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Abstract
This paper presents a novel computational-geometry-based approach to generating random packing of complex-shaped 3D

particles with quantitatively controlled sizes and shapes for discrete modeling of granular materials. The proposed method

consists of the following five essential steps: (1) partitioning of the packing domain into a prescribed number of random

polyhedrons with desired sizes and form-scale shapes using the constrained Voronoi tessellation; (2) extraction of key

points from the edges and facets of each polyhedron; (3) construction of a freeform curve network in each polyhedron

based on Bézier curve fitting; (4) generation of solid particles with smooth, convex surfaces using the biharmonic-based

surface interpolation of the constructed network; and (5) creation of concavity by superimposing spherical harmonic-based

random noise. To ensure that the obtained shape descriptors (e.g., the elongation, flatness, roundness and convexity ratio)

match the hypothesized values, an inverse Monte Carlo algorithm is employed to iteratively fine-tune the control

parameters during particle generation. The ability of the proposed approach to generate granular particles with the desired

geometric properties and packing is demonstrated through several examples. This study paves a viable pathway for realistic

modeling of granular media pertaining to various engineering and industrial processes.

Keywords Bézier curve fitting � Biharmonic equation � Complex-shaped particles � Granular packing � Spherical
harmonics � Surface interpolation � Voronoi tessellation

1 Introduction

The geometric and morphological properties of particles,

including the size, form, corner sharpness, concavity and

surface roughness, play distinct important roles in affecting

the macro- and micromechanical behaviors of granular

materials. This has been evidenced by numerous laboratory

experiments [1, 2, 14, 36, 41, 46, 48] and numerical sim-

ulations [8, 40, 43, 50]. Microscopically, the various geo-

metric features of a particle may affect its interactions and

motions with the surrounding particles in a granular

assembly, which collectively dictates the overall mechan-

ical responses of the material. For example, the form

(elongation and flatness) and the corner sharpness (round-

ness) tend to affect the rolling motion of a particle, while

the concavity (convexity ratio) may cause interlocking at

the contacts between particles. To differentiate the unique

effect of each individual geometric feature towards

understanding of their collective influence on the overall

behavior of a granular assembly, numerical generation of
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discrete particles with independent size or shape charac-

teristics of interest appears to be a viable (if not the only)

option.

Indeed, discrete modeling of granular media has

received increasing popularity across many scientific and

engineering fields, including chemical engineering

[7, 10, 55], powder engineering [20, 23, 42] and

civil/geotechnical engineering [9, 17, 37]. In particular, the

discrete element method (DEM) prevails among many

discrete modeling approaches for investigating the micro-

scopic and macroscopic behaviors of granular materials

[31, 35, 44]. Within the general framework of the DEM, a

variety of approaches have been developed to generate

particles with different geometries for DEM simulations.

Taking the form as an example, Ng [29] developed a DEM

using elliptical particles to study the mechanical behavior

of idealized granular materials under 2D conditions, which

was further extended to 3D ellipsoid particles [15, 24, 25].

Other relevant studies include the use of elongated particles

with rounded caps to examine the effects of elongation [4]

and spherocylindrical particles to study the effects of dif-

ferent aspect ratios [22, 32] on granular behavior. Other

studies have focused on shape features other than the form.

For example, superellipsoid particles [51] and superquadric

particles [19] have been used to simulate ellipsoid-like

particles with different degrees of angular sharpness at the

corners in discrete element simulations. Particles with

asymmetric shapes but smooth surfaces have also been

proposed, such as egg-shaped particles [53] and polyel-

lipsoid particles [33]. Random simple convex polyhedral

particles [28] have also been proposed to simulate real

particle shapes, but with rather limited quantitative control

of the shape features. Other recent efforts have focused on

employing spectrum-based methods, including the Fourier

series [27] and spherical harmonics [38, 52], to generate

realistic particles with complex shapes. The generated

shape features are statistically correlated with the adopted

Fourier series or spherical harmonics coefficients. How-

ever, these spectrum-based approaches are not without

limitations. For example, they cannot adequately and

independently control the corner sharpness and the con-

cavity features. As stated in [27], real sand grains exhibit

some planar facets and sharp corners. These features are

not reproduced well by spectrum-based methods, which

usually disregard the potential correlation between the

phase angles of each harmonic in the frequency domain

and assume that the phase angles are statistically inde-

pendent random variables.

This study presents the development of a more robust

technique for grain shape reconstruction. In particular, it is

aimed to generate random packing of irregular-shape par-

ticles with quantitative, independent control of key geo-

metrical features, including the particle size (average

radius), form (elongation and flatness), corner sharpness

(roundness), and concavity (convexity ratio). The proposed

algorithms are developed based on three areas of previous

work by the authors: (1) the Fourier–Voronoi-based

packing of star-like particles [27]; (2) the spherical-har-

monics-based generation of realistic sand particles [39, 52];

and (3) dense packing of convex granules based on Vor-

onoi tessellation and cubic-polynomial-curve fitting [47].

First, the constrained Voronoi tessellation is employed to

partition a sample domain into irregular polyhedrons,

namely the Voronoi cells. The obtained polyhedrons are

employed as the basic elements for the particle generation.

The curve fitting technique is then extended to generate 3D

convex particles that are inscribed to the Voronoi cell, and

the edge midpoints and facet centers are extracted from

each polyhedron as the key points of the particle outline.

