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A B S T R A C T   

Fabric anisotropy underpins the mechanical response of granular soils pertaining to a wide range of practical 
geotechnical applications. This paper presents a multiscale computational study on a strip footing resting on an 
anisotropic soil foundation. The focus of this study is placed on examining the cross-scale links of key grain-scale 
mechanisms in the soil that underscore interesting macroscopic observations of the footing problem over a full 
loading range from peak to large deformation regimes until its failure. We employ a hierarchical coupling of 
Material Point Method and Discrete Element Method (MPM-DEM). Mesoscale ensembles consisting of elliptical 
particles with specific alignments to represent bedding planes in anisotropic soils are generated. They are 
embedded into the material points of the MPM and serve as Representative Volumetric Elements (RVEs) with 
solutions by DEM to extract nonlinear material responses in solving the footing as a boundary value problem that 
may undergo large deformation to failure. The study confirms experimental observations that the bearing ca-
pacity of the strip footing decrease with the bedding angle α. It shows that ignoring fabric anisotropy for soil may 
lead to a significant overestimation or underestimation of the bearing capacity in extreme cases. The final failure 
patterns for all anisotropic cases feature general failure modes with two major slip surfaces, and they are pre-
dominantly in an asymmetric manner except the horizontal bedding case and the isotropic case. The degree of 
asymmetry in the failure pattern shows a correlation with the bedding angle. These observed features are further 
corroborated with microstructural analyses on the evolution of different sources of fabric anisotropy in slip 
surface.   

1. Introduction 

Fabric anisotropy is one of the distinctive characteristics of granular 
media. Most natural geomaterials such as soils possess noticeable 
anisotropic structures featured by the appearance of multiple sedimen-
tary layers or bedding planes, with longer axis of elongated granular 
particles deposited predominately parallel to the horizontal plane (Oda, 
1972). Such anisotropic internal structure may further evolve with 
external loads exerted on soils. These two sources of fabric anisotropy 
are widely termed as inherent anisotropy and induced anisotropy, 
respectively (Arthur and Menzies, 1972; Guo and Zhao, 2013). Fabric 
anisotropy plays an important role in affecting various aspects of 
macroscopic responses of granular soils, at both material point and 

engineering problem levels. Experimental studies, for examples, have 
indicated a strong correlation between fabric anisotropy and the shear 
strength, dilatancy, critical state characteristics, and localized shear 
failures of granular soils, under a wide range of testing conditions 
including plane strain test (Oda et al., 1978; Tatsuoka et al., 1986), 
triaxial test (Yamada and Ishihara, 1979; Lam and Tatsuoka, 1988), 
direct shear test (Azami et al., 2010; Guo, 2008), and hollow cylinder 
test (Lade et al., 2008). Micromechanics-based numerical approaches, 
particularly the Discrete Element Method (DEM), have also been 
popularly used in examining the effects of fabric anisotropy for partic-
ulate systems (Fu and Dafalias, 2011a; Fu and Dafalias, 2011b; Li et al., 
2017; Zhao and Guo, 2013), confirming distinct directional de-
pendencies of various macroscopic properties of granular materials. 
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Fabric anisotropy may also have important implications for practical 
geotechnical engineering problems. One outstanding example is the 
shallow foundations resting on anisotropic soils. The pre-existing fabric 
anisotropy in soil may be entangled with the possible variation of 
principal stress direction in a soil domain. Consequently, it is compli-
cated and challenging to offer a reliable prediction for the failure 
mechanism and the associated ultimate loads of the footing on aniso-
tropic soils. Meyerhof (1978), an early pioneer working on the topic, 
extended the classical bearing capacity theory to anisotropy condition 
by proposing an equivalent friction angle to account for the directional 
dependent shear strength of the soil. Oda and Koishikawa (1979) re-
ported that the bearing capacity coefficient by self-weight Nγ could be 
overestimated by 40 % ∼ 50 % if anisotropy in a granular soil is ignored. 
These early studies have triggered further experimental and numerical 
studies on the footing problem over anisotropic soil, including small- 
scale experimental model test (Azami et al., 2010), centrifuge tests (e. 
g., static test (Kimura et al., 1985), dynamic test (Qin et al., 2016)), and 
Finite Element Method (FEM) analyses of boundary value problems 
(Loukidis and Salgado, 2011; Azami et al., 2010). Several recent nu-
merical studies (Chaloulos et al., 2019; Gao et al., 2020; Gao et al., 2021) 
based on constitutive models built within anisotropic critical state the-
ory (ACST) (Dafalias et al., 2004; Li and Dafalias, 2012) have helped to 
elucidate the impact of both inherent anisotropy and induced anisot-
ropy. These studies provide an effective alternative in tackling realistic 
geotechnical problems and help to advance the understanding of how 
anisotropy affects the engineering performance of soils, such as foun-
dation. However, there remain open issues pertaining to the fabric in 
these models, such as how to select an appropriate fabric measure and 
how to determine its evolution law. It is desirable to establish a direct 
link of particle-scale quantification of fabric and fabric evolution with 
the macroscopic response in an engineering-scale setting, e.g., footing 
problem in geotechnical engineering. DEM can be applied to investigate 
the microscopic performance of a granular system, but may encounter 
difficulties in reproducing complex loading conditions in engineering- 
scale problems due to excessive computational cost that may incur. 

This paper aims to integrate the latest development on particle 
morphology modeling into our recently developed MPM-DEM hierar-
chical multiscale approach (Liang and Zhao, 2019; Liang et al., 2021) to 
re-examine the anisotropic footing problem. Focus is placed on 
improving the fundamental understanding of fabric anisotropy and the 
associated soil-structure interactions in large deformation and failure 
regimes. A coupling approach of Material Point Method (MPM) and 
Discrete Element Method (DEM) is employed, where the MPM handles 
the large deformation in the macroscopic domain, whereas the DEM 
provides the mechanical responses of granular media under variable 
loading paths for MPM based on particle scale solutions. The MPM-DEM 
multiscale framework serves as an ideal tool for numerically investi-
gating footing on anisotropic foundations. Evidently, since the material 
is fully represented by a particulate assembly, the inherent anisotropy 
can be easily accounted for via preparing a Representative Volumetric 
Element (RVE) with a specified spatial configuration. Likewise, the 
induced anisotropy can be also naturally reproduced as particles within 
the assembly may naturally rearrange themselves under the exerted 
loads. In addition, MPM allows for modeling over the entire settlement 
process, from the onset of shear failure to its full development, which is 
well known to be difficult for conventional mesh-based approaches 
because of the mesh distortion (Guo et al., 2021b; Nazem et al., 2008), 
especially for elements at the corner of the footing which is commonly 
regarded as a singular plasticity point because of the high deformation 
gradient. In this study, we will focus on the cohesionless and weightless 
soils and consider cases with surface surcharge (corresponds to Nq). This 
study may help to pave a critical first step toward thorough under-
standing of the footing problem, as the most popular expressions for 
another coefficient due to self-weight Nγ (Meyerhof, 1963; Hansen, 
1970; Vesić, 1973) are directly expressed via Nq, for example, the Brinch 

