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1 | INTRODUCTION
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Abstract

In this paper, a new formulation of material point method (MPM) to model cou-
pled soil deformation and pore fluid flow problems is presented within the frame-
work of the theory of porous media. The saturated porous medium is assumed to
be consisting of incompressible pore fluid and deformable soil skeleton made up
of incompressible solid grains. The main difference of the proposed MPM algo-
rithm is the implicit treatment of pore-water pressure which satisfies its incom-
pressibility internal constraint. The resulting solid-fluid coupled equations are
solved by using a splitting algorithm based on the Chorin’s projection method.
The splitting algorithm helps to mitigate numerical instabilities at the incom-
pressibility limit when equal-order interpolation functions are used. The key
strengths of the proposed semi-implicit coupled MPM formulation is its capa-
bility to reduce pressure oscillations as well as to increase the time step size,
which is independent of the fluid incremental strain level and the soil perme-
ability. The proposed semi-implicit MPM is validated by comparing the numer-
ical results with the analytical solutions of several numerical tests, including
1D and 2D plane-strain consolidation problems. To demonstrate the capability
of the proposed method in simulating practical engineering problems involving
large deformations, a hydraulic process leading to slope failure is studied, and
the numerical result is validated by the monitored data.

KEYWORDS
fractional-step method, incompressible pore fluid, material point method, saturated soil, slope
instability

Numerical modeling of the complex and dynamic behaviors of soil plays an important role in geotechnical engineering.
While soil is a natural component of many substances, its mechanical behavior is mainly governed by the three-phase
system of porous soil skeleton, water, and air. Due to the feasibility and computational efficiency in simulating large-scale
geotechnical engineering problems, a continuum approach is widely used to describe the motion of a soil body. Within the
continuum framework for the numerical analysis of soil as a porous medium, one may find two common approaches: the
Lagrangian approach of Biot’s theory (BT) and the theory of porous media (TPM). Based on the macroscopic description,
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both approaches will lead to the same type of equations.! However, the TPM is formulated using the theories of continuum
mechanics while BT is a phenomenological model developed through a series of work.>®

Mesh-based continuum methods, such as the finite element method (FEM), have been widely developed in the past
decades for modeling coupled soil-pore-fluid interaction phenomena. Three major variations can be highlighted in the
literature: u — p, u— U and u — v — p (where u: solid displacement, v: fluid velocity, p: pore pressure and U: fluid
displacement).”* Among them, the first two reduced formulations are widely adopted within the mesh-based methods
as they simplify the computational flow, yet they are known to have limitations in modeling rapid motions with high-
frequency ranges due to the ill-treated pore fluid phase.

Although the mesh-based methods including FEM are robust, efficient, and accurate for many geotechnical engineering
problems, they inevitably require complex re-meshing and mapping algorithms while dealing with large deformation
problems. On the other hand, mesh-less particle-based methods are well-known for their capabilities of handling large
deformations in the absence of grids, though they often struggle to impose essential boundary conditions as the Kronecker-
Delta property is hardly satisfied.'” Over the past few years, the material point method (MPM) has been shown to be useful
in simulating complex mechanics during failure and post-failure of soil such as landslides."'>° The MPM is a particle-
based method which solves the governing equations on a background computational grid.”’** In MPM, a deformable
continuum body is discretized into a set of material points which can move through the background grid accordingly
with the velocity field mapped from grid nodes. The mesh-independent material points can, therefore, successfully handle
large deformations of history-dependent materials. A detailed review of various numerical methods for the analysis of
large mass movement in geotechnical problems is elaborated by Soga et al.>*

The conventional MPM formulation for porous media uses conditionally stable forward Euler (explicit) time integra-
tion. This choice is favorable in dynamic analysis of history-dependent materials and it is computationally easy to imple-
ment. However, the stability of the explicit MPM formulation is restricted by the time step size controlled not only by
the sound wave propagation speed in the porous medium but also by the fluid incompressibility constraint and the soil
permeability. In the incompressible limit, it is well known that the displacement and pressure function spaces must sat-
isfy the Ladyzhenskaya-Babuska-Brezzi (LBB) conditions or the Zienkiewicz-Taylor patch test for optimal performance
of a numerical method.” The implicit mixed-order integration scheme is often found to be the most optimum and accu-
rate solution to date,° though its implementation is often numerically demanding, and hence, alternative methods have
emerged. Penalty method, selective and reduced integration method are some examples.?”-*® Another alternative approach
to treat the material incompressibility constraint is the fractional-step method (also termed as the projection or splitting
approach), which originated from the pioneering work of Chorin?’ in solving the incompressible Navier-Stokes fluid flow
problems. A detailed review of the advancement of fractional-step methods is available in the literature.*”

The objective of this study is to investigate the performance of a stable time-stepping scheme for MPM modeling of
saturated porous media. A semi-implicit coupled MPM algorithm is introduced to circumvent the numerical instabilities
exhibited in the limits of pore fluid incompressibility and low soil permeability conditions. The fractional-step method
is adopted to avoid performance issues while using equal-order interpolation functions for displacement and pressure
fields. Several previous studies have demonstrated the use of the fractional-step method in single-phase incompressible
MPM.*-3* Extending a similar fractional step technique in the present coupled MPM formulation for saturated porous
media is a formative approach. Further by implicitly treating the diffusion term, it is shown that a time step size that is
independent of the soil permeability can be chosen. The code proposed in the current work is available under an MIT
license in Github!, within the CB-Geo MPM code.?*

This paper is organized as follows. First, the kinematics of porous media and the governing equations within the theo-
retical framework of TPM are described in Section 2. The semi-implicit MPM formulation based on two different splitting
techniques is then presented in Section 3. Section 4 outlines the computational implementation of the proposed MPM
extension and Section 5 presents several numerical examples to validate the proposed MPM implementation. Conclu-
sions and outlook are drawn in the last section.

2 | KINEMATICS OF POROUS MEDIA AND GOVERNING EQUATIONS

This section outlines the kinematics of soil as a porous medium and the governing equations. The porous medium is
assumed to be fully saturated with an incompressible fluid. The mechanical behavior of the solid skeleton and the pore

Lhttps://github.com/cb-geo/mpm
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FIGURE 1 A schematic illustration of the single-point-two-phase MPM model. Here, each material point is comprised of solid and
liquid phase defined by their respective volume fraction n and effective density p

fluid flow is mathematically described using the concepts of TPM with the following assumptions: (i) iso-thermal con-
dition, (ii) Terzaghi’s effective stress principle, (iii) deformable soil skeleton made up of incompressible solid grains, (iv)
incompressible pore fluid, (v) pore fluid flow obeys linear Darcy’s law, and (vi) the gradient of phase-wise volume fraction
is negligible.

2.1 | Preliminaries

In the mathematical derivation described herein, the subscripts s and f denote the soil skeleton and the pore fluid, respec-
tively. The superscript ¢t represents the current time, whereas ¢ + 1 is used for advancing to the next time step. Here, At
is the assumed time increment. The subscript I or J represents the nodes at the background mesh and p is used to iden-
tify material points. Note that the hat operator (6) is used to indicate a nodal variable which is particularly useful when
expressing the balance equations in a matrix form.

In this study, single-point two-phase MPM framework, which is graphically described in Figure 1, is adopted. Each
material point consists of solid-skeleton and pore-fluid phase with volumes V, (o« = s or f) which can be computed from
the volume fractions n, at a given point and time (V, = n,V, where V is the total mixture volume). The effective density
of each phase g, is obtained based on g, = n.p, (Where p, is the real, intrinsic material density). Here, the deformation
of the solid skeleton governs the volume change of the material point.