The Bézier curve fitting is employed to construct a curve

network that passes through the extracted key points. Next,

the biharmonic equation is employed to develop a unique

surface interpolation algorithm to generate a solid particle

with a closed smooth surface that is bounded by the Bézier

curve network. Finally, based on the inverse operation of

spherical harmonics transformation, the particle concavity

features are quantitatively reproduced by superimposing

the amplitude-controlled harmonic series of certain fre-

quencies. To make the generated non-spherical shapes

resemble the desired targets, the inverse Monte Carlo

approach is employed to adjust the sizes and shapes of the

generated particles, so that the obtained geometry statisti-

cally approximates the desired one. To further demonstrate

the capability of the proposed algorithms, three scenarios

of granular particles packing are generated with distinctive

sizes and shapes that approximate the prescribed targets.

The proposed work paves a pathway to further DEM-based

studies of individual particle shape effects of each geo-

metrical features (e.g., form, corner sharpness, concavity)

on the macro- and micromechanical properties of granular

materials.

2 Random generation of irregular particles

Random polyhedrons with irregular shapes have been

performed in previous studies for simulations of granular

particles [6, 11, 34]. However, the generated polyhedrons

frequently exhibit unrealistic sharp corners and idealized

convex surface, which fail to capture the geometric fea-

tures of realistic granular particles, e.g., the corner sharp-

ness and surface concavity. In this section, we first generate

an assembly of random polyhedrons using Voronoi tes-

sellation. Then, inside polyhedrons, we generate random

complex-shaped particles with quantitatively controlled
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geometric features based on a series of computational

geometry algorithms and spherical harmonics.

2.1 Polyhedron generation and key point
extraction

The Voronoi tessellation has been widely used in compu-

tational geometry [13]. It is employed here to randomly

generate irregular polyhedrons. Typically, a random cloud

of seeding points are first generated in a given domain

which is then partitioned into a number of polyhedrons

accordingly. The procedure is demonstrated in Fig. 1. First,

as shown in Fig. 1a, a cubic box with unit side length is

generated as the sample domain. Then, as shown in

Fig. 1b, 20 points are randomly distributed inside a cubic

domain. Next, Delaunay triangulation is performed to

identify neighboring points, as shown in Fig. 1c. Finally,

for each point, the corresponding polyhedron (Voronoi

cell) is generated, as illustrated in Fig. 1d. In this study,

each polyhedron is isolated as an individual container.

Each container will be filled with a particle and the particle

will be encompassed by the facets of the polyhedron. The

overall shape of the particle is expected to approximate the

given polyhedron to a certain extent.

For each polyhedron, a series of key points are extracted

from its facets and edges. An example polyhedron is

selected from the generated polyhedron for particle gen-

eration, as demonstrated in Fig. 2a. It is shown in Fig. 2b

that both the midpoint (in cyan) of each side edge (in black

solid line) and the center point (in red) of each polyhedron

facet are extracted as the key points. As illustrated in

Fig. 2c, since each edge of the polyhedron is naturally

shared by two neighboring facets, each edge midpoint

Medge can be connected with two facet center points Cl
facet

and CR
facet (connected by a blue dashed line). In the next

section, each group of key points (one edge midpoint and

the neighboring facet midpoints, as highlighted in Fig. 2d)

will be used to generate the curve network.

Fig. 1 Generation of irregular polyhedrons a define the sample domain; b node generation; c Delaunay triangulation; d Voronoi tessellation
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2.2 Generation of freeform curve network
from key points

For an example corner \Cl
facetMedgeC

R
facet (shown in

Fig. 3a), which is formed by connecting an edge center

point Medge with two neighboring facet center points Cl
facet

and CR
facet, two additional control points Q1 and Q2 (high-

lighted as green points in Fig. 3b) are defined based on a

curve fitting parameter w;where;w 2 0; 1½ �.

Fig. 2 Extraction of control points from the simple polyhedron

Fig. 3 Fitting the Bezier curve based on the extracted controlled points
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Q1 ¼ 1� wð ÞCl
facet þ wMedge ð1Þ

Q2 ¼ 1� wð ÞCR
facet þ wMedge ð2Þ

Cl
facet;C

R
facet;Q1 and Q2 are thereby regarded as four control

points to generate a cubic Bezier curve, which is tangen-

tially oriented to lines Cl
facetMedge and CR

facetMedge at Cl
facet

and CR
facet, respectively. The generated cubic Bezier curve

(shown as a red solid curve in Fig. 3c) is expressed as

follows:

B uð Þ ¼
X3

i¼0

B3
i uð ÞPi ð3Þ

where P0 is set as C
l
facet, P1 is set as Q1, P2 is set as Q2, and

P3 is set as CR
facet; the parametric domain of B uð Þ is given

by u 2 0; 1½ �. B3
i uð Þ is the following cubic basis function

B3
i uð Þ ¼ 3!

i! 3� ið Þ! u
i 1� uð Þ3�i ð4Þ

The generated Bezier curves with three different shape

parameter values (w ¼ 0:4; 0:6 and 0:8) are illustrated in

Fig. 4. When w increases, Q1 and Q2 become closer to

Medge but farther from Cl
facet and CR

facet, and the generated

curve more closely reflect the triangular corner

\Cl
facetMedgeC

R
facet.

The above Bezier curve generation process is repeated

for each triangular corner of the extracted key points, and

finally, a freeform curve network is constructed from the

simple target polyhedrons, as shown in Fig. 5.