Hansen formulation (Hansen, 1970), Nγ = 1.5(Nq −1)tanϕ, which has a 
good prediction for ϕ < 40◦ (Hjiaj et al., 2005; Lyamin et al., 2007). It is 
noticed that Guo et al. (2021a) have recently conducted a multiscale 
investigation on a similar problem within a small displacement regime 
through a different multiscale approach, e.g., FEM-DEM (Guo and Zhao, 
2014; Zhao and Guo, 2015). 

This study is organized as follows: Section 2 briefly introduces the 
MPM-DEM multiscale framework, Section 3 describes the preparation 
and responses for RVEs with varying inherent anisotropy as well as the 
model setup for the footing problem, Section 4 and 5 present macro-
scopic results from aspects of bearing capacity and failure patterns, 
respectively, and Section 6 provides a cross-scale analysis for the case of 
interested. The last section summarizes the major findings of the study 
and provides some further discussion. 

2. MPM-DEM Multiscale Approach 

The MPM-DEM multiscale approach is established based on a hier-
archical coupling of the Material Point Method (MPM) and the Discrete 
Element Method (DEM). Central to the multiscale approach is the use of 
DEM to provide micromechanics-based responses for the material points 
in MPM at macroscale. Readers can refer to a recent study (Liang and 
Zhao, 2019) for the rigorous derivation and formulation of the coupled 
MPM-DEM multiscale framework. In present study, the multiscale 
framework is implemented based on two open-source codes, namely, 
Cb-Geo MPM (Kumar et al., 2019) and SudoDEM (Zhao and Zhao, 2021). 
Prior to the multiscale computation, Representative Volume Elements 
(RVEs) consisting of DEM particles are prepared and attached to each 
material point in the MPM domain. To advance the explicit time inte-
gration, the following steps are performed sequentially to facilitates a 
two-way interactive coupling between MPM and DEM:  

(a) Compute the deformation information of each material point in 
MPM, i.e., incremental displacement gradient;  

(b) Transfer the deformation information to the corresponding RVE, 
serving as boundary conditions in the mesoscale;  

(c) Shear RVEs with prescribed boundary conditions in DEM;  
(d) Compute collective responses of the deformed assemblies, e.g., 

Cauchy stress, and send them back to the MPM to update nodal 
forces and positions of material points. 

Specifically, the deformed configuration of RVE at the end of each 
loading step is recorded as the initial state for its next loading step in 
order to keep a memory of the loading history for every material point. 
Such treatment enables us to faithfully reproduce complex soil behavior 
under various loading conditions. The rest of this section provides a brief 
outline of the solvers in separated scales and collective properties of RVE 
for the sake of completeness. 

2.1. MPM Solver 

The movement and deformation of any arbitrary material in a con-
tinuum domain discretized by MPM is governed by the conservation of 
mass, conservation of momentum and the constitutive law describing 
the stress–strain relation: 

Dρ
Dt = 0 (1)  

ρ Dv
Dt = ∇⋅σ + ρg (2)  

σ = G (F) (3)  

where ρ is density, σ is the Cauchy stress tensor, g is the gravity and F is 
the deformation gradient. In conventional MPM, a constitutive model 
(Eq. (3)) is commonly required to describe the material response for 
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material points. In current coupled MPM-DEM multiscale approach, the 
mechanical response will be produced based on the DEM solution of the 
RVE attached to each material point, therefore conveniently bypassing 
the need for assumed phenomenological constitutive models. 

The key of MPM is that the material is represented by a set of ma-
terial points which carry the mass, momentum, and other internal var-
iables, e.g., stress σ, deformation gradient F and void ratio e. In this way, 
the mass conservation is automatically satisfied. To simplify the calcu-
lation of the spatial derivatives, MPM adopts a regular background 
Eulerian mesh as a scratch pad, enabling the mapping of information at a 
grid node from its surrounding material points and vice versa. This also 
facilitates the integration of the following weak form of momentum 
equation on the node: 

ṗI = f int
I + f ext

I (4)  

with 

ṗI =
∑

p
ṗpSIp (5)  

f int
I = −

∑

p
σp⋅∇SIpVp (6)  

f ext
I =

∑

p
mpbSIp +

∫

∂Ω
NIτdS (7)  

where ṗI is the material time derivative of nodal momentum, f int
I and f ext

I 
are the internal and external force acting on the node, respectively, ṗp is 
the material time derivative of material point momentum, σp is Cauchy 
stress tensor at the material point, Vp and mp are the volume and mass of 
the material point, τ is the boundary traction, NI is the shape function, 
SIp and ∇SIp are the weighting function and its gradient, respectively 
(Bardenhagen and Kober, 2004). After the momentum equation is 
solved, the updated information can be mapped from grid nodes back to 
material points to update the state of material points. In this study, the 
MPM solver is based on Cb-Geo MPM, which is a scalable high- 
performance open-source MPM code 1 (Kumar et al., 2019; Kularathna 
et al., 2021). 

2.2. DEM Solver for Non-spherical Particles 

The particle morphology plays a key role in affecting fabric anisot-
ropy and macroscopic responses of granular media. In the DEM com-
munity, there have been extensive studies dedicated to realistically 
capturing particle shape, including the use of simple clumped particle 
(Li and Li, 2009; Li and Yu, 2009; Zhao and Guo, 2015; Nie et al., 2020), 
a statistical approach based on Fourier shape descriptors (Mollon and 
Zhao, 2012; Mollon and Zhao, 2013), X-ray tomography imaging (Sun 
et al., 2019; Kawamoto et al., 2016; Kawamoto et al., 2018) and poly-
gon/superellipsoid description (Guo, 2008; Seyedi Hosseininia, 2013; 
Fu and Dafalias, 2011b; Fu and Dafalias, 2011a; Zhao et al., 2017). 
These DEM advancements can all be seamlessly incorporated into the 
MPM-DEM multiscale approach to account for particle shape. However, 
in practical simulations, there remain challenges associated with 
computational cost. In this study, the open-source DEM code, SudoDEM 
(Zhao and Zhao, 2019; Zhao and Zhao, 2021) developed by the authors, 
is taken as the DEM solver to reproduce the behavior of granular media 
for its appropriate balance between the particle shape resolution and 
computational efficiency. SudoDEM has both two- and three- 
dimensional packages, which is capable of modeling a broad range of 
non-spherical shapes such as superellipsoid, poly-superellipsoid, and 
polyhedron. SudoDEM provides a flexible Python module as an interface 
to co-work with other codes for coupling purposes, e.g., FEM-DEM (Zhao 