In the single-point two-phase representation, the motion of the porous medium is controlled by the solid phase. The
solid skeleton velocity v; and acceleration a, defined in a Lagrangian manner carry the material point through the
whole computation. For the pore fluid, the kinematic variables include the actual velocity v; and acceleration, ay. In
this manuscript, the intrinsic fluid velocity v is used over the relative (seepage) velocity as it simplifies the applica-
tion of the Dirichlet boundary condition in the solid-fluid coupled formulation. These motion variables are defined as
follows,

dgx dyvy
Vs = e &=

ey)

de def dsz
ViSa YT TTa

+ (Vi —vy) - Vvy, 2)
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where x is the position vector of material point, and d,(o)/dt indicates the material time derivative with respective to the
constituent solid skeleton or pore fluid. This can be expanded as:

dy(o)  d(o)
dt ~ ot

+ v, - V(o). 3)
The Terzaghi effective stress principle® is adopted in this study, which states that
c=0 —pl, 4)
where o is the total stress, o’ is the effective stress, p is the pore water pressure and I is the identity tensor. In our notation,
the stress is assumed to be positive in tension, while the pore water pressure is positive in compression, following the
convention in continuum mechanics.
2.2 | Governing equations

2.2.1 | Mass conservation

Assuming there is no mass exchange between constituents, and both solid grains and interstitial pore fluid are incom-
pressible (dp,/dt = 0), the mass balance equation for the solid skeleton and pore fluid are expressed as:

d,n

(Sits +n,V-v, =0, (5)
den

i

ar + an “Vp = 0. (6)

By adding Equations (5) and (6) and using ng + ny = 1 for biphasic porous media, the mixture mass balance equation is
obtained, which reads as

V- (ngvg+npvy) = 0. 7
Assuming that the phase-wise volume fraction is sufficiently smooth over the entire mixture domain, the volume frac-
tion gradient terms are commonly neglected in the single-point two-phase implementation, and thus, the mass balance
Equation (7) can be simplified to:

ngV-vg+ngV-vy=0. )
As highlighted by Ceccato et al.,*° this hypothesis is reasonable but may induce certain errors when two materials with
very different porosity are in contact.

2.2.2 | Momentum conservation

The equations governing the motion of soil as a porous medium are presented in the current subsection. Neglecting the
convective term, the linear-momentum balance equations for the solid skeleton and the pore-water phase are:

Psag=V- (O', —nypD) + pb — £, — 1, )

pfaf =V-(—npr)+,5fb+fb+fd, (10)

where the buoyancy and the viscous drag force, f;, and f;, read
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fb = pvnf’ (11)

ntorg
f;=— fk vy —Vy). (12)

Here, g = 9.81m/s? is the earth gravitational acceleration. In the above equations k is the soil mechanics permeability
measured in m/s, which may be expressed as a tensor in anisotropic media, and b is the body force. The linear momentum
balance for the mixture is then obtained by summing up Equations (9) and (10) as:

Psas + pfaf =V (OJ - PI) + Pb, (13)

where p = pg + §y is the density of the mixture. Having Equations (8), (9), (10), and (13) in hand, both the static and
dynamic solid-liquid coupled problems can be solved under the full range of acceleration frequencies.*’

3 | TIME INTEGRATION AND THE APPLICATION OF FRACTIONAL-STEP METHOD

Although the implementation of the explicit scheme is more straightforward, the explicit formulation is proven to be
not feasible for nearly or fully incompressible materials, such as porous materials saturated with pore water, since it
is subjected to extremely small time steps to fulfill stability condition. In this study, an extension of the MPM for two-
phase material is established based on a semi-implicit scheme,*®*’ wherein the effective stress is treated explicitly to avoid
successive iteration associated with elastoplastic material responses, while the pore-pressure term is treated implicitly by
solving the pressure Poisson equation. The temporal discretized governing equations are as follow:

paltl =V . (o’ —ngp"*'D) + pb — £, (14)
ﬁfa}“ =V- (—}’lfp[+11) + ﬁfb + fd: (15)
nV-vit + npV -v}“ =0. (16)

Although the drag-force term has not been explicitly associated to any time instance in Equations (14) and (15), it
is already clear that semi-implicit scheme leads to a strongly coupled set of equations which require simultaneous
solutions of acceleration (or velocity) and pressure fields. To solve the solid-fluid coupled system, the fractional-step
method, or also known as the splitting scheme, is employed to decouple the computation of pore pressure with the other
kinematic variables. Within the fractional-step method, the coupled system is advanced to next step by a prediction-
correction substep and only one variable is solved in each substep, that is, originally: {v., p‘} — {v.", p'+1}, whereas
the fractional-step method: {v}, p'} = {vi} - {p'*1} - {v."}. Here, the  superscript indicates an intermediate quan-
tity, which will be further explained in the following paragraph. The fractional-step method effectively decouples the
entangled variables, making the system solvable in significantly lower computational cost. This scheme also permits
basis functions of equal order to approximate the displacement and pressure fields within or near the incompressibility
limit.

The fractional-step algorithm used in this study is based on the original Chorin’s projection method.”” The com-
putation proceeds by computing an intermediate velocity v} from an intermediate acceleration field a}, which does
not necessarily satisfy the incompressibility constraint. In our proposed formulation, instead of solving for intermedi-
ate and correcting velocities in each time step,’®%° the intermediate and correcting accelerations are solved following
the convention in MPM. The acceleration term can be split into two parts: intermediate a; and correcting a;* part
as:

t+1 t t+1 * * t
vV, —V — v, —
t+1 a a a a a Kok *
a = = + =a, +a;. 17
o At At At o @ a7
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TABLE 1 u-v - p(ay #0) type formulation based on the fractional-step method

Index Balance equations
Al Mixture momentum balance equation
i ﬁsa;‘+,éfa;=V-(a’—,6’p‘I)+pb
i P +pa’ = —V(p'* — Bp!)
A2 Solid momentum balance equation 2
= = * nfpf g £ * / t = nfpf g t t
1 Psas — At k (af_as)z V(U _ﬁnsp I)+psb+ k (Vf—VS)
ii psas** = _nsv(pt+1 - Bp[)
A3 Water momentum balance equation
niorg niorg

: - IS - g
i pfa/'.+AtT(a/'.—a3:)=—anVp‘+pfb—T(v}—vé)
ii pray" =—n;V(p'™! - Bp")
A4 Mixture mass balance equation

n

A+ L)VApt = pp) = n V- (v + a7 A0 + 1,V - (v + ajAn)
Ps Pr

Following this step, the pore pressure is then computed to satisfy the mass conservation equation of the mixture. Here,
the pore pressure also acts as the Lagrange multiplier to the internal incompressibility constraint of the fluid phase that is
indirectly related to the mixture balance equation. Finally, the intermediate acceleration and velocity fields are corrected
by using the updated pressure gradient.

With the aid of intermediate acceleration, the momentum equations, Equations (14) and (15), can be split to separate
the pore-pressure field p'*! from the acceleration field a’"!. The split momentum equations in conjugation with the mass
conservation equation are shown in Table 1. The mixture mass balance equation (A4) in Table 1 is obtained by taking the
divergence of v; and v’ from the split momentum balance equations and substituting it to Equation (16).

In applying the fractional-step method, a scalar parameters § has been used to generalize different versions of the
derivation, wherein 8 = 1 represents the incremental fractional step, while 8 = 0 denotes the non-incremental fractional-
step approach as introduced originally by Chorin.”” A previous study*' has shown that the non-incremental version
of the fractional step scheme exhibits stable results for the single-phase MPM formulation. In this paper, a similar
comparison of the accuracy and stability of the two schemes implemented in the two-phase MPM is conducted and
discussed.