2.3 Creating the particle surface from the curve
network

Because the terminal vertex of each curve overlaps with the

facet center point of the polyhedron, the generated curve

network has a dual topology relation with the provided

polyhedron. That is, each vertex vi (in dark blue) of the

given polyhedron corresponds to a curve area CFi, which is

bounded by three or four curves in the curve network. As

shown in Fig. 6, one curve area CFi in the curve network is

bounded by 3 curves, B0;B1 and B2, which are generated

from three triangular corners \Cl
facetMedgeC

R
facet, and the

edges and facets share the same vertex vi. Based on this

relation, the biharmonic equation is employed to generate a

curved surface for the curve area in the generated curve

network.

In this paper, we apply the biharmonic equations for

smooth surface generation, which mainly focus on the

generation of N-sided surface patch using biharmonic

equation in the polar coordinates. The biharmonic equation

falls into the category of elliptic partial differential equa-

tions (PDEs) and is commonly denoted by:

D2u ¼ 0 ð5Þ

where D2 represents the Laplace operator and u represents

either of the x, y, z dimensions. The form of the Laplace

operator in polar coordinates is:

D2 ¼ o2

or2
þ 1

r

o

or
þ 1

r2
o2

oh2

� �2
ð6Þ

Fig. 4 Fitting the Bezier curve based on the extracted controlled points when a w=0.4; b w=0.6; and c w=0.8

Fig. 5 Illustration of the generated freeform curve network
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In this section, Eq. (6) is employed as a mapping from

[0,2p]�[0,1] to the curve area bounded by the N-sided

Bezier curves. In order to solve Eq. (6), the boundary

conditions are given by:

u 1; hð Þ ¼ f hð Þ; 0� h� 1 ð7Þ
ou

or

����
r¼1

¼ g hð Þ; 0� h� 2p ð8Þ

where f hð Þ s in x, y, z dimensions describe the N-sided

boundary conditions and g hð Þ s in x, y, z dimensions

control the tendency of surface generation at r direction on

the boundaries, which decide the normal direction n of

generated surface on the boundaries by:

n ¼ of

oh
� g hð Þ

� �
=

of

oh

����

���� � g hð Þj j
� �

ð9Þ

which can be modified through adjusting g hð Þ s on three

dimensions to make the adjacent surfaces satisfy a high

continuity.

More specifically, the solution of (5) together with

boundary conditions (7) and (8) can be obtained easily and

efficiently in the form as follows:

u r; hð Þ ¼ a0
2
þ b0

4
r2

þ
X1

n¼1

rn an þ cnr
2

� �
cos nhþ bn þ dnr

2
� �

sin nh
	 


ð10Þ

when f hð Þ and g hð Þ can be expressed in the Fourier series:

u 1; hð Þ ¼ f hð Þ; 0� h� 1 ð11Þ
ou

or

����
r¼1

¼ g hð Þ; 0� h� 2p ð12Þ

where a, b, d and g can be obtained by fast Fourier

transform:

an ¼
1

p

Z 2p

0

f hð Þcos nhð Þdh ð13Þ

bn ¼
1

p

Z 2p

0

f hð Þsin nhð Þdh ð14Þ

dn ¼
1

p

Z 2p

0

g hð Þcos nhð Þdh ð15Þ

gn ¼
1

p

Z 2p

0

g hð Þsin nhð Þdh ð16Þ

or the discrete Fourier transform when the boundary con-

ditions are given discretely as f hið Þ and g hið Þ, i= 1, 2, 3,…,

N (hN=2p) with the intervals denoted as si:

an ¼
1

p
mean f hið Þcos nhið Þhi½ � ð17Þ

bn ¼
1

p
mean f hið Þsin nhið Þhi½ � ð18Þ

dn ¼
1

p
mean g hið Þcos nhið Þhi½ � ð19Þ

gn ¼
1

p
mean g hið Þsin nhið Þhi½ � ð20Þ

Additionally, the coefficients in Eq. (10) can be

obtained through variable separation as follows:

a0 ¼ a0 �
1

2
b0; b0 ¼ b0 ð21Þ

an ¼
1

2
nþ 2ð Þan � dn½ �; bn ¼

1

2
nþ 2ð Þbn � gn½ � ð22Þ

cn ¼
1

2
dn � nanð Þ; dn ¼

1

2
gn � nbnð Þ ð23Þ

In the actual calculation, the infinite series solution of

(10) is not available, while the form of finite sum is

available. In order to ensure that the final surface strictly

meets the boundary conditions, the spectral approximation

method is employed. In Eq. (10), rn will decrease gradually

with the increase of n until it can be ignored. Using the

spectral approximation technique, Eq. (10) can be expres-

sed as

u r; hð Þ ¼ a0
2
þ b0

4
r2

þ
XM�1

n¼1

rn an þ cnr
2

� �
cosnhþ bn þ dnr

2
� �

sinnh
	 


þ R r; hð Þ
ð24Þ

where R r; hð Þ is the remainder, representing the contribu-

tion of higher order terms to the solution. When M is large

enough, R r; hð Þ can be ignored inside the surface. In order

for the surface to strictly meet the given boundary

Fig. 6 Curve area CFi corresponding to vertex vi of the given

polyhedron
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conditions, this item must be retained, but some approxi-

mate form is available, such as

R r; hð Þ ¼ A1 hð ÞrM þ A2 hð ÞrMþ2 ð25Þ

where A1 hð Þ and A2 hð Þ are pending function. For sim-

plicity, we denote:

F r; hð Þ ¼ a0
2
þ b0

4
r2

þ
XM�1

n¼1

rn an þ cnr
2

� �
cosnhþ bn þ dnr

2
� �

sinðnhÞ
	 


Df hð Þ ¼ f hð Þ � F 1; hð Þ

Dg hð Þ ¼ g hð Þ � F
0

r 1; hð Þ ð26Þ

In order to get the solution of the boundary value

problem to satisfy the boundary conditions, R r; hð Þ must

satisfy the following conditions:

A1 hð Þ þ A2 hð Þ ¼ f hð Þ � F 1; hð Þ ¼ Df hð Þ ð27Þ
MA1 hð Þ þ M þ 2ð ÞA2 hð Þ ¼ Dg hð Þ ð28Þ

so we can obtain:

A1 hð Þ ¼ Df hð Þ � A2 hð Þ ð29Þ

A2 hð Þ ¼ 1

2
Dg hð Þ �MDf hð Þ½ � ð30Þ

Based on the above derivation, we can develop an

algorithm for constructing the Biharmonic-based surface,

the algorithm is illustrated in Table 1.

As illustrated in Fig. 7, based on the proposed algo-

rithm, the smooth surface G that is bounded by three

generated Bezier curves B0; B1 and B2 can be generated.

The above computational process can be iterated for

each curve area CFi in the curve network until a closed

solid surface can be generated inside the provided poly-

hedron, as shown in Fig. 8a. The whole procedure is

repeated for each polyhedron generated by the Voronoi

tessellation to produce a packing of solid particles with

smooth surfaces, as illustrated in Fig. 8b. Compared with

the conventional random deposition method for particle

packing, this method can generate more densely packed

particles, which are potentially contacted with their

neighbors, whose Voronoi cells are in contact. The contact

conditions between particles are influenced by the geom-

etry of the generated Voronoi cells and the generated

shapes of the particles. If two neighboring particles are

smooth in surface (without addition of spherical harmonics

noise), they will be contacted at the center of the facet that

is shared by their Voronoi cells, and the contact condition

(corner–corner contact, plane–corner contact) will be

determined according to the local curvature of the two

particle surface.

2.4 Producing concavity with spherical
harmonics

Based on the above procedure, irregular convex granular

particles with smooth surfaces are generated. Since the

surface of a real particle frequently exhibits concavity

features, the spherical harmonics are employed here to

introduce extra concavity features onto the smooth surface

of each generated particle.

The spherical harmonic transform (SHT), which is

essentially a (2D) Fourier transform onto 3D sphere [5],

has shown potential for characterizing the shapes of gran-

ular particles [16]. Previous researchers [38, 49, 54] have

indicated that an inverse operation of SHT can be per-

formed to reconstruct a virtual particle with specified shape

features based on the presumed harmonic coefficient

matrices. The idea of the SHT is to expand the polar radius

of the particle surface from a unit sphere and to calculate

the associated coefficients of the spherical harmonic series:

r h;uð Þ ¼
XN

n¼0

Xn

m¼�n

cmn Y
m
n h;uð Þ ð31Þ

where r h;uð Þ is the polar radius from the particle center

with the corresponding spherical coordinates h 2 0; p½ � and
u 2 0; 2p½ �, which can be obtained by the coordinate

Table 1 Algorithm for constructing the Biharmonic-based surface

Algorithm 1

1 Compute the Fourier coefficient of the first M terms of f hð Þ and
g hð Þ by fast Fourier transform

2 Compute F 1; hð Þ and F
0

r 1; hð Þ by Eq. (26)

3 Compute A1 hð Þ and A2 hð Þ by Eqs. (29) and (30)

4 Compute coordinates of points on the surface by

u r; hð Þ ¼ F r; hð Þ þ R r; hð Þ

Fig. 7 The generated smooth surface bounded by three Bezier curves

using the proposed biharmonic-equation-based method
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transformation of the particle surface vertices V x; y; zð Þ. cmn
is the associated harmonic coefficient that requires deter-

mination, N is the total number of harmonic frequencies,

and Ym
n h;uð Þ is the spherical harmonic function given by:

Ym
n h;uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ n� mð Þ!
4p nþ mð Þ!

s

Pm
n coshð Þeimu ð32Þ

where n and m are the frequency and the order of the

associated Legendre function Pm
n xð Þ, respectively, which

can be expressed by Rodrigues’s formula:

Pm
n xð Þ ¼ 1� x2

� � mj j=2 � d
mj j

dx mj j
1

2nn!
� d

n

dxn
x2 � 1
� �n

� �
ð33Þ

According to Eq. (31), the total number of cmn is

N þ 1ð Þ2. Taking the discrete values of r h;uð Þ as the input
on the left side of Eq. (31), a linear equation system with

N þ 1ð Þ2 unknowns is obtained. Then the optimized solu-

tion of cmn can be easily determined by adopting the stan-

dard least-squares estimation for the linear equation

system. Finally, the inverse operation of SHT can be

conducted to reconstruct the particle through the input of

the obtained harmonic coefficients cmn on the right side of

Eq. (31) to compute the reconstructed continuous surface

points r
0
h;uð Þ.

Previous works have shown that particle morphological

features can be constructed by accumulating the decom-

posed spherical harmonic series with certain number of

frequencies and specified amplitudes. According to [49],

the amplitude of the input harmonic coefficients cmn at each

frequency n determines different aspects of the

reconstructed morphological features. The amplitude An at

each frequency n can be computed as:

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

kcmn k
2

s

ð34Þ

where kcmn k is the second-order norm of cmn .