et al., 2020; Guo et al., 2021a). 
DEM will be used to provide a solution to each RVE attached to a 

material point in the MPM subjected to each incremental deformation/ 
displacement boundary conditions. In this study, modeling the inherent 
anisotropy of soils is made possible by adopting the elongated particles 
over the conventional circular disks. Specifically, two-dimensional 
elliptic particle is selected for simplicity. Fig. 1 depicts the interaction 
between two elliptic particles where r is the semi-major axis length, d is 
the branch vector joining two particle centers, nc is normal contact di-
rection, tc is the tangential contact direction, and f c is the contact force. 
The contact forces f c (including normal component fn

c and tangential/ 
shear component f t

c) between two contacting particles are calculated by: 

f n
c = −knδn (8)  

f t
c = −min(|f t′

c − ktut|, |f n
c |μ)t (9)  

where kn and kt are normal and tangential (shear) contact stiffness, 
respectively, δ is the contact overlap; ut is the relative shear displace-
ment, μ is the inter-particle friction coefficient, f t′

c is the previous 
tangential contact force rotated to the current contact plane, and n and t 
are the unit normal vector and unit tangential vector of the contact, 
respectively. Both normal and tangential contact stiffnesses can be 
constant or variable with respect to the contact displacement, corre-
sponding respectively to two prevailing contact models, namely, the 
linear-spring model and the Hertz-Mindlin model (Mindlin, 1953; 
Yimsiri and Soga, 2000; Zhao et al., 2018) in DEM community. The 
former considers contact stiffnesses as constants, whereas the nonlinear 
Hertz-Mindlin model assumes these two parameters vary with the con-
tact overlap. Zhao et al. (2018) reported that using the linear-spring 
model can yield comparable macroscopic responses with that using 
the Hertz-Mindlin model for quasi-static simulations. Hence, two con-
tact stiffnesses (kc

n and kc
t ) are assumed to be constant in present study. 

2.3. Collective Properties 

In the MPM-DEM multiscale approach, the only essential information 
needing to be retrieved from the DEM solver is the Cauchy stress tensor 
σ, which can be obtained via the homogenization over the deformed 
RVE based on Love-Weber formula (Christoffersen et al., 1981; Nicot 
et al., 2013): 

σ = 1
Vrve

∑

Nc
d ⊗ f c (10)  

where “⊗ ” denotes the dyadic product, Vrve is the RVE volume, Nc 

represents the number of contacts within the packing, d is the branch 

Fig. 1. Illustration of the interaction between two non-circular disks.  

1 https://github.com/cb-geo/mpm 
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vector joining the centroids of two contact particles as shown in Fig. 1, 
and f c is the contact force. 

With the Cauchy stress, the mean stress p and deviatoric stress q, 
which are commonly used in geomechanics, can be computed 
accordingly: 

p = 1
2 tr(σ) (11)  

q =
̅̅̅̅̅̅̅̅̅̅̅
1
2 s : s

√
(12)  

where ‘tr’ is the trace operation, ‘:’ represents second-order tensor 
contraction, s = σ −pI is the deviatoric stress tensor. 

Similarly, volumetric strain εv and deviatoric strain εq are calculated 
as follows: 

εv = tr(ε) (13)  

εq =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2εdev : εdev

√
(14)  

where ε is the strain tensor, εdev = ε−1
2 tr(ε)I is the deviatoric stress 

tensor. 
Meanwhile, it is instructive to extract the fabric anisotropy (Satake, 

1982; Oda, 1982) for helping the interpretation of the macroscopic 
observations: 

Φ = 1
N*

∑

N*

n* ⊗ n* (15)  

F*
a = 4(Φ− 1

2 I) (16)  

F*
a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2F*

a : F*
a

√
(17)  

where superscript ‘*’ could be ‘p’ or ‘c’, representing the quantity 
associated with the particle orientation or contact normal direction. For 
instance, np is the particle orientation unit vector while nc is the contact 
normal unit vector. N* is the number of particles or interactions within 
the assembly. Φ is the fabric tensor, F*

a is the deviatoric fabric tensor and 
F*

a is a scalar value used to quantify the anisotropy intensity. 

3. RVE Preparation and Model Setup 

3.1. RVE Generation 

In order to model soils with varying orientated deposition planes, 
elliptic particles are used instead of discs in the DEM simulation. The 
angle between the deposition plane and the horizontal plane is denoted 
by a bedding angle α. In the mesoscale, this bedding angle also repre-
sents the preferred orientation of the semi-major axis of elliptic particles 
within a DEM assembly. RVEs with different internal structures are 

prepared based on the microscopic parameters listed in Table 1. Each 
RVE consists of 400 elliptic particles with their semi-major axis lengths 
uniformly varying from 4mm to 6mm. A constant aspect ratio (the ratio 
of semi-minor axis length to semi-major axis length), a = 0.743, is 
selected, which is a typical value for natural sands, e.g., Toyoura sand 
(Altuhafi et al., 2016). Both normal contact stiffness kc

n and tangential 
contact stiffness kc

t are set to 6.0  × 106 N/m (stiffness ratio ν = kc
t /kc

n =
1), and the inter-particle friction μ is 0.55. The sample preparation 
process consists of two stages. In the first stage, the orientations (DOF of 
rotation) of particles are fixed, and the packing is isotropically com-
pressed to an intermediate state (i.e., mean stress p0 = 10kPa). In the 
second stage, the constraint on the rotation of each particle is released, 
and the packing is again isotropically compressed until the predefined 
confining pressure is attained (i.e., mean stress p0 = 20kPa). A similar 
preparation strategy has been adopted by other studies (Zhao and Guo, 
2015; Zhao et al., 2020). 