It is also worth noting that, in Equations (A2)(i) and (A3)(i) of Table 1, the interaction force between the solid skeleton
and pore fluid, that is, the drag force, is evaluated implicitly at the intermediate stage based on the intermediate velocity
(or acceleration). Here, Equation (12) can be rewritten and expanded as:

2 2
nerr8 nepf8

__f_*_*__f_[t_t_ *_*]

fd = k (Vf Vs) = k (Vf Vs) At(af as) . (18)

Note that, the first term written in Equation (18) is known from the current step of velocity, whereas the second term is

unknown and needs to be evaluated. This choice of scheme may lead to a larger time step size which is also independent

of the permeability of the porous media (see further discussion in Section 4.5). Similar treatment is previously adopted by

Markert et al.>8

4 | FRACTIONAL-STEP ALGORITHM FOR HYDRO-MECHANICAL COUPLED MPM
4.1 | Weak form of the governing equations

Following the standard Galerkin procedure, the weak form of the governing equations is obtained by multiplying equa-
tions listed in Table 1 by arbitrary test functions, v and & p (which also satisfy the same geometric boundary conditions),
and integrating over the current material domain, Q. The weak forms of the momentum balance equations are written as
follows:
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 Splitting momentum equation for mixture (A1) to (i) a predictor:

/Sv-psas* dQ+/ 5V-,6faji dQ = / §vV . (¢ - Bp'D) dQ + / §v - pb dQ, (19)
Q Q Q Q
and (ii) a corrector:

/ 5v - py(al™) dQ +/ 5v - pf(aj;*) dQ = —/ Sv - V(p'*t! — gp") dQ. (20)
Q Q Q

 Splitting momentum equation for solid (A2) to (i) a predictor:

ov-psa; dQ— [ 6v- At (a% —aj)dQ=
Q k Y

? )
niprg
- / vV - (o’ — Bngp'l) dQ + / 5v - pb dQ+/ v ——(vl—v.) dQ,
Q Q Q k !
and (ii) a corrector:
/ §v - py(al*) dQ = —/ 5v - nV(p'tt — Bp') dQ. (22)
Q Q
* Splitting momentum equation for fluid (A3) to (i) a predictor:
ov-prar dQ+ [ év-At———(a% —a;) dQ =
o f o k !
(23)
nierg
—/6v-,8anp’dQ+/5v-p'fbdQ—/év- (vi—vl) dQ,
Q Q Q k !
and (ii) a corrector:
/ Sv - pf(a}‘i*) dQ = —/ §v - ngV(p'*t - Bp") dQ. 24)
Q Q

On top of the aforementioned momentum balance equations, the weak form of the mixture mass balance equation (A4)
can be written as:

n
At/5p<ﬁ+—f)V2(p‘+1—,8p‘) dQ=/5p n,V - (vl +afAr) dQ+/5p neV-(vi+ajAr) dQ. (25
Q Ps Py Q Q Fo

N

In the implementation of the proposed fractional-step algorithm in MPM, the momentum equation for the mixture (19)
will be used along with Equation (23) to predict the intermediate acceleration and velocity of the two phases. Equa-
tion (19) is preferred over the solid momentum predictor Equation (21) as the latter one requires the separation of
the applied total external forces into solid and pore water components. By using the overall mixture phase, the reg-
ular Neumann traction boundary condition can be applied without any modification as a predictor step. It should
be noted, however, after the pore pressure is computed, instead of using Equation (20) to correct the solid acceler-
ation, Equation (22) is preferred as there is no need to couple the correction term for the two phases. By doing so,
the corrected acceleration terms can be computed explicitly considering a lumped-mass matrix at each computational
node.
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4.2 | Spatial discretization

In the MPM, the spatial discretization proceeds similarly to the FEM. In conventional finite element analysis, the basis
function for the displacement field is often set to be one order higher than that of the pressure field to fulfill the
Ladyzhenskaya-Babuska-Brezzi (LBB) conditions,” and thus, avoiding instability. However, as the proposed MPM exten-
sion is based on the fractional-step method, it permits an equal-order interpolation function for both displacement and
pressure. The interpolation of those variables is written as follow:

n, Ny
a,(x,0)= ) Ny(x,0)a,;,  ai(x1)= ) Ni(x,0a%, (26)
I=1 I=1
ny Ny
Va(x, 1) = ) Ni(x, OV, VAR D)= ) Ni(x, 0OV, @7)
I=1 I=1
Ny
p(x,t) = Y Ni(x,0)py, (28)
I=1

where n,, is the number of computational node per element, and N;(x) is the assumed basis function. Here, the nodal
velocity, acceleration for phase o and pore pressure in node I are denoted as ¥, , 4, 7, and py, respectively. Similarly, the
test functions can also be written in terms of their nodal values using the same basis functions as:

nn nn
Sva(x,0) = Y Ni(x,1)8Vey,  Op(x,1) = ) Ny(x,1)3p;. (29)
I=1 I=1

Substituting Equations (26)—(29) into the split predictor Equations (19) and (23) and taking out the nodal trial functions
from the integral yield the following spatial discretized equations:

M,a5 + Myay = fint 4 fext,

(30)
Mf f 4 AtQ(a —4a)) = f”” + fe’“ Q(\?} —\7§),
where,
M, = zn: Zn: / Po(X, N[ (X, )N (X, 1) dQ, (3D
I=1J=17Q
Ny Ny n (X t)
I=1J=1
fint — _ zn:/ VN;(x,t) : (¢/ = Bp'l) dQ, (33)
—1/0Q
fext = Zn / p(X, t)NI(X, t) b dQ + zn N[(X, t) t dS, (34)
I=17Q 1=170Q
£ =~ > /Q VN(x,t) : (=Bnsp'D) dQ, (35)
I=1

f}m = Z{ / Br(X, N7(x,1) b dQ + Z / Ni(x,1) t; dS. (36)
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Here, the surface traction forces are defined ast = (¢’ — 8pI) - n and t; = —fBnyp - n,where n is the surface outward unit
normal vector.

Next, following the discretization of the predictor equations, the nodal intermediate velocity ¥} is calculated from the
intermediate acceleration term as:

Vi =Vl + Atal. (37)

The integration by parts and the divergence theorem are applied into Equation (25), which results in an elliptic equation
for the pore pressure described in its spatially discretized form as:

A 1o
L(p* = pp') = (E+1), (38)
where,
L=y 3y / [ns(x, n, t)] VN, (%, VN (x, 1) dQ, (39)
==1Jal Ps Py

np Ny

f= _[ZZ / VN;(x, )N;(x, ) dQ] V4 lzz / VN (x, Ny (X, ) s (x, t) dQ] W =99, (40)
I=1J=17Q I=1J=17Q

- n” n
f,= Z/ N;(x, 1) [—nf(vj; —V)+ At<5 + —f>v(pt+1 _5pz)] ‘n dS. )
I=179Q Ps pf

After solving the pressure Poisson equation, the corrected nodal acceleration can be computed by applying the pressure
gradient computed from Equation (38) into Equations (22) and (24) as expressed in the following algebraic equations:

Msﬁ;k* = Gs(pH—l - 1613[),

A At+1 At (42)
Mar™ = Gp(p™ - Bp"),
where M,, is defined at Equation (31) and G,, is defined as follows for the two phases:
n, nyp
Ge=-) > / ng(x, Ny (x, ) VN;(x, t) dQ. (43)
Sij=1/0

Having the correcting acceleration terms in hand, the next-step nodal solid- and fluid-phase velocities and accelerations
can be obtained simply by:

aift=ar+ay, (44)
VI =¥ 4+ Arazr. (45)
4.3 | Material point discretization and computation procedure

In the MPM, the geometry of body 5 in the initial configuration can be approximated and subdivided into n, material
points as:

B~ ) Q, (46)
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Algorithm 1 Fractional-step one-point two-phase MPM algorithm

1 if 1 = 0 then
2 # Initialize material points ;
3 volume: V0, density: p° | volume fraction: n° | particle mass: m® =n® p0 p0;
P a,p a,p a,p a,pa,p p
4 particle initial total stress: 0'2, pore pressure, pg, particle velocities: V?‘p and vof,p ;
5 while0 <tandt <t,, do
6 Map particle mass and momentum to computational nodes, and compute nodal velocities — (48), (49) ;
7 Compute solid strain and effective stress — (50)-(53) ;
8 Update particle volume, density, volume fraction, and permeability — (55)-(58) ;
9 Solve for intermediate accelerations, a7 and ﬁ’} —(59)-(65);
10 Update intermediate velocities, V¥ and \7; -37);
1 Solve the pressure Poisson equation for incremental pressure field, (5+! — pp') — (66)-(69) ;
12 Solve for correcting accelerations, ﬁj* and ﬁj.* —(70), (71) ;
13 Update nodal accelerations and velocities, ‘7;“ and ﬁ:’l —(44), (45);
14 Update particle velocity, acceleration, and pressure — (72)-(75) ;
15 t=t+ At

where Q,, denotes the material volume of each material point. The continuous volume integral found in the weak formu-
lations then can be approximated as:

/(...)dQ ~ Z/ (-+)dQ, = Z(...)V , (47)
Q Qp p=1

p=1

where the last term can be written assuming that all the quantities inside the volume integral are independent of the vol-
ume.