Specifically, as stated in [49], A0 represents the particle

size, A1 does not influence the spherical harmonic-recon-

structed particle morphology, A2 to A4 represent the gen-

eral shape of the particle at a large-scale level, and A5 to

A15 represent the local concavity feature at a small-scale

level.

Based on the inverse operation of SHT as introduced

above, the spherical harmonic series (when 5� n� 15)

with coefficients cmn of amplitudes A5 to A15 are employed

to introduce concavity features to the generated smooth

particle surface. According to [49], a linear relationship

between An and n (5� n� 15) in the log–log scale is

assumed here:

An ¼ KA � rave �
n

2

� 
2FD�6

when; 5� n� 15 ð35Þ

where KA is the parameter that controls the amplitudes of

the harmonic coefficients at frequencies from 5 to 15, rave
is the average radius of the generated smooth surface

particle, and FD is the fractal dimension coefficient, which

can be selected from the typical FD value ranges of

Leighton Buzzard sand (2:043�FD� 2:169) and highly

decomposed granite (2:195�FD� 2:377), as recommend

by [49].

The procedure to produce concavity features on the

generated convex particle is detailed as follows:

Fig. 8 The generated solid particle with closed surface for a single particle case, and b multiple particles case
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(1) Discretize the smooth surface of the generated

convex shape particle into densely distributed dis-

crete points. Transform the coordinates of the points

from the Cartesian coordinate system into the

spherical coordinate system;

(2) Calculate the mean radius of the surface points rave;

(3) Determine the desired An (5� n� 15) based on

Eq. (22) and the selected KA and FD;

(4) Generate a series of random numbers for the

normalized harmonic coefficients at each degree n,

c0n ¼ c0�n
n ; c0�nþ1

n ; . . .; c00n; . . .; c
0n�1
n ; c0nn

� 

where c0mn

(�n�m� n) are random variables uniformly dis-

tributed from - 1 to 1;

(5) Calculate the normalized amplitude of the random

harmonic coefficients:

A0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

c0mn
� �2

s

ð36Þ

(6) Determine the final harmonic coefficients cn at each

degree:

cn ¼ c�n
n ; c�nþ1

n ; . . .; c0n; . . .; c
n�1
n ; cnn

� �
ð37Þ

cmn ¼ An

A0
n
c0
m
n ð38Þ

(7) Calculate Ym
n h;uð Þ for h 2 0; p½ � and u 2 0; 2p½ �

following Eq. (19), and calculate r
0
h;uð Þ based on

r h;uð Þ, cmn , Ym
n h;uð Þ, rave and the following

equation:

r
0
h;uð Þ ¼ r h;uð Þ

� 1þ
X15

n¼5

Xn

m¼�n

cmn Y
m
n h;uð Þ=rave

 !" #

ð39Þ

Figure 9 shows a unit sphere rave ¼ 1 with imposed

concavity features generated by the proposed spherical

harmonic series at n ¼ 5 to n ¼ 15 for different KA values.

3 Control of the generated particle
geometry

This section aims to illustrate how the volumetric size and

different shape features of the generated particles can be

quantitatively and independently controlled based on the

relationship between the conventional geometry descriptors

and the control parameters of the proposed algorithm.

3.1 Control of size and form parameters

First, we focus on the size and the form shape of the par-

ticle. The size of the particle, denoted as average radius,

rave, is computed from the radius of an equivalent sphere

with the same volume:

rave ¼
3V

4p

� �1
3

ð40Þ

For the form shape, the elongation index, EIð Þ, and

flatness index, FIð Þ, are employed to quantify the dimen-

sional ratio of the particle:

EI ¼ I

L
ð41Þ

FI ¼ S

I
ð42Þ

where S, I, and L are the minor, intermediate and major

principal dimension of the particle, respectively.

Since the generated particle approximates the given

polyhedron to some extent, rgenave EIgen and FIgen are

expected to be correlated with those of the circumscribed

polyhedron, rpolyave , EIpoly and FIpoly, respectively. Fig-

ure 10a-c illustrates some example particles, which are

generated inside polyhedrons of various rpolyave , EI
poly and

FIpoly values. It can be seen from the figure that the poly-

hedrons with higher rpolyave , EI
poly and FIpoly values tend to

produce particles with higher rgenave EIgen and FIgen values,

respectively.

To further verify the capability to adjust the sizes and

form shapes by controlling of the polyhedron geometry,

1000 polyhedrons of various sizes (rpolyave 2 1; 5½ �), elonga-
tions EIpolyave 2 0:2; 1½ � and flatness values FIpolyave 2 0:2; 1½ �
are generated. For each polyhedron, a random variable w

that follows a uniform distribution ranging from 0.1 to 1.0

is assigned to generate the smooth surface particle. Then,

the rgenave , EI
gen, FIgen values for all the particles are com-

puted. The influences of (a) rpolyave , (b) EI
poly and (c) FIpoly on

the obtained rgenave , EI
gen, and FIgen, respectively, are shown

in Fig. 11. As expected, rpolyave , EI
poly and FIpoly exhibit a

strong linear relation with rgenave , EI
gen, and FIgen, respec-

tively. The equations of the generated size and shapeFig. 9 Producing concavity on a sphere based on the proposed inverse

operation of SHT with various KA values
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values of particles as the functions of the corresponding

control parameters of polyhedrons are obtained from

regression analysis and are listed as follows:

rgenave ¼ 0:770rpolyave � 0:037 ð43Þ

EIgen ¼ 0:872EIpoly þ 0:852 ð44Þ

FIgen ¼ 0:853FIpoly þ 0:989 ð45Þ

Based on the above equations, rpolyave , EI
poly and FIpoly can

thus be used to control the preliminary size and form

shapes of the generated particle. More accurate control can

be implemented based on the inverse adjustment of indi-

vidual polyhedron geometry as detailed in the author’s

previous work [26] and concluded in Sect. 4.1.