In this study, seven RVEs with different inherent anisotropic fabrics 
are generated and their bedding angles α vary from 0◦ to 90◦. For a 
comparison purpose, another isotropic RVE, denoted by ‘random’, is also 
prepared whose particle orientations are random and uniformly 
distributed. By adjusting the inter-particle friction during the first 
compression stage as aforementioned, the initial void ratio e0 of all 
prepared RVEs possess a similar value, i.e., e0 ≈ 0.162. The same particle 
size distribution and a similar initial relative density make it possible to 
investigate the effect of inherent anisotropic fabrics on the response of 
the soil specimen and the subsequent failure patterns of the strip footing. 
Fig. 2 and 3 show configurations of four selected RVEs (α = 0◦,45◦,90◦

and random) as well as their associated polar histograms of particle 
orientation and contact normal direction. For anisotropic packings, their 
initial fabric anisotropy intensities range from 1.71 to 1.78 for Fp

a, and 
from 0.34 to 0.47 for Fc

a. While for the random packing, its Fp
a and Fc

a are 
only 0.09 and 0.01, suggesting a rather isotropic initial state as expected. 

3.2. RVE Response 

The collective material responses of RVEs are evaluated via biaxial 
tests with a confining pressure of 20kPa that is equivalent to the surface 
surcharge in the subsequent footing problem. The biaxial test results, 
including the stress–strain relations and dilatancy curves, are shown in 
Fig. 4. As all the packings are in the dense state initially, their stress 
ratios quickly reach the peak and then exhibit an obvious strain 

Table 1 
Microscopic parameters used for RVE generation  

Type Property Symbol Value 

Material Semi-major axis length r[mm] 4–6 (r=5)   
Aspect ratio a 0.743  
Grain density ρgrain [kg/m3]  2 650  
Normal contact stiffness kc

n [N/m]  6.0  × 106  

Tangential contact stiffness kc
t [N/m]  6.0  × 106  

Inter-particle friction μ  0.55 
Control Particle number Np  400  

Damping αdamp  0.2  
Time step Δtdem[s]  1.0  × 10−5  

Fig. 2. Snapshots of generated RVEs with different bedding angles α (the 
bedding angle represents the preferred orientation, relative to horizontal plane, 
of the semi-major axis of elliptic particles within a DEM assembly). 
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softening. The packing with horizontal deposition plane (α = 0◦) yields 
the highest shear strength, where the peak stress ratio σyy/σxx can be up 
to 4.85. With the increase in bedding angle α, the peak stress ratio tends 
to decrease gradually, and the packing with α = 75◦ and α = 90◦ have a 
similar peak stress ratio σyy/σxx ≈ 2.8, being the minimum among all 
RVEs. The isotropic packing (the random packing) yields a moderate 
peak shear strength, which is close to the case of α = 60◦ but the strain 
attained is slightly larger. Although having different peak stress ratios, 

all packings with varying fabrics are observed to have comparable re-
sidual strength at large deformation regime, i.e., σyy/σxx ≈ 2.0, revealing 
that a critical state has been reached (Roscoe et al., 1958; Schofield and 
Wroth, 1968; Zhao and Guo, 2013). With respect to volume change, all 
RVEs do not exhibit an apparent contraction before dilation due to the 
low confining pressure. It can also be seen that RVE with a smaller 
bedding angle appears to be more dilative, which is consistent with the 
observation in the literature (Fu and Dafalias, 2011b; Oda, 1981). Based 
on the RVE responses in biaxial tests, we can further compute the 
macroscopic friction angles ϕ and dilation angles ψ for the prepared 
RVEs according to (Fu and Dafalias, 2011b; Bolton, 1986): 

ϕ = arcsin
(σyy

/
σxx)p − 1

(σyy
/

σxx)p + 1 (18)  

ψ = arcsin
(dεyy

/
dεxx)p + 1

1 − (dεyy
/

dεxx)p
(19)  

where (σyy/σxx)p is the peak stress ratio, and (dεyy/dεxx)p is peak slope in 
εyy −εxx curve. Fig. 5 shows the friction angles with respect to the 
bedding angle. The friction angles appear to decease with bedding angle 
and the declining trend gradually ceases when the bedding angle is 
larger than 75◦, while the friction angle for random packing is close to 
that of α = 60∘. These friction angles are qualitatively consistent with 
data reported in previous studies (Fu and Dafalias, 2011b; Oda, 1981). 
In terms of the dilatancy, the measured dilation angles ψ for anisotropic 
packing range from 13.1◦ to 24.3◦, whereas it is 16.5◦ for the isotropic 
one. 

Fig. 3. Polar histogram of (a) particle orientation and (b) contact normal orientation for RVEs with different bedding angles α.  

Fig. 4. RVEs responses in biaxial compression test: (a) stress–strain relations and (b) dilatancy curves.  

Fig. 5. Variation of macroscopic friction angle of RVEs against different 
bedding angles. DEM data from (Fu and Dafalias, 2011b) and experimental test 
data from (Oda, 1981). 
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3.3. Model Setup for Anisotropic Footing 

In many conventional studies on the footing problems (Liang and 
Zhao, 2019; Guo and Zhao, 2016; Cortis et al., 2018; Chaloulos et al., 
2019), symmetry is usually assumed and taken advantage of to consider 
only half of the soil domain to reduce computational cost. However, for 
anisotropic soils, the deformation pattern for soils supporting the rigid 
footing can be nonsymmetric because of the underlying asymmetric 
microstructure of RVEs. Therefore, we consider a full soil domain in this 
study to capture all potential failure patterns. 

The geometric setup for a strip footing problem is depicted in Fig. 6. 
The soil domain has a dimension of 16 m by 6 m (width and depth). The 
lateral boundaries of the soil domain are constrained in the horizontal 
direction, whereas the bottom edge is fixed in both horizontal and 
vertical directions. The strip footing is placed on the center of the top 
surface. A surcharge of qs = 20kPa is exerted on the rest of the top 
ground surface to maintain the stability of the embedded RVE. As 
mentioned in the introduction section, the emphasis of this study is 
placed upon the weightless and cohesionless soil, so no gravity is 
considered in the simulation. The entire soil domain is discretized by 
quadrilateral elements with an element size of 0.1 m. In the vicinity of 
the footing and the top surface, each element is assigned with 4 material 
points (4 particles per cell, i.e., PPC  = 4), whereas for the far-field re-
gion, only a material point is contained in each element (PPC  = 1). The 
selection of different PPC numbers in different sub-domains is to 
maintain the resolution for regions of interest while reducing the 
computational cost. With the present model configuration, each 

simulation conducted comprises a total of 20520 material points/RVEs. 
As each RVE containing 400 elliptic particles, one simulation involves 
up to 8.2 million DEM particles. In this study, each simulation of the 
footing problem takes approximately 4 h on 7 cluster nodes, with two 
Intel Xeon E5-2692 v2 CPUs (12 physical cores each, 2.2 GHz) and 64 GB 
RAM for each node. 