The semi-implicit MPM formulation listed in Table 1 solves for the following three primary variables: (i) acceleration of
the solid skeleton a/*?, (ii) acceleration of pore fluid a}“, and (iii) pore pressure p'*!. Since the fractional-step algorithm
is employed, two new variables are introduced: the intermediate acceleration a; of the solid skeleton and a* for the pore
water phase. In this context, five equations are required to solve the problem at a given time ¢ in addition to the constitutive
equation for the solid phase to close the kinematic and equilibrium system. The computation procedure for the proposed
fractional-step method based MPM is summarized in Algorithm 1, whereas the explicit MPM scheme is provided for
comparison by Algorithm 2 listed in Appendix A.

431 | Mapping of variables from particles to nodes

At the beginning of each time step, the mass and the velocities of each constituent carried by the material points are
mapped to the background grid by the following expressions:

"p
Mgy = Y. Ni(xmg p, (48)
p=1

n ¢ ¢
N Zpil NI(Xp)moc,pVa,p
Vo= s , (49)
a,l

B

where n, is the number of material points associated with node I, and N I(x;,) is the nodal basis function evaluated at the
position of a material point p.

4.3.2 | Effective stress calculation

Assuming the updated stress first (USF) scheme,*” the strain and the effective stress of the solid skeleton can be computed
incrementally at material point p in the case of small deformation as:
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T
Agl , = —Atz (VNI(xp) + (VNI(x;)V;,) > (50)
= DAg! , (51)
ot =0} + Ad), (52)

where D is the elastoplastic tangent modulus. In the current work, linear elastic and conventional elastoplastic models
are used, though the proposed formulation should work for any constitutive models. As the focus of this study is placed
upon the fractional-step algorithm, the implementation of the constitutive model will not be repeated here. Readers can
refer to our prior work® for a detailed discussion of the constitutive model implementation in MPM.

In the case of finite deformation with severe rotation, the stress increment Aa;, does not represent the objective stress
rate adequately. Therefore, a more appropriate stress update, for example, the Jaumann rate, can be used to update the
effective stress:

1t4+1 _ It / It t t It
o, " =0} + Ao, + At(o)) - W, - W}, -0))), (53)

where WjD is the vorticity tensor computed as:

1 & T
W, =2 Z{ <VNI(xfp)v;J — (Vi) ) (54)
433 | Computing particle volume, porosity, and permeability

Accordingly, the volume of material points, which represents the mixture, can be updated using the strain increment of
the solid skeleton assuming a small deformation theory,

t+1 t
Vit =y <1+A£volp) (55)

where Ag,; , is the incremental volumetric strain, which can be obtained generally by Ag,,; , = det(AF,) — 1 for large
deformation assumptions, or by simply performing a trace operation over the strain tensor, that is, Ag,,; , = tr(Ag; ), in
small deformation assumptions. In the expression above, AF, = I + At Z = VN I(xp)v denotes the increment of defor-
mation gradient at the particle. Furthermore, the density of the mixture and the liquid volume fraction can be updated as
follows:

P
Pt = ——, (56)
(1 + Asvol p)
1-— n}
=1 (57)

(1 + Asuol p)

Here, the solid volume fraction n, can be updated simply by subtraction as n/t! = 1 — n’*1,

Following the update of liquid volume fraction, the coefficient of soil permeability k can be computed. Here, the Kozeny-
Carman equation** is used to update the soil permeability, which can be expressed as:

()

K =Cc—tt (58)
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where the coefficient C is a parameter that can be determined experimentally considering grain size distribution, grain
shape, and the roughness of grains. Together with the permeability and the liquid unit weight, the drag force, Equation
(18), can be approximated from the intermediate relative velocity between liquid and solid phase.

43.4 | Fractional-step prediction
Having the effective stress and necessary parameters in hand, the following step solves the coupled algebraic equation,

Equation (30), which gives the solution for 4] and ﬁjj for each computational node. Equation (30) can be written in its
matrix form element-wise as:

M, Mf ﬁ; B fint 4 fext s

where the components constructing the linear systems can be obtained by integrating Equations (31) - (36) via material
points’ volume as noted previously in Equation (47). One can rewrite those equations as:

"p n, ny
= Z Z Py NI (LN (X )V, (60)
p=11=1J=
2
- <nt+1>
Q= ZZ or 8 NIGHN; )V, (61)
p=11=1J=1
"p ny
fint — _ Z Z VNI(X;) . (a.;)t+1 ﬁppI)VtH (62)
p=11=1
"p ny n
o= 3 2N b D [ o) eas (©3)
p=11= 1=10Q
np ny
£ = ZZVNAxp) (=BnspppD V3™, (64)
p=11I=
p ny
f]‘?” = Z Zpthr;NI(xp) bVt + 2 /aQ N(x}) tf ds. (65)
p=11I=

Notice that the coefficient matrix in Equation (59) is non-symmetrical, and, in the current work, the least-squares conju-
gate gradient solver is used to solve the intermediate accelerations.

43.5 | Solving pressure Poisson equation
After the nodal intermediate accelerations for the two phases are obtained by solving Equation (59), the next step is to solve
the Poisson equation, Equation (38), following the update of intermediate velocity as Equation (37). As the Laplacian

matrix L is symmetric positive definite, a conjugate-gradient-based solver can be used to obtain the nodal incremental
pressure. Equation (38) can be rewritten in MPM fashion as:

LI = 80 = | 5 E + ). (66)
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Np n, ny, +1  pitl

n
L=) =P LRGN, (VN () Vi, (67)
p=1I=1J=1 ps,p f.p
"p np ny np n, ny,
- lz 2 Z VN, (x} )N, (x},) Vf“] vy lZ )y Z VN ()N, (%)) vf“] (V7 =), (68)
p=11=1J= p=11=1J=

N

/ NI(XP)[ nf(v -+ At<p Z—J{)V(pt“ - ﬁpt)] -n ds. (69)

Note that, since the solid grains and pore fluid are assumed to be fully incompressible in the semi-implicit formulation,
the phase-specific intrinsic mass density p,, is assumed to be constant during the entire simulation, that is, dp, /dt = 0
4.3.6 | Fractional-step correction

As the incremental nodal pressure has been obtained at this stage, the next step is to obtain the correcting accelerations
a** for the solid and liquid phase. Equation (42), can be rewritten in its matrix form as:

Ms 0 A;k* _ Gs(p[+1_6p[)
5 ) [f] =[G 550 7
where,

Z NN (xL)VN; (xL)V 5 (71)

i M§
L

If the lumped-mass matrix is assumed, Equation (70) can be solved explicitly via the mapped nodal mass (48) without any
matrix inversion.

4.3.7 | Update of particle kinematics and pressure
At the end of the time step, following the update of nodal acceleration and velocity, Equations (44) and (45), the velocity

of material points for the solid and liquid phase are updated from the nodal acceleration (FLIP scheme*’), whereas the
material point positions are updated from nodal solid velocity as:

My

v =V, + A Z Ny(x)alt, (72)
I=1

xiH = x| + At Z N (x,)oLt. (73)
I=1

It is worthy to mention that an alternative variant known as the velocity update scheme is also available in the literature,
known as the PIC approach,*® which reads

t+1 ZNI(XP)Vt+1 (74)
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In the subsequent section, the two velocity update schemes, Equations (72) and (74), incorporated in the proposed semi-
implicit MPM framework are discussed.
The pore pressure in the material-point level can be updated by mapping the incremental nodal pore-pressure value as:

Ny
Pyt = Bpl + D) Ny, — BpY). (75)
I=1

4.4 | Boundary conditions

The material boundary Q for the mixture is composed of the Dirichlet (6Qp) and Neumann (0Qy) boundaries such
that 0Qp N dQy = 0 and 0Qp U QN = 0Q. Displacement boundary conditions are applied phase-wise on dQ,p, where
a =s, f. Here, 9Qp defines the pore-pressure flow boundary condition, which can overlap or be separated from 0Qp.
The intermediate accelerations are also assumed to satisfy the same Dirichlet boundary conditions for fixed prescribed
displacement, and lead to

a>=0 on 0Qup. (76)
By enforcing boundary condition (76) in Equation (59), the enforced nodal intermediate accelerations a;; and velocities
v} are obtained. Meanwhile, the surface traction t and phase-wise traction t, are acting on 6Qy;.