Fig. 10 Illustration of example particles generated inside polyhedron

of various a rpolyave , b EIpoly and c FIpoly

Fig. 11 Influences of control parameters a rpolyave , b EIpoly and c FIpoly

on the a rgenave , b EIgen and c FIgen of the generated particles. Solid line:

mean values; dotted lines: mean values ?/- one standard deviation
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3.2 Control of the corner sharpness parameter

The sharpness of the corners is known to influence the

kinematics, e.g., sliding and rolling [45], of the particles. In

this section, we illustrate the capability of the proposed

algorithm to control the corner sharpness of the generated

particle. The 3D Wadell’s roundness is computed to

quantify the corner sharpness [30]:

R ¼
P

ri
nRinsc

ð46Þ

where Rinsc is the radius of the maximum inscribed circle,

ri is the radius of the ith sphere which is fitted to the corner

of the particle, and n is the total number of spheres that fit

all the identified particle corners. Figure 12 illustrates four

example particles with various corner sharpness values

generated by different value of w, where w ranges from 0.1

to 0.4, and R increases from 0.16 to 0.65.

To further verify the capability of adjusting the corner

sharpness with the control parameter w, 1000 polyhedrons

of various elongation and flatness are generated. For each

polyhedron, a random variable w that follows a uniform

distribution ranging from 0.1 to 1.0 is assigned to generate

the smooth surface particle of different corner sharpness

features. Then, the R values for all the particles are com-

puted. The influences of w on the obtained R values, as well

as those on EIgen and FIgen, are shown in Fig. 13. As

expected, R exhibits a strong inverse-U-shape relation with

w. Based on the obtained data, the polynomial regression

equation for relating w to R is derived as follows:

R ¼ �1:563w3 þ 0:038w2 þ 1:698w� 0:063 ð47Þ

Thus, with the above equation and inverse parameter

adjustment, w can be used to control the corner sharpness R

of the generated particle.

3.3 Control of concavity parameter

The convexity ratio (CR) characterizes the concavity fea-

ture, which is known to influence the amount of inter-

locking at contacts between two neighboring particles. For

a 3D particle, it is calculated as:

CR ¼ Vparticle

Vconvex
ð48Þ

where Vparticle is the volume of the particle and Vconvex is

the volume of the convex hull of the particle. In this sec-

tion, we illustrate the capability of the proposed algorithm

to reproduce particles with desired concavity features using

the spherical harmonics of different control parametersKA.

First, the example particles generated by different control

parameters w and KA are shown in Fig. 14.

To further verify the capability of adjusting the particle

concavity, the correlations between the convexity ratio of

the generated particles and the control parameter KA are

examined. In this section, the previously generated 1000

Fig. 12 Example particle of various corner sharpness generated by

different value of w

Fig. 13 Influence of control parameter w on roundness of generated

particles. Solid line: mean values; dotted lines: mean values ?/- one

standard deviation

Fig. 14 Illustration of particles generated by different control

parameters w and KA
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smooth surface particles (CR ¼ 0) with various elongation,

flatness and roundness values are used as the parent par-

ticles. For each parent, 10 particles are generated with

various values of KA, which follows a uniform distribution

ranging from 0 to 1.0. The influences of KA on the obtained

CRgen are shown in Fig. 15. As expected, the KA exhibits a

strong negative relation with CRgen. The regression equa-

tion for controlling of CRgen with KA can be obtained:

CRgen ¼ �0:026KA
3 � 0:493KA

2 � 0:146KA � 0:999

ð49Þ

Subsequently, using this equation, when the desired

convexity ratio CRtar is given, the corresponding KA can be

easily determined. If there is any discrepancy between the

generated convexity ratio CRgen and the target value, the

inverse adjustment can always be performed to accurately

control the error.

4 Random packing of the generated
irregular particles

4.1 Proposed scheme for generation of particle
packing

In this study, the proposed algorithm to generate the ran-

dom packing of non-spherical particles with desired geo-

metric features includes the following major steps:

(i) First, irregular-shaped polyhedrons with desired size,

elongation and flatness values are generated through

the constrained Voronoi tessellation method [26].

The method is alternative to the normal Voronoi

tessellation method and is based on the controlled

partition of the virtual container by the means of a

constrained Voronoi tessellation. The method was

inspired by the IMC framework that initially

appeared in [18]. The constrained Voronoi tessella-

tion comprises the following sub-steps:

(i) Generate an initial set of points within the

selected domain, and perform a bounded

Voronoi tessellation (i.e., the union of all the

cells is identical to the whole domain).

(ii) Evaluate the geometric properties of the

obtained Voronoi polyhedron, e.g., rpolyave ,

EIpoly and FIpoly. Compute the error corre-

sponding to the differences between the

current values and the targets, (rtarave, EItar

and FItar).

(iii) Randomly move one of the seeding points to

another random location, compute the new

tessellation with only modifying the local

cells around the moving point [26], and

repeat step (ii). If the error is less than its

previous value, accept the modification;

otherwise, reject it.

(iv) Repeat step (iii) until the error has reached

an acceptable value. Indeed, there would

still be a certain discrepancy between the

generated particles and the targets. Thus, the

above procedure can be performed again to

minimize the error between those the gen-

erated particles (rgenave , EI
gen and FIgen), and

the desired targets, (rtarave, EI
tar and FItar).