Upon the inception of the settlement, the strip footing is displaced 
downward with a predefined velocity (which is depicted in the insertion 
Fig. 6). The settlement velocity is gradually increased during the early 
stage to effectively alleviate the induced stress oscillation (Liang and 
Zhao, 2019; Nairn, 2015). The settlement of footing is denoted by d, and 
the simulation terminates until a prescribed settlement dmax = 0.6 m is 
reached. 

4. Bearing Capacity 

Fig. 7 presents the normalized resistance σyy/qs of the strip footing 
during the course of loading for different packings, wherein σyy repre-
sents the resistant pressure which is computed by dividing the vertical 
reaction force exerting on the footing bottom over the its width, and qs =
20kPa is the surcharge acting on the ground surface. Notably, the soils 
underneath the strip footing, albeit with different anisotropic structures, 
yield almost identical linear responses when the settlement is small (e.g., 
d/B < 0.01). As the footing is pushed further downward, the soil re-
sponses tend to bifurcate and reach different peak resistances. As shown 
in Fig. 7, the case with α = 0◦ yields the highest footing resistance with a 
peak of σyy/qs = 42.3. For the cases from α = 15◦ to α = 60◦, they yields 
a similar peak resistance σyy/qs ≈ 40, tightly following the case with 
horizontal deposition plane. In contrast, the case with vertical or almost 
vertical deposition plane (e.g., α = 75◦, 90◦) yields a relatively small 
resistance among all anisotropic packings. Interestingly, the isotropic 
packing yields the minimum bearing capacity of the footing, which is 
substantially smaller than those with anisotropic structure. Following 
the peak resistance is an apparent softening response during which the 
footing resistance gradually decreases. The cases with relatively small 
bedding angles seem to exhibit a more intensive softening behavior. 
When the settlement reaches a moderate level (e.g., d/B = 0.5), the 
normalized resistances for all cases reach plateau state and stabilize at 
around σyy/qs ≈ 10, which is in line with the experimental finding in the 
literature (Oda and Koishikawa, 1979). 

Based on the evolution curve of the normalized footing resistance, 
we can further derive the bearing capacity, a key index in the shallow 
foundation design. Assuming the principle of superposition, the ultimate 
bearing capacity pu of a strip footing could be computed as follows 
(Terzaghi, 1943): 

pu = qsNq + 0.5γBNγ + cNc (20) 

Fig. 6. Model setup for the simulation of strip footing resting on anisotropic soils (the insertion shows the settlement velocity for the strip footing).  

Fig. 7. Normalized resistance versus normalized settlement in the simulation.  
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where Nq, Nγ and Nc are the bearing capacity coefficients accounting for 
surface surcharge qs, soil unit weight γ and soil cohesion c, respectively. 
For weightless and cohesionless soils, which is the focus of this work, Eq. 
(15) degrades to pu = qsNq. 

In the literature, there are analytical solutions for the bearing ca-
pacity Nq available for comparison. In particular, Prandtl (1921) pro-
posed a formulation to calculate the bearing capacity coefficient Nq for a 
shallow footing seating on isotropic soils in the case of general shear 
failure, i.e., 

Nq = tan2
(π

4 + ϕ
2
)

eπtanϕ (21)  

where the ϕ is the friction angle of the soil sample. Meyerhof (1978) 
later extended the bearing capacity formulation to anisotropic cohe-
sionless soils. Meyerhof’s solution accounts for different shear strength 
for anisotropic soils in various directions of loading relative to the 
deposition plane, and an equivalent friction angle ϕeq = (2ϕ0 +ϕ90)/3 is 
adopted to evaluate the bearing capacity coefficient, wherein ϕ0 and ϕ90 
are the friction angles corresponding respectively to soil sample with 
horizontal (0◦ inclination angle) and vertical (90◦ inclination angle) 
deposition plane. Recently, Veiskarami et al. (2017) applied more 
rigorous lower-bound limit analysis to investigate the footing problem 
for anisotropic soils, and developed a design chart for the correction 
factors for anisotropic soils under various conditions. In what follows, 
the effects of anisotropy on the bearing capacity will be examined by our 
multiscale modeling and are further compared against these analytical 
solutions. 

Fig. 8 shows the bearing capacity coefficient Nq for soils with varying 
fabrics. The bearing capacity coefficient Nq for MPM-DEM modeling is 
measured at the peak normalized footing resistance (σyy/qs)p shown in 
Fig. 7. For ease of interpretation, we also plot the stress field for the case 
α = 60◦ and the random one, including the stress magnitude and prin-
cipal stress direction in Fig. 9. It can be seen from Fig. 8 that the bearing 
capacity coefficient Nq from the current study generally decreases with 
the increase in bedding angle for anisotropic cases. Specifically, the case 
with 75◦ holds the minimum capacity among anisotropic cases, which is 
lower than that for the case with 0◦ by around 13.8%. Moreover, the 
isotropic packing yields a lower bearing capacity than those with 
apparent anisotropic fabric, for example, the case with randomly 
orientated particles is lower than the case with horizontal bedding plane 

Fig. 8. Variation of the bearing capacity coefficient Nq at different 
bedding angles. 

Fig. 9. Stress field for case (a) α = 60◦ and (b) random at peak stress state. Contour represent the magnitude of mean stress p, arrow direction indicates major 
principal stress direction and the length of arrow is the stress ratio q/p. 

W. Liang et al.                                                                                                                                                                                                                                   



Computers and Geotechnics 137 (2021) 104279

8

by 23.8%. Clearly, this trend is different from the shear strength of RVEs 
outlined in Fig. 5. This discrepancy is mainly attributed to the varying 
distribution of principal stress direction within the soils, which will be 
elaborated later. 

