicable to granular gouges with differ-
ent particle shapes, size distributions, and friction characteristics. 
The feature importance analysis reveals the feature characterizing 
the local spatial autocorrelation of microslips is the most impor-
tant feature. Thus, we conclude that the spatial distributions of 
microslips contain key information about the stress state of gran-
ular gouge and its frictional stability. This study may shed lights 
on the mechanisms governing earthquake nucleation, microslips, 
friction fluctuations, and their connection during the stick-slip dy-
namics of earthquake cycles.
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Fig. 10. (a) Stress-strain curves of different particles frictions. The top curve has been shifted vertically by 0.1 to facilitate visual inspection. The prediction performances of 
XGBoost trained on these datasets are shown from (b) to (d), respectively. Here we only show the results based on MRF.
Appendix A. Nomenclature of symbols for defining features

Table A1
Nomenclature of symbols for defining features.

Symbol Meaning of the symbol

D2
min,i The nonaffine displacement of particle i

φmax,i The maximum value of particle D2
min within the neigh-

borhood of particle i
φmean,i The mean value of particle D2

min within the neighbor-
hood of particle i

φvar,i The variance of particle D2
min within the neighborhood 

of particle i
φskew,i The skewness of particle D2

min within the neighborhood 
of particle i

φkuro,i The kurtosis of particle D2
min within the neighborhood of 

particle i
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