(2) Next, the key points are extracted from the edges and

facets of the polyhedrons. According to the target

corner sharpness (Rtar), the Bézier curves are gener-

ated with certain control parameter w to form curve

networks inside the polyhedrons. Then, an irregular

non-spherical particle surface is generated based on

biharmonic surface interpolation.

(3) Based on the target convexity (CRtar), superimpose

the spherical harmonics with appropriate KA values

on the particle surface to produce convexity features.

(4) Finally, compute the error corresponding to the

differences between the current and target ones.

Adjust the shape control parameters w, and KA, until

the error reaches an acceptable value.

4.2 Examples of generated particle packing

To comprehensively demonstrate the capability of the

proposed algorithms for studying granular materials, three

scenarios of particle packing are provided in this subsec-

tion: (1) packing of bidispersed particle mixtures with

Fig. 15 Influence of control parameter KA on concavity of generated

particles (CRgen). Solid line: mean values; dotted lines: mean values

?/- one standard deviation
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various coarse-particle weights and different size ratios, (2)

packing of realistic particles with distinctive shape fea-

tures, and (3) packing of quantitatively controlled particle

orientations and form-scale shapes.

(1) Packing of bidispersed particle mixtures.

Bidispersed particle mixtures with various combinations

of coarse and fine grains are simulated using the proposed

method. The simulated particles can be considered as

binary mixtures of sands and gravels with sufficiently large

interparticle stiffness and cohesionless interparticle con-

tacts. The binary mixture can be characterized by two

important parameters: the weight of the coarse grains, WC,

and the grain size ratio, aV :

WC ¼ Vcoarse

Vtotal
ð50Þ

where Vcoarse represents the sum of the volume of the

coarse particles and Vtotal represents the total volume of the

coarse and fine particles, and

aV ¼ l Dcoarseð Þ
l Df ine

� � ð51Þ

where l Dcoarseð Þ denotes the mean diameter of the coarse

grains and l Dfine

� �
denotes the mean diameter of the fine

grains.

In total, 6 samples are produced to illustrate the capa-

bility of the proposed method to simulate bidispersed

particles with different values of WC and aV . The bidis-

persed binary particle mixtures have different coarse grain

weights (WC ¼ 80%, 60%, 40%) and grain size ratios

(aV ¼ 1 : 1, 2 : 1, 3 : 1); the packing patterns are illustrated

in Fig. 16 and Fig. 17, respectively. The figures show that

the proposed method can efficiently and effectively pro-

duce bidispersed particle mixtures with various coarse

grain weights and grain size ratios. Since many geotech-

nical researchers are very interested in binary mixture (gap

graded soils) and the generation of initial packing for such

material was the main problem that influences the com-

putational time in their simulations, we demonstrate the bi-

Fig. 16 Packing patterns of the generated binary mixture with different volumetric size ratio a WC ¼ 80%, b WC ¼ 60% and c WC ¼ 40%

Fig. 17 Packing patterns of the generated binary mixture with different volumetric size ratio a aV ¼ 5 : 3, b aV ¼ 5 : 2 and c aV ¼ 5 : 1
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disperse packings for illustration purpose. It should be

noted that the algorithm can actually generate a wide range

of particle size distribution. The capability and validity of

Fig. 18 Four examples of packing with distinctive particle shapes
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the IMC algorithm to control the Voronoi cell size distri-

butions are detailed in [26].

(2) Packing of particles that have realistic shapes.

Four examples of particle packing, composed of 100

particles each, are generated with the following realistic

and distinctive features: (1) the first example aims to

generate particles with high corner sharpness and large

Fig. 19 Generation of vertical orientated particles: a, b initial stage; c, d intermediate stage; e, f final stage
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concavity values, (2) the second example focuses on pro-

ducing particles with sharp corners without concavity, (3)

the third example generates particles with low corner

sharpness with larger concavity, and (4) the fourth example

produces particles with rounded corners and smooth sur-

faces. The properties related to the corner sharpness and

concavity are acquired by carefully adjusting the control

parameters w and KA. The clearly recognizable differences

between the four examples are visualized in Fig. 18a-h.

The grain shapes of the first example are somehow similar

to those of crushed rocks in Fig. 18b, while those of the

second example are more often encountered in grinding

materials, e.g., the brown fused alumina in Fig. 18d. The

shapes of the third example approximate those of the quartz

sands, in Fig. 18f, while the particles in the fourth example

are more identical to riverbank pebbles, in Fig. 18h.

(3) Packing of particles having prescribed geometrical

values.

Fig. 20 Generation of horizontal orientated particles: a, b initial stage; c, d intermediate stage; e, f final stage
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Two groups of particle packing are presented at this

scenario to illustrate the potential of proposed algorithm.

They make use of the illustrative geometry controlling

scheme as presented in the previous sections. Each group

has the following prescribed distinctive features:

Group 1: Particles with desired orientations, e.g., iso-

tropic orientated (h 2 �p; p½ �, u 2 � p
2
; p
2

	 

), vertical ori-

entated (h 2 �p; p½ �, u ! � p
2
or p

2
), and horizontal

orientated (h 2 �p; p½ �, u ! 0).

As illustrated in Fig. 19a-b, at initial stage, the recon-

structed particles based on the Voronoi cells tend to have

random orientations. Then, after a few numbers of itera-

tions, as shown in Fig. 19c-d, the generated particles

gradually become vertically orientated. The final results are

demonstrated in Fig. 19e-f, where the particles assembly

displays identical orientations to the desired values,

h 2 �p; p½ �, u ! � p
2
or p

2
.