The Prandtl’s analytical solution provides a good approximation for 
the isotropic packing as evidenced by two almost overlap markers, 
whereas for soils with anisotropic fabric, a significant discrepancy is 
observed between multiscale modeling results and the Prandtl’s solu-
tion, especially for the case with α = 0◦. Indeed, Prandtl’s solution was 
proposed based on an assumption of isotropic soils failed with a sym-
metric, general shear failure mode. For the anisotropic soil cases, the 
soils more likely fail in asymmetric patterns, which violate the 
assumption by Prandtl. Moreover, the deviation of the major principal 
stress direction with the deposition plane also play a crucial role in 
attribution to the observed discrepancy of analytical solution and mul-
tiscale result. As indicated in Fig. 9, the principal stress direction prior to 
the peak state can be mobilized from the vertical direction at the base of 
the footing to the horizontal direction at the side part of the foundation, 
regardless of the inherent anisotropic fabric. The bearing capacity of the 
foundation provided by the overall shear resistance of the potential slip 
surfaces could be viewed as a weighted summation of the strength of soil 
with varying bedding angles. Since the shear strength measured in 
element tests (e.g., biaxial compression tests performed in the previous 

section) can only reflect the soil strength along a specific direction, it is 
challenging to provide a good approximation of the global footing 
resistance using this measured strength. On the other hand, as the 
principal stress direction covers 0◦ to 90◦ along the potential slip sur-
face, there exists a segment of the slip surface, for any anisotropic 
packing, where the bedding angle of the RVE is perpendicular to the 
major principal stress direction. Clearly, this structure is more stable 
against the external loading (Guo et al., 2021a; Hosseininia, 2012; 
Zheng et al., 2020) and thus contributes more resistance, partially 
enhancing the overall bearing capacity. However, such structure may 
not exist in the isotropic case whose particles are arranged randomly, 
resulting in a relatively smaller bearing capacity than the anisotropic 
cases. This observation is different from the continuum-based study 
(Gao et al., 2020) where a larger bearing capacity for the isotropic case 
was found. Such discrepancy may have been caused by different con-
ditions considered, for example, the isotropic case carried out by the 
continuum-based study (Gao et al., 2020) has the same friction angle 
with other anisotropic cases, while in the present study, the isotropic 
sample has a similar void ratio but different friction angle. This open 
issue deserves further studies, especially from experimental 
perspectives. 

Compared to Prandtl’s solution, Meyerhof’s theory partially ac-
counts for the variation in principal stress direction along the slip 

Fig. 10. Deviatoric strain field at final state d/B = 0.6: from left to right for top to bottom: 0∘,15∘,30∘,45∘,60∘,75∘,90∘, and random. Markers in subfigure (a) indicate 
the locations of material points selected for the subsequent cross-scale analysis. 
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surface and anisotropic strength of the soil sample, and thus provides a 
closer approximation for the transversely anisotropic case. However, the 
representative friction angle seems to be so oversimplified that it cannot 
accommodate a wide range friction angle especially for the high friction 
angle regime at which the bearing capacity coefficient is highly sensitive 
as indicated from Eq. (16). On the other hand, Veiskarami et al. (2017) 
introduced a dimensionless coefficient β = tanφ0/tanφ90 that can ac-
count for a wider range of friction angle, offering a better approximation 
for case with α = 0◦. 

5. Deformation Patterns 

Apart from the bearing capacity, the deformation patterns for the soil 
domain are also one of the crucial aspects in geotechnical engineering. 
In this section, the deformation patterns for different cases will be dis-
cussed via various field quantities. 

5.1. Deviatoric Strain Field 

Fig. 10 shows the contour of the (accumulated) deviatoric strain for 
strip footing on anisotropic soils at the final state (i.e., d/B = 0.6). It is 
clear that all cases fail in a general shear failure mechanism, as evi-
denced by the formation of two fully developed slip surfaces. Specif-
ically, one slip surface originates from the right edge of the strip footing, 

propagates through the soil mass, and finally reaches the ground surface 
to the left side of the footing, whereas the other major slip initiates from 
the left edge of the strip footing and propagates toward the other side. 
For the convenience of distinguishing these two major slip surfaces and 
ease of the following discussion, herein slip surface L (leftward) is used 
to denote the former slip surface while the slip surface R (rightward) 
refers to the latter. 

As shown in Fig. 10, two cases with relatively symmetric micro-
structure (α = 0◦ and random) exhibit symmetric failure patterns at 
macroscale. However, the case of α = 90◦, which also has similar 
symmetry in RVE, fails in a slightly asymmetric pattern. Such failure 
pattern may have its origin from the initial minor asymmetry in fabric 
and its unstable microstructure against the loading. As can be observed 
from Fig. 3, although the sample has been carefully prepared, asym-
metry still exists as there are slightly more particles inclining to the 
right. Moreover, as elongated particles within the RVE are mainly 
aligned along with the external loading, a small eccentricity in the force 
transition could evolve into a large torque on these particles (Hossei-
ninia, 2012; Zheng et al., 2020). Consequently, particles within the 
packing have a strong tendency to rotate, amplifying the inherent tiny 
asymmetry and leading to an asymmetric failure pattern in macroscale. 
For soils with other fabric structures (α = 15◦, 30◦,45◦, 60◦ and 75◦), 
slip surface L plays a dominant role and is more extensive. Furthermore, 
the geometric difference between the two slip surfaces becomes more 

Fig. 11. Displacement field at final state d/B = 0.6: from left to right for top to bottom: 0∘,15∘,30∘, 45∘,60∘, 75∘,90∘, random.  
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profound with the bedding angle when the angle is smaller than 60◦. As 
the bedding angle further increases, such difference tends to be less 
noticeable, making the case with α = 60∘ possessing the most apparent 
asymmetric failure patterns. Apart from the shape of the slip surface, it is 
also observed that the deviatoric strain intensity inside the shear bands 
increases with the bedding angle α. 

5.2. Displacement Field 

As known from the above analyses, two major slip surfaces are 
observed in the soil domain. These two slip surfaces jointly divide the 
mobilized soil mass into three regions, a triangular area immediately 
underneath the strip footing and two irregular regions aside which are 
roughly seen as a combination of a radial zone and triangular wedge 
(Vesić, 1973). As shown in Fig. 11, which presents the displacement 
field for strip footing on anisotropic soil at final state (i.e., d/B = 0.6), 
these regions experience distinctive mobilization during the loading 
process. For the triangular wedge immediately underneath the strip 
footing (termed as active zone) (Terzaghi, 1943; Van Baars, 2014), it is 
displaced downward vertically by the footing, acting as a rigid block. As 
for the two irregular regions adjacent to the triangular wedge, they are 
pushed away by the downward movement of the active zone, and are 
mobilized to the sides along the major slip surfaces L and R, forming an 
apparent heave on the ground surface. For cases (i.e., α = 0◦, random), 

the mobilization mass at both sides are observed to be symmetric. While 
for the rest cases (α = 15◦ ∼ 90◦), the mobilization area is larger on the 
left side due to the more extensive major slip surface L. Under such 
circumstances, a significant tilting may be observed for those practical 
foundations without constraint on its rotation. 