In addition to the displacement or velocity boundary conditions, the elliptic pressure Equation (66) requires a Dirich-
let boundary condition for ¢ = (p'*! — 8p’) on nodes where pressure is prescribed. Similar to the displacement bound-
ary conditions, the prescribed pore pressure can be given as an input. Moreover, if a free-surface problem is involved, a
free-surface detection routine®>#’* is used to track the evolution of surface particles. Furthermore, the pressure Pois-
son equation leads to an artificial boundary force, Equation (69), on dQ, which is vague to define. For undrained
and drained boundaries, however, the incremental pressure gradient term can be simplified into a homogeneous Neu-
mann boundary condition where V(p'*! — p’) - n = 0. This can be achieved automatically by enforcing the intermedi-
ate normal fluid velocity at the boundary to zero as vj’ﬁ -n = 0. A recent work by Rosales et al.*’ shows that a specific
reformulation of boundary conditions of the pressure Poisson equation may improve the accuracy up to third order in
high-order FEM.

4.5 | Critical time step

The critical time step in the standard explicit MPM formulation is defined by the Courant-Friedrichs-Levy (CFL)
condition,” and is given by the following equation:

Ah
Aterircrr = c—pe, (77)

where Ah, is the smallest background element size and cP is the compressional wave velocity traveling in a medium. In
an isotropic poro-elastic continuum body, the compressional wave velocity can be expressed as:

o |k +:G/3’ (78)

where K = K is the bulk modulus for the solid skeleton, G is the shear modulus, and p = g, = nypg assuming a dry
condition. If the porous medium is fully saturated and undrained, then the compression wave velocity expression above
should be modified considering the undrained bulk modulus,” K ~ K,, = K, + K r/ny, and mixture density, p = g, +
Py = Nngps+ Nnspy.

In the two-phase explicit formulation (see Algorithm 2), the momentum balance of the weakly-compressible fluid is

solved separately from the mixture to compute the fluid-phase acceleration a;“. In this regard, a separate expression of
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compressional wave velocity of the pore-fluid phase should be used instead of the one written in Equation (78), such that:

K
cP = cfz = /=L, (79)
Pf

In a low soil permeability condition, the above CFL criterion is found to be insufficient to ensure the stability of the
explicit two-phase formulation, and thus, as suggested by Mieremet et al.,”' an additional permeability-dependent stability
criterion is considered. Here, a permeability-dependent critical time step derived by Mieremet et al.”! is used for the explicit
MPM simulations, which reads

—pr8/pP"k + \/(pfg/pmk)2 + 4w?

w2

Alerit e = ’ (80)

with w? = 4E/p™(Ah,)? and o™ = p + (1/ ny —2)ps. In the above expression, E is the solid elastic modulus, k is the
permeability in m/s, and p = g + p is the mixture density.
Using these critical time step criteria, the critical time step for the explicit MPM can be calculated as:

Atcrit = min(Atcrit,CFbAtcrit,k)- (81)

In the proposed semi-implicit scheme, since the stress integration of the solid phase and the evaluation of internal forces
are done explicitly at the current configuration ¢, the selection of critical time step size to ensure the stability condition
is still limited by the CFL condition. It is, however, possible to choose permeability-independent time step size due to
the implicit evaluation of the drag force assumed in Equation (18). As noted by Markert et al.,*® the time step restriction
suggested in the fractional-step method can be partly overcome by taking recourse to staggered implicit-implicit schemes
with stabilizing parameters®’>>>* or by adding some artificial compressibility to the mixture, which implementation is
similar to the modified Chorin-Uzawa method.>*

5 | NUMERICAL EXAMPLES

This section presents numerical examples demonstrating the performance and efficiency of the proposed semi-implicit
MPM algorithm. Detailed comparisons are carried out to present the effect from the method types (explicit and semi-
implicit) and fractional-step method types (non-incremental and incremental).

Four numerical examples are presented in the current section. First, the proposed formulation is validated via the clas-
sical consolidation problem. The one-dimensional test also is extended to the dynamic regime and a saturated column
subjected to cyclic loading is modeled. Then the proposed implementation is also adopted to simulate two-dimensional
plane-strain consolidation under different material properties. Finally, a slope landslide triggered by excessive pore pres-
sure is replicated by the proposed MPM extension to showcase its capabilities in solving practical engineering problems.
For all numerical examples in this study, a structured mesh is adopted with quadrilateral four-nodes elements with equal
order of interpolation function for the kinematic variables and pressure.

5.1 | One-dimensional consolidation

The first case conducted is a one-dimensional consolidation problem, simulated with the proposed semi-implicit coupled
formulation and compared with the explicit MPM implementation for porous media. As shown in Figure 2, which depicts
the geometry and boundary conditions for the simulation, a saturated granular column is compressed by a constant dis-
tributed load g = 10 kPa at the top surface, where the pore fluid can drainage freely at the vicinity of the free surface. By
default, the column is discretized by 50 elements with element size of 0.02m X 0.02m. Gravity is neglected in the com-
putation, and zero initial stress and pore pressure are considered. The initial porosity n is set as 0.3 (in our notation, the
porosity term n is interchangeable with liquid volume fraction n ). The soil grain density p; is 2600 kg/ m? and pore water
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FIGURE 2 Model setup for one-dimensional consolidation

density py is 1000 kg/ m?3. Isotropic linear elastic constitutive model with Young’s modulus E = 1 x 10’ Pa and Poisson’s
ratio v = 0.25 is adopted for the solid phase. Moreover, the fluid phase is assumed to be weakly compressible for explicit
MPM and its bulk modulus is set as Ky = 2.2 GPa, whereas for semi-implicit MPM, the pore-water phase is assumed to be
fully incompressible, and thus, the pore pressure is solved implicitly by a projection scheme.

5.1.1 | High-permeable material

Firstly, the case of relatively high permeability with k = 1 x 10~3 m/s. In order to ensure the stability of the computation,
time step At for explicit MPM is set to be 1 x 10~ s, while for semi-implicit MPM (both incremental form and non-
incremental form), the time step size is chosen as 2 X 10~ s. The analytical solution from Terzaghi’s consolidation theory>
is used to validate the results obtained from the numerical simulations. A dimensionless time T is used for following
discussion, which is defined as

t km, t
T=cms = 72k
H Prg& H

(82)

where H = 1 m is the height of the column, c, is the coefficient of consolidation and m, is the constrained modulus of
solid phase.

Figure 3A shows the pore-pressure profile obtained along the column at various time instances, that is, T = 0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 0.7, 1.0, and 2.0. From the presented comparison, it is clear that the explicit and semi-implicit MPM
based on the incremental fractional step, that is, § = 1, agrees well with the theoretical prediction although there is a
considerably large discrepancy for the explicit one, particularly during the initial stages. On the contrary, the semi-implicit
MPM solution based on the non-incremental fractional-step method, that is, f = 0, renders a faster dissipation of pore
pressure. This error is induced from the form of splitting the momentum equations. As seen from Equation (19), for the case
of non-incremental fractional step method (8 = 0), no pore-pressure term at any time instance is involved in computing the
intermediate accelerations. This absence of pore pressure leads to erroneous interaction force between the solid skeleton
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FIGURE 3 One-dimensional consolidation results: (A)
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and pore fluid, and thus a poor estimation of the intermediate acceleration. Consequently, this erroneous intermediate
acceleration cannot be corrected to the precise solution by the correction step, causing the error to accumulate.