The evolutions of the generated particles and their ori-

entation diagrams for horizontal orientated and isotropic

orientated spatial distributions are illustrated in Fig. 20 and

Fig. 21, respectively. The results prove that the proposed

algorithm has good performance in generating particles

packing with predetermined spatial orientations.

Group 2: Particles with desired elongations and flatness,

e.g., oblate (lEI ¼ 0:9, rEI ¼ 0:06; lFI ¼ 0:5, rFI ¼ 0:06),

prolate (lEI ¼ 0:5, rEI ¼ 0:06; lFI ¼ 0:9, rFI ¼ 0:06) and

scalene (lEI ¼ 0:5, rEI ¼ 0:06; lFI ¼ 0:5, rFI ¼ 0:06).

The error function between the generated EI, FI distribu-

tions and their corresponding targets are defined as:

Fig. 21 Generation of isotropic orientated particles: a, b initial stage; d–f intermediate stage; g–i final stage
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Error ¼ r
1

0

pdftar xð Þ � pdfgen xð Þ
�� ��dx ð52Þ

where pdftar xð Þ is the target probability density function of

the chosen shape index and pdfgen xð Þ is the generated

probability density function of the chosen shape index.

Following the author’s previous work in [27], the integral

is computed numerically using discretized versions of the

probability density function, and a target value of 0.1 can

provide satisfactory results.

As displayed in Fig. 22a-b, at the initial stage, the par-

ticles reconstructed from the original Voronoi cells exhibit

quite random distributions of elongation and flatness,

EI 2 0:4; 1:0½ �, FI 2 0:1; 1:0½ �. The errors between the

generated EI, FI values and their corresponding targets

were 0.78 and 1.82, respectively. Then, after the geometry

adjustment algorithm is applied, as illustrated in Fig. 22c-

d, the mean value of elongation increases from 0.81 to

0.85, while the mean of flatness significantly decreases

from 0.79 to 0.55. The errors for both EI and FI also

decrease to about 0.5. Finally, as illustrated in Fig. 22e-f,

the generated specimen exhibits EI and FI values approach

very close to the desired distributions, with satisfied errors

around 0.1.

As for the prolate and scalene cases, the changes of the

shape distributions from initial stage to final stage, which

are processed by the proposed algorithm, are also illus-

trated in Fig. 23 and Fig. 24, respectively. The generated

prolate particles present errors of EI and FI decreasing

from 1.83 to 0.11 and 0.54 to 0.14, while the generated

scalene particles exhibit errors of EI and FI reducing from

1.84 to 0.11 and 1.83 to 0.09. They both display statistics of

generated particle shapes gradually become identical to the

predetermined distributions. The above examples prove

that the proposed algorithm has very strong capability in

generating particles packing that satisfies the prescribed

targets of particle shapes.

Fig. 22 Generation of oblate shape particles:: a, b initial stage; c, d intermediate stage; e, f final stage
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5 Conclusion and discussion

In this paper, we proposed and combined a series of

computational geometry algorithms (Voronoi tessellation,

Bezier curve fitting and biharmonic-based surface inter-

polation) and spherical harmonic transformation for gen-

eration of non-spherical particles with controllable shape

features for future numerical investigation of shape effects

on granular behaviors. The quantitative control of size,

elongation, flatness, corner sharpness and concavity is

facilitated through the geometry modification of Voronoi

polyhedron and adjustment of the control parameters w and

KA for particle generation. Three cases of particles packing

are given to demonstrate the capabilities of the proposed

approach. The first case illustrates the ability of proposed

approach in producing bidispersed particle mixtures with

various coarse grain weights and grain size ratios. The

second case shows the capability of generating packing of

realistic particles with distinctive shape features. The third

case validates the geometry controlling capability of the

prosed algorithms. All results prove that the proposed

method is robust and efficient in generating realistic

granular packing with desired grain sizes and distinctive

particle shapes. It provides a basis for numerical simulation

of different shape effects of natural granular materials on

their mechanical, thermal and hydraulic properties.

In conclusion, the sample generation is a very important

step of discrete element modeling, in particular for irreg-

ular particles and initial anisotropy of the sample. This

study only focuses on the sample generation relating to the

geometrical aspect of granular packing, and the part of

granular mechanics will be followed in a future study.

Indeed, there is a major challenge in implementation of

further numerical tests on the generated packing of parti-

cles in DEM. How to simulate irregular particles with

concave and convex shapes effectively and efficiently is

still an open problem. Potential solutions include overlap-

ping-spheres-based DEM [12], NURBS-based DEM [3],

level-set-based DEM [21], etc. However, the computa-

tional loads of these discrete modeling techniques increase

Fig. 23 Generation of prolate shape particles: a, b initial stage; c, d intermediate stage; e, f final stage
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markedly with the increasing complexity of the particle

outline. Additionally, there will be a trade-off between the

number of spheres/nodes and the fidelity of the simplified

particle profile compared with the original one. The sim-

plifications should not alter the shape properties of inter-

ests. Based on the present work, our future research will

focus on: (1) incorporation of the proposed particle model

into DEM code, e.g., developing an advancing contact

detection approach that is suitable for arbitrary shape par-

ticles; (2) investigating the individual effects of shapes,

e.g., corner sharpness and concavity on the macro- and

micromechanical properties of granular materials based on

the proposed particle models.
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