5.3. Averaged Particle Rotation and Fabric Anisotropy 

In addition to the accumulated deviatoric strain and the displace-
ment field, two quantities extracted from underlying DEM assemblies, 
namely averaged particle rotation and particle orientation-based fabric 
anisotropy intensity, are also illustrated to provide the whole picture for 
the complicated failure mechanism. 

The average particle rotation is first examined. Average particle 
rotation is a useful indicator for strain localization and is widely adopted 
in previous studies (Zhao and Guo, 2015; Wu et al., 2018; Liang and 
Zhao, 2019). The average particle rotation θ within a DEM packing is 
defined as follows: 

θ = 1
Np

∑Np

p=1
θp (22)  

where Np is the number of DEM particle and θp is the rotation for an 
individual grain which takes anti-clockwise rotation as positive. 

Fig. 12. Rotation field at final state d/B = 0.6: from left to right for top to bottom: 0∘,15∘, 30∘,45∘,60∘,75∘,90∘, random.  
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Fig. 12 presents the contour of the accumulated averaged particle 
rotation for the cases conducted. To highlight the rotation direction, the 
legend is set in a symmetric manner (i.e., white color indicates zero 
particle rotation). From Fig. 12, it is clear that particles within the slip 
surface experience remarkable rotations. Evidently, the soil grains 
within slip surface L would rotate anti-clockwise, while those in slip 
surface R rotates clockwise. For the soils in the intersection of the two 
slip surfaces, no obvious particle rotation is observed, as the rotation 
induced by one slip surface is canceled out by the other one. Like the 
deviatoric strain profile, the averaged particle rotation angle (magni-
tude) also increases with the bedding angle α. Although the particle 
rotation is closely correlated to the deviatoric strain profile, it is also 
interesting to notice that a mild rotation is observed at the soils adjacent 
to the triangular wedge region (active zone) where no conspicuous 
deviatoric strain is present (Fig. 10). The mild rotation together with the 
low deviatoric strain reveal that those soils are mobilized along curved 
slip surfaces as a bulk mass during the loading, featuring by a rigid body 
rotation. 

Another collective quantity extracted from the DEM assembly is the 
particle orientation-based fabric anisotropy intensity Fp

a (see Eqs. (10)- 
(12)). It is worth noting that, there are other available fabric measures 
could be extracted, for example, the contact normal-based fabric 
anisotropy intensity Fc

a. Herein we only select the most intuitive one for 
the analyses. The interested reader could refer to study (Guo and Zhao, 

2013) for the characteristics of different fabric anisotropy measures. 
Fig. 13 depicts the particle orientation-based fabric anisotropy in-

tensity for soils with different microstructures. As mentioned in Section 
3, the initial anisotropy intensity Fp

a for anisotropic samples ranges from 
1.71 to 1.78, whereas the intensity is only 0.09 for the isotropic one. This 
remarkable difference between the anisotropic and isotropic cases are 
preserved in the final state of the loading. It also appears that the 
shearing process induces obvious particle rearrangement for the soils 
inside slip surfaces, rendering the anisotropy intensity to be distinct 
from their surrounding. For the anisotropic cases, such particle rear-
rangement is advancing toward disorder and their final anisotropy in-
tensities drop to as low as 0.6. For the isotropic case, its final anisotropy 
intensity is also close to 0.6. This intensity is much higher than its initial 
value, indicating that a preferentially aligned internal structure is 
developed within the assembly. 

6. Local Analyses 

The macroscopic failure patterns of a granular material essentially 
originate from its intrinsic microstructure. One of the desired features of 
the current MPM-DEM multiscale approach lies in its capacity in offering 
a direct link of the macroscopic observations with rich information at 
the particle scale. In this section, three RVEs from the case with hori-
zontal deposition plane, which is the most common condition in the 

Fig. 13. Particle orientation-based fabric anisotropy intensity at final state d/B = 0.6: from left to right for top to bottom: 0∘,15∘, 30∘,45∘,60∘, 75∘,90∘, random.  
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engineering practice, are selected to investigate the evolution of various 
internal state parameters so as to offer hints in interpreting the macro-
scopic phenomenons. The locations of the selected points/RVEs are 
labeled in Fig. 10. Particularly, these RVEs are located within the major 
slip surface L but in different segments: Point A is in the edge of the 
active wedges, Point B is located at bottom of the radial shear zone, and 
Point C is located at the outer boundary of the Rankine passive zone 
(Terzaghi, 1943). 

The force chains of the selected RVEs shown in Fig. 14 are firstly 
examined. Polar histograms of particle orientations and contact normal 
directions at the initial and final states are also presented in the same 
figure. It is recognizable that in the initial state, the majority of particles 
within the assembly are horizontally aligned, whereas the contact norms 
are mainly along the vertical direction. These two highly concentrated 
orientations jointly indicate an intensive inherent anisotropy for the 
assembly. Although all selected RVEs are located at the same major slip 
surface (e.g., slip surface L), their evolution of microstructures differ 
considerably because of the highly complex loading conditions. For 
Point A, due to the high compression force transmitted from the active 
wedge underneath the footing (note that the averaged normal force fn

c is 
around 52.2N), the packing is compressed severely, resulting in a 
slender configuration accompanied by a noticeable rigid rotation. In the 
final state, the particles within the RVE still maintain a preferential 

alignment but slightly rotate anti-clockwise as evidenced by high fre-
quency along the 45◦ direction in the rose diagram of the particle 
orientation. Evidently, such particle arrangement is more stable in sus-
taining the large compression force acting along the 135∘ (Hosseininia, 
2012). For Point B, the shearing process is more close to the form of 
simple shear. The particle orientation is slightly altered during the 
shearing process but the horizontal major direction is still unchanged. 
To resist the shearing, right-tilting interaction forms and becomes 
dominated within the assembly. Finally for Point C, it is subjected to 
horizontal compression and mild shearing since it is located at the outer 
boundary of the Rankine passive zone which is mobilized outward and 
upward upon the settlement of the footing. The apparent compression 
from horizontal direction can also be clearly identified from the contact 
normal histogram wherein the interactions are mainly distributed along 
135∘. Under such loading, its particle orientation is altered more obvi-
ously than the rest packings as the particles have a strong tendency to 
rotate as loading direction is close to the semi-major axis orientation 
(Hosseininia, 2012). 