The history of the pore pressure at the bottom for different methods is extracted and the result is plotted in Figure 3B.
As can be observed, there is an oscillation in the explicit MPM, especially at the first several steps of the computation. The
dissipation then can go through a steady change after it goes to an equilibrium stage. On the other hand, the semi-implicit
MPM presents a much smoother curve during the whole consolidation process. Again the semi-implicit MPM based on
the non-incremental fractional-step method (8 = 0) yields a faster dissipation of pore pressure. Furthermore, the accuracy
of the incremental fractional step method is supported by Figure 4 which measures the relative error e, of pore pressure at
the bottom of the column upon mesh refinement at T = 0.5. As piecewise linear basis function is used, linear convergence
of the truncation error is expected for this particular example with small deformation. It is important to note, however,
that the accuracy of the integration is subjected to degradation as particles move through the background elements, as
discussed by Steffen et al.°® Considering these aspects, the semi-implicit MPM based on the incremental fractional step,
B =1, is preferred and adopted for the rest of the numerical examples in this study. The semi-implicit MPM term is used
to denote the incremental form for the sake of conciseness hereafter.
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Despite both of the explicit and semi-implicit MPM giving correct results under high-permeable conditions, the advantage
of the proposed method can be demonstrated when the permeability reduces to a lower level. A sensitivity analysis is car-
ried out to evaluate the critical time steps for the explicit MPM and the proposed semi-implicit MPM considering different
permeability values. The model setup in this sensitivity analysis is the same as the previous case, except the permeability
value k is varied. Here, the maximum time step is obtained for each permeability case such that it can ensure the stability
of the computation. This sensitivity analysis covers a wide range of permeable conditions, ranging from nearly undrained
condition k = 1071 m/s to highly drained condition k = 10~! m/s. The measured critical time steps are depicted in Fig-
ure 5 along with the critical time step determined analytically, which were given previously in Equations (77)-(81).

For the explicit MPM formulation, the critical time step remains stable under highly-permeable conditions (k > 1073
m/s) as it is mainly dominated by the CFL condition of the fluid phase. However, as the permeability reduces, the critical
time for the explicit scheme also drops correspondingly at the same rate as the permeability, which results in an extremely
small time step for the nearly impermeable material. On the other hand, the critical time step for semi-implicit MPM
appears to be free of the limitation on permeability. Over the whole regime of permeability, the critical time step remains
at the order of At ~ 10~* s, which is at least one order higher than that of the explicit case. Despite the fact that the
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proposed scheme is more computationally expensive than the explicit formulation to perform a single time advancing
step, it allows significantly larger time increment and less number of steps in total to perform practical simulations. This
feature, therefore, facilitates more effective modeling of hydro-mechanical coupled systems, particularly for problems
involving low permeability.

To outline the influence of permeability on the pore-pressure dissipation process, the one-dimensional consolidation
simulation is repeated with varying permeability, namely k = 1072,1073, 107>, and 10~® m/s. The results of pore-pressure
dissipation at the bottom of the column are presented in Figure 6. The proposed semi-implicit MPM yields a stable
pore-pressure evolution without extra oscillations, and gives correct results in all computations. Figure 7 shows the
results of the pore pressure along the column in the case of k = 1 x 1078 m/s. In the initial stage of the consolidation, a
mild pore-pressure oscillation appears at the drainage surface. Similar behavior is also reported®® and is attributed to an
inherent pitfall of the Galerkin interpolation. Due to the low permeability used, only a little reduction is formed at the
top, the free surface namely, and most of the column can keep a constant pore pressure with no dissipation.

In the current work, since the drag force term is computed from the intermediate velocities which require the unknown
intermediate acceleration terms (see Equation (18)), the time-step dependency on the permeability coefficient k is signifi-
cantly reduced. However, it should be noted that the accuracy of the proposed projection-based coupling scheme still has
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a slight dependency on the size of At as the intermediate velocities used to compute the drag force is not an actual discrete
velocity that satisfies the mixture mass-balance equation with pore-fluid incompressibility constraint.

5.2 | One-dimensional column under cyclic loading

While the proposed semi-implicit MPM formulation is verified previously for a quasi-static consolidation example, its per-
formance to simulate dynamic hydro-mechanical coupled problems is also investigated. In this subsection, the simulation
of a one-dimensional column subjected to cyclic loading is conducted, following that in Li et al.*” The geometry and the
boundary conditions are the same as the one presented in the one-dimensional consolidation problem (Figure 2). The
solid phase is again assumed as linear elastic material with Young’s modulus E = 1 x 10’ Pa and Poisson ratio v = 0.2.
The initial porosity n for the mixture is set as 0.3. The soil grain density p, is 2600 kg/m? and pore water density p 1 is
1000 kg/m?>. In Li et al.,* the permeability is taken as zero to reproduce the fully undrained condition. However, a rela-
tively small permeability k = 1 x 10~/ m/s is selected in this study for facilitating the explicit MPM computation whose the
critical time step is restricted by the permeability. The time step At = 1 x 10~* s for semi-implicit MPM and At = 1 x 1078
s for explicit MPM were selected. The cyclic loading q(t) (unit in kPa) acting on the top surface of the column is defined
as follows

£/0.02 t <0.02s,
q(t) = . . (83)
1+ 0.25sin(2077(t — 0.02)) otherwise.

The simulation duration for semi-implicit MPM is 1 s, while that for the explicit MPM is only 0.1 s due to the extremely
small time step size employed. Three particles, namely P1, P2, and P3, are chosen for monitoring the response pore pressure
and their positions are marked in Figure 2.

The result obtained from the semi-implicit MPM is depicted in Figure 8. It appears that the curves corresponding to
P2 and P3 overlap completely, indicating an identical response for the lower half of the column when subjecting to the
cyclic load. Yet there is a minor discrepancy between P1 and the other two monitoring points. In the first few loading
cycles, the peak pore pressure for P1 is slightly larger because of the initial overshoot of pressure near the top surface
(see the discussion in the last subsection). Due to the dissipation of the pore pressure, especially for the soil close to the
drainage boundary, the peak pore pressure for P1 also reduces generally and is smaller than that for P2 and P3 at the end
of the computation.

Figure 9 presents the comparison of results during the first 0.1 s for different MPM formulations. Again it is clear that
the semi-implicit MPM offers stable and smooth results for all selected points. Conversely, albeit generally capturing the
rational pore-pressure responses, the explicit MPM yields a result with moderate fluctuation which is more apparent for
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the lower half of the problem domain. This dynamic numerical example reveals that the proposed semi-implicit based on
u — v — p formulation® can not only handle the ordinarily quasi-static problem but also cope with the complex dynamic
problem for saturated porous media.

5.3 | Two-dimensional consolidation

A two-dimensional consolidation test under plane strain condition is simulated to further investigate the performance of
the proposed method. The geometry of the problem is shown in Figure 10. Only half of the problem domain is modeled by
the symmetric nature of the problem. The fully saturated soil domain possesses a dimension of 10 X 10 m (W X H), and is
discretized by quadrilateral elements with element size of 0.5 m and 4 particles per cell (PPC). A constant load acting at
the ground surface, g = 20 kPa, spans a length of B = 3 m. Gravity is neglected for this case, and initial stresses and pore
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pressures are zero therefore. The initial porosity is set as n = 0.3, grain density is set as p, = 2600 kg/m? and fluid density
issetas py = 1000 kg/m3. The solid phase is assumed to be isotropic linear elastic. Young’s modulus is set as E = 1 x 107
Pa and Poisson ratio is varying from 0 to 0.4 for the parametric study. The bulk modulus for fluid phase, which is used in
explicit MPM, is Ky = 2.2 X 10° Pa. The time steps are At = 2 X 10~* s and At = 2 x 107> s for semi-implicit and explicit
MPM, respectively, whereas the total simulation time is set to be 200 s.