The above intuitive information expedites the interpretation of the 
evolution of various internal variables shown in Fig. 15, including par-
ticle orientation-based fabric anisotropy intensity Fp

a, contact normal- 
based fabric anisotropy intensity Fc

a and the void ratio e. From Fig. 15, 
it is clear that the deviatoric strain εq decreases along the propagation 
direction of the slip surface, revealing the progressive nature of the 

Fig. 14. Force chain, particle orientation histogram and contact normal orientation histogram for selected RVEs: (a) Pt. A (b) Pt. B and (c) Pt. C. In the force chain 
plot, the straight lines indicate the contact normal between two particles and the widths represent the magnitude of the normal contact force normalized by the 
averaged normal contact force f n

c within the packing, which are 52.2N,6.2N and 4.5N for A, B and C respectively (the locations of selected RVEs are marked 
in Fig. 10). 
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failure development in footing problems. As all particles are arranged 
preferentially along a horizontal direction at the initial state, the particle 
orientation fabric anisotropy is high as expected (up to 1.75). Upon the 
commencement of loading, the microstructure of the soil evolves 
continuously. Evidently, the particle orientation is severely altered and 
becomes less concentrated along a specific direction, leading to a drop of 
Fp

a. In addition, Point C exhibits a more dramatic decline in Fp
a with 

respect to εq, primarily due to its unstable microstructure against the 
rotation as mentioned above. On the other hand, the evolution of contact 
normal-based fabric anisotropy intensity Fc

a is highly correlated to the 
principal stress direction distribution which is shown in Fig. 9. For Point 
A and Point B, as they are located close to the bottom of the footing, they 
are subjected to compression which are roughly perpendicular to the 
deposition plane (Fig. 9), and hence more interaction along the vertical 
direction forms to resist the settlement of the footing, resulting in an 
increasing Fc

a. On the contrary, Fc
a for Point C reduces dramatically at the 

beginning of the loading due to the roughly horizontal compression 
force transmitted from the Rankine passive zone. Once the failure pat-
terns are fully developed, the footing resistance reduces to a relatively 
low magnitude and the loading exerting on all packings also decrease 
accordingly. Therefore, a declining trend in Fc

a is observed for Point A 
and Point B, whilst an increasing trend is captured for Point C. In terms 
of the void ratio e, all three selected RVEs exhibit apparent dilation 
during the shearing. Particularly, Point A shows an apparent compres-
sion at the early stage of the loading due to the exceptionally large forces 
from the footing. 

7. Conclusions 

This paper presents a multiscale analysis on a strip footing resting on 
anisotropic weightless soils by using the MPM-DEM coupling approach 
which is established via a hierarchical coupling of a macroscopic solver 
(MPM) and a microscopic solver (DEM). Representative Volumetric El-
ements (RVEs) are prepared by elliptic particles with specific alignment 

to naturally and effectively model the soil with varying inherent 
anisotropic structures. By embedding the prepared RVEs to the material 
points in MPM, the problem of strip footing resting on anisotropic soils 
can be readily solved without resorting to phenomenological anisotropic 
constitutive laws. In this study, eight simulations have been conducted, 
including seven anisotropy cases (α = 0◦ to α = 90◦) and one isotropic 
case. The bearing capacity and the failure patterns pertaining to 
different fabric structures are carefully examined and the cross-scale 
analyses are also provided. Some key findings are summarized as fol-
lows:  

• The orientation of soil deposition plane is found to have a moderate 
influence on the bearing capacity of the footing. For dense soils with 
a similar void ratio, the case with a horizontal deposition plane yields 
the highest bearing capacity. The bearing capacity is found to 
generally decrease with increasing bedding angle. The minimum 
capacity among anisotropic cases is presented for the case with the 
bedding angle of 75◦, which is lower than that for the case with 0◦ by 
round 13.8%. While the isotropic packing yields a lower bearing 
capacity than those with apparent anisotropic fabric, i.e., its bearing 
capacity is lower than the case with horizontal bedding plane by 
23.8%.  

• Ignoring the inherent anisotropy of the soil and directly applying the 
classical bearing capacity solution could lead to errors because of the 
striking variation of principal stress direction within the soil domain. 
It may result in a significant overestimation of the bearing capacity 
for soil with horizontal deposition plane but mild underestimation 
for those with vertical deposition plane. The correction factor pro-
posed by Veiskarami et al. (2017) is found to be satisfactory for the 
case with a horizontal deposition plane.  

• Soil anisotropic structure also plays a key role in dictating the 
deformation and failure pattern. All cases examined in the study 
exhibit a general shear failure mode featured by two major slip 
surfaces. Only the case with α = 0◦ and randomly orientated one fail 

Fig. 15. Evolution curve for selected RVEs (the locations of selected RVEs are marked in Fig. 10): (a) particle orientation-based fabric anisotropy intensity (b) contact 
normal-based fabric anisotropy intensity and (c) void ratio, with the insertion showing the early stage reponses. 
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in a symmetric manner. For other cases with α = 15◦ to 90◦, asym-
metric failure patterns are observed and the slip surface L dominates 
within the soil. The degree of asymmetry falls after rising with 
respect to the bedding angle, with the pattern for α = 60◦ being the 
most asymmetric one.  

• The cross-scale analyses confirm the progressive nature of the failure 
of footing. For soil within the slip surface in the anisotropic cases, the 
particle orientation-based fabric anisotropy intensity Fp

a decreases 
monotonically, whereas the contact normal-based fabric anisotropy 
intensity Fc

a bifurcates due to changing principal stress direction 
within the soil domain. 

This study serves as a multiscale investigation on the response of 
strip footing on anisotropic soils, in an attempt to complement existing 
experimental data and recent continuum-based numerical studies (e.g., 
ACST-based modeling) on the same topic. It is intended to offer certain 
micromechanical insight into the highly complex responses of aniso-
tropic soils in practical engineering applications, facilitating a thorough 
understanding of the influence of anisotrpy. However, this paper is not 
without limitations. (a) Since this study has assumed the superposition 
principle and only consider the weightless and cohesionless soils, the 
results may be deviated from realistic phenomenon where gravity always 
presents. Therefore, the result should be interpreted with caution when 
extending to other scenarios. (b) For reasons of computational effi-
ciency, we only considers 2D elliptic particles to represent sand grains, 
such that all out-of-plane grain motions, and inter-particle interactions 
are prohibited. Such constraints reduce the degree of freedom of parti-
cles and may lead to unrealistic effective quantities, such as porosity and 
dilation level (Mitchell et al., 2005). Further 3D dimensional studies are 
encouraged to provide more accurate and realistic information on this 
topic. 
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Lyamin, A.V., Salgado, R., Sloan, S.W., Prezzi, M., 2007. Two- and three-dimensional 
bearing capacity of footings in sand. Géotechnique 57 (8), 647–662. 
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