Firstly, the influence of different velocity update schemes is investigated. In MPM, two schemes are commonly adopted
to update the particle velocities, namely the acceleration update and velocity update, also termed as FLIP and PIC scheme
in the literature.*>”->® For the velocity update scheme, particle velocities are overwritten by the interpolated velocity from
the background nodes, generally leading to a more stable computation but extensive energy dissipation. While for the
acceleration update, the particle velocity is incremented by the acceleration mapped from the nodes. It maintains better
energy conservation. However, it also suffers from more numerical noise,*>*® which might build up over time depends on
the time integration scheme assumed. While only the acceleration update has been used in the one-dimensional consoli-
dation cases, both of the two update methods are considered here to study its influence on the results.

Figure 11 depicts the pore-pressure contours for the semi-implicit and the explicit MPM using various velocity update
schemes at t = 0.1s. The explicit MPM with an acceleration update yields a spurious pore-pressure field with significant
numerical oscillation. Though the explicit MPM can offer a better pore-pressure contour via the velocity update scheme,
the oscillation near the loading boundary still exists. This numerical oscillation causes a build-up of instability that grows
over time, causing the computation could not be completed even though with a smaller time step, for example, 1 X 1077 s.
It is worth noting that this oscillation originates from the inherent instability of the algorithm, rather than the well-known
cell-crossing noise of MPM since the applied load is low in magnitude and the deformation is small. On the other hand,
the proposed semi-implicit MPM is free of such oscillation, offering a smooth and stable pressure distribution for both the
acceleration and the velocity update schemes.

When equal order interpolation is employed for the discretization of kinematic variables and pore pressure, the
fractional-step method can provide more stable results free of inf-sup instability. As discussed by Bandara et al.,”” it is
common to apply numerical stabilization techniques in the explicit MPM, such as the reduced integration technique or
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FIGURE 12 Pore-pressure evolution at point P
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the B-bar approach, to avoid spurious pressure field. Herein, a simpler post-extrapolation of pore pressure is adopted. By
mapping the pore pressure from the material points to the background node and extrapolating the nodal pore pressure
back to the material point, the pressure oscillation can be filtered and smoothed, and therefore, yielding to more stable
results. This scheme is effective as manifested in the smoothed contour shown in Figure 11A (right).

An observation point, P(0, H/2), located at the mid-depth of the center-line is selected to present the pore-pressure
dissipation results. Figure 12 shows the obtained pore-pressure results by the explicit and semi-implicit MPM with different
velocity update schemes. The pore-pressure evolution is plotted against a dimensionless time T = c,t/B?, where c,, is the
coefficient of consolidation defined in Equation (82). Here, the pressure smoothing technique is employed for the explicit
schemes as the results without smoothing is too spurious and hardly meaningful for comparison. When it comes to the
acceleration update scheme, the pore pressure displayed certain fluctuation mainly because of the repeated reflection
of the pressure wave from the surrounding boundaries. The velocity update can eliminate the oscillation effectively by
damping the velocity field without altering the consolidation process as indicated by two converged curves. Additionally,
the explicit MPM results show a significant damping effect, and thus, the pore pressure is dissipated faster than the semi-
implicit one. Moreover, the smooth and non-smooth result for the semi-implicit MPM shows that the pressure smoothing
technique does not alter the obtained results.

It is also interesting to note that, there is a slight increase in pore pressure during the consolidation process. This behav-
ior is well known as the Mandel-Cryer effect,”>°C which is a typical phenomenon in two and three-dimensional consoli-
dation problems and is affected by various factors, for example, soil geometry, permeability, and material properties. Here,
the effect of different Poisson ratio v is investigated and the result is plotted in Figure 13. The maximum increase of pore
pressure is produced by the case with zero Poisson’s ratio, which indicates that the Mandel-Cryer effect decreases with
increasing v.

5.4 | Slope failure

A problem of slope failure is adopted to test the method’s performance towards practical geotechnical engineering prob-
lems. Here, the well-known Selborne landslide experiment®-®? is simulated as a case study since it provided sufficient field
monitoring data. The purpose of the current test is to investigate the progressive failure mechanism induced by excessive
pore pressure. Numerical works on this case have been conducted based on the explicit MPM,?*%* where the permeability
used in the model is many orders higher than the real value to obtain a stable result and reduce the computation time.
Here, with the semi-implicit MPM, a wider range of permeability conditions can be adopted and this is benefited from the
fractional-step scheme.

Figure 14A illustrates the problem geometry as well as the soil profile. The original ground is excavated as a 2:1 slope
with the length of 18 m before the test. The ground mainly consists of six layers, while it is simplified into two layers
including the weathered and the unweathered clay in the MPM model, as shown in Figure 14B. Only the free-surface
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FIGURE 13 Comparison of pressure history at point
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TABLE 2 Simulation parameters for MPM control in the slope failure problem

Parameters Symbol Value
Time step At (s) 0.001
Size of cell Ah, (m) 0.5
Total number of nodes n, 3729
Particles per cell PPC 4x4
Total number of particles np 37056

layer is permeable, whereas the other boundaries are impervious. At the beginning of the simulation, a pseudo water
table is set at the soil surface as an initial condition. With this setting, we can obtain compatible and smooth initial
stress and pore pressure fields through a certain stabilization period. The other simulation parameters are shown in
Table 2.

After the stabilization period, the water table previously defined is removed, and an excessive pore pressure is loaded
from four surcharge wells located in the slope as shown in the insertion of Figure 14A to raise the water head by 7 m grad-
ually (in 196 days), which then induces the slope failure. The displacements and pore pressures at different positions were
recorded during the whole process where the beginning day of the water recharge is defined as the Oth day. According to
the monitoring results, an apparent displacement increment is caught at the 170th day and it increased to the engineering
failure level at the 184th day. The final obvious landslide is observed at day 193 as reported by Cooper et al.,®” which means
that the stability is broken during the water recharge.

As the proposed formulation adopts an explicit scheme for stress integration, it is still considered difficult to perform
a real-time simulation of the experiment for a period of 200 days. In the current study, it is aimed to reduce the diffusion
time of the excess pore pressure from the bottom to the top by defining a considerably large initial permeability (k =
1 x 1073m/s). As the permeability condition of the soil is isotropic and uniform, the propagation behaviors before the
collapse should be almost the same except the time needed to reach the slope failure.

A linear incremental pore-pressure boundary constraint is applied to the nodes at the specified part of the bottom left
boundary, denoted as pj, in Figure 14B. Here, the pore-pressure constraint profile can be divided into three main stages.
First, a reference step is predefined and no treatment is necessary before this step is reached. Then the pore-pressure
values at the specified nodes are recorded at the predefined reference step and set as the initial pore-pressure condition.
In the second stage, the pore-pressure profile increases linearly during the period of 10 s with a final pore-pressure value of
about 70 kPa (7 m-water-head) larger in comparison to the initial condition. Finally, the pore-pressure constraints are kept
constant until the end of the simulation, and this is denoted as the third stage of the boundary condition. The simulation
is carried out until an obvious failure phenomenon is caught in the slope, where the acceleration profile is used as the
indicator for the beginning of the slope movement.

A stabilization period is first carried out assuming a linear-elastic model to obtain the initial stress and pore-pressure
field. Then the soil material model is changed to a Mohr-Coulomb model with linear strain-softening depending on the
accumulated plastic deviatoric strain sg , which can capture the behavior of progressive failure as suggested by Robert.%
The material parameters assumed in the current problem are presented in Table 3, which are obtained from the published
investigations.®"-%? The soil permeability will be firstly set as 1 x 103 m/s for all the cases before the slope collapse. Then,
a range of permeability coefficient k, from 1 x 1078 ~ 1 x 1073 m/s, is simulated to study its effect on the evolution of
failure. It should be noted that, the real value of the permeability coefficient k in the experiment®” was recorded to be
about 4 x107% ~ 5x 1078 m/s.

Figure 15 presents a series of contours of the plastic deviatoric strains, excess pore pressures, and effective vertical
stresses, which were obtained from the case with permeability k = 1 X 1073 m/s. Here, the time indicated in the figures
is set according to the start of water recharge. The trend of the landslide appears during the recharge and a quasi-circular
shear band is formed gradually, which is similar to the experimental observation. Because of the large strength of the
lower soil layer, the displacement of the slope toe is almost horizontal, and thus, causing the landslide only to exist
in the weathered upper soil layer. The stress concentration appears at the toe firstly and induces the formation of the
shear band.

The excess pore pressure shown in Figure 15 (center) is computed as the difference between the current pore-pressure
value and the pore-pressure value at the start of water recharge. As the initial permeability used is relatively large, the
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TABLE 3 Soil parameters in the slope failure simulation
Soil type

Property Symbol Upper layer Lower layer
Young’s modulus E (kPa) 20000 20000
Poisson ratio v 0.3 0.3
Soil grain density o5 (kg/m?) 2000 2000
Fluid density oy [kg/m?] 1000 1000
Initial porosity n 0.3 0.3
Permeability k (m/s) 103 ~ 1078 1073 ~ 1078
Peak friction angle @, [°] 24 26
Residual friction angle o, [°] 13 15
Peak cohesion c, (kPa) 15 25
Residual cohesion ¢, (kPa) 0.5 0.5
Peak plastic deviatoric strain sﬁlas 0 0
Residual plastic deviatoric strain plas 0.1 0.1
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propagation of pore pressure is fast and it is transferred to the upper part of the slope quite uniformly before the failure
is initiated. Furthermore, during the collapse, as the extension deformation in the moving block causes the volume of
soil element to dilate, a negative increment of pore pressure in the slope is observed. Correspondingly, an increase of
pore pressure can be seen below the moving block, which is caused by the loading exerted by the block’s self-weight.
Meanwhile, as shown in Figure 15 (right), the vertical effective stress reduces gradually during the upheaval of the water
level. An obvious unloading process appears when the collapse occurs, which is caused by the movement of the soil (x
coordinate 10-20 m in Figure 15). This also contributes to the increase in the vertical stress below the moving block (x
coordinate 25-40 m in Figure 15).

To investigate the effect of soil permeability, the velocity magnitudes along the failure slope in different permeability
conditions are compared as shown in Figure 16. The positions of four observation points, A ~ D, were determined earlier, as
shown in Figure 14B, which were selected along the failure curve observed in the experiment conducted by Cooper et al.®
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The obtained numerical results showed in Figure 16 indicate that the collapse starts earlier than the end of the water
recharge at 10 s. As a large permeability is used for all cases before the failure happens, the initial velocity condition is
expected to be the same with almost zero magnitudes. Although the shear band is initiated at the slope toe at the beginning
of the failure (see Figure 15), the difference of initiation time observed at the four observation points is relatively small.
This behavior is identical to the experimental result. The velocity of the toe observed at point D is always larger than the
other points. This results in an extension deformation in the moving block, which is in accordance with the presented
pore-pressure results.

With the reduction of permeability, the dissipation of excess pore pressure becomes slower, where the maximum velocity
also decreases. Hence the degradation of the shear strength during the collapse requires a longer time, widening the
time needed for the motion to stop. This phenomenon is related to the increase of the drag force, which prevents the
development of the fluid relative velocity, and correspondingly slows down the diffusion of the excess pore pressure.

Figure 17 shows the pore-pressure values along the shear band right before the occurrence of the failure. Here, the
experimental data is obtained from an interpolated cross section on the center-line of the slip mass.®” In the obtained
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results, all cases of different permeability value can capture a similar tendency as the measured experimental data. As
mentioned earlier, the low permeability slows down the pore-pressure dissipation rate, and thus, a larger pore-pressure
value along the shear band is generated. Furthermore, the monitored pore pressure closed to the toe appears to be negative
values, which is regarded as the contribution of soil dilation in related studies. As no dilation behavior is considered in
the utilized model (dilation angle ¢ = 0°), the suction pressure is not well-captured in the numerical results. The use of
more advanced constitutive model may alleviate the error and capture the negative pore-pressure value more accurately.

Figure 18 shows the final horizontal displacement profiles along the slope surface, which are in a good agreement with
the experimental data.®” The movement direction of the slope toe is almost horizontal, whereas it changes to vertical
motion at the slope crest. Therefore, larger horizontal displacement is observed at the vicinity of the toe. As the perme-
ability decreases, the difference of the horizontal displacements between the lower part and the upper part of the slope
is enlarged. This is caused by the larger pore-pressure value being generated at lower permeability, and hence, yielding
to a softer response and forming a greater horizontal deformation. It should be noted, however, the permeability effect
does not significantly change the general shape of the collapse (see Figure 19), which is mainly dominated by the soil’s
softening behavior.

6 | CONCLUSIONS

This paper presents a semi-implicit hydro-mechanical coupled MPM using a fractional-step method. The saturated porous
medium with fully-incompressible pore-liquid flows is assumed in the formulation. The implicit treatment of the pore
pressure of the water phase leads to a better stability in handling internal incompressibility constraint compared to the
explicit counterpart. The method is also proven to reduce the numerical oscillations effectively yet with a significantly
larger critical time step size. The proposed method eliminates the restriction on the critical time step from the compress-
ibility of the liquid phase and the permeability of the soil. All the presented numerical tests are in good agreement with
the analytical solutions for both 1D and 2D problems. Furthermore, the method is also demonstrated to be able to deal
with an engineering-scale model, such as the slope-failure problem, with large deformation with realistic permeability
condition.

Although the proposed method works efficiently and accurately for soil dynamics problems with large deformation, the
time-step size is still subjected to a CFL condition to satisfy the strain increment level for the explicit stress integration.
This correspondingly may hinder its application for specific problems, particularly, on static or quasi-static undrained
problems, such as long-term consolidation cases or problems involving materials with very low permeability coefficient.
In such long-term engineering problems, the pore-water pressure is dissipated in a very long time, and thus, larger time
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step size will be required for modeling a period of several months or years. In this aspect, the fully implicit coupled mixed
formulation,”® which solves the displacement-pressure or velocity-pressure systems monolithically, seems to be a more
appropriate option. Further research should focus on improving the efficiency of the matrix solver considering parallelism
and investigation on the factors that influence the accuracy and stability of the method. Extension of the method to handle
three-phase unsaturated soil is also an undergoing research topic.
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APPENDIX A: EXPLICIT MPM ALGORITHM
This section presents the algorithm for standard explicit one-point two-phase MPM (Algorithm 2).
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Algorithm 2 Explicit one-point two-phase MPM algorithm
if = 0 then

1
2
3
4

® N & W

10

11

12
13

particle initial total stress: 0‘2, pore pressure, pg, particle velocities: Ve,

while 0 < randz <t

# Initialize material points ;
volume: V0, density: p0 , volume fraction: n® , particle mass: m’ =no pO Vo,
p ap ap ap apPap’p

0 0 .
and v
fp’

do

end

Map particle mass and momentum to computational nodes, and compute nodal velocities — (48), (49) ;
Compute solid strain and effective stress — (50)-(53) ;

Compute fluid volumetric strain and pore pressure:

T
Ag{olp ( At ZI 1 (VN (Xp cem‘rald)otf + (VN (Xp centrold) ) >>’
AR p; - —(nwAs ,t nprs )
Rrp

P
Update particle volume, density, volume fraction, and permeability — (55)-(58) ;
Compute nodal internal, external, and drag forces for fluid phase and the mixture:
f}nt - _ ;:’;1 VNI (X;)(_nf’pp;+l)1/;+l ,
fr =3 ﬁpr,(X’)bV’“ + foo Ni(xt,dsS,

p vol,p

2
z DN N,(x IN, KOV (9, =9,),

fmt an:l VNI (Xp) (o./t+l t+1)I/pl+1,

fext — ZI,‘; , p,,N,(x;)lonf+I + [0 N, (x)tdS ;
Update nodal accelerations and velocities:

at+l int ext __

atf+1 E:{nt I iext _ {iz—{:f;/m

f

Vr+1 =¥ + Ara'*! :
Update particle velocity and acceleration — (72)-(74) ;
t=1t+ At

14 Note: In step 8 of this algorithm, the volumetric strain for the fluid phase is evaluated at the centroid of the cell to
enhance the stability of computation, following Bandara and Soga '



