
Received: 21 June 2020 Revised: 16 September 2020 Accepted: 16 September 2020

DOI: 10.1002/nme.6549

R E S E A R C H A R T I C L E

A thread-block-wise computational framework for
large-scale hierarchical continuum-discrete modeling of
granular media

Shiwei Zhao Jidong Zhao Weijian Liang

Department of Civil and Environmental
Engineering, Hong Kong University of
Science and Technology, Kowloon, Hong
Kong

Correspondence
Shiwei Zhao, Department of Civil and
Environmental Engineering, Hong Kong
University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong.
Email: ceswzhao@ust.hk

Funding information
Hong Kong Scholars Program,
Grant/Award Number: XJ2018049;
National Natural Science Foundation of
China, Grant/Award Numbers: 11972030,
51679207, 51909095; Research Grants
Council of Hong Kong, Grant/Award
Numbers: CRF Project No. C6012-15G,
GRF Project No. 16207319, TBRS Project
No. T22-603/15N

Abstract
This article presents a novel, scalable parallel computing framework for
large-scale and multiscale simulations of granular media. Key to the new frame-
work is an innovative thread-block-wise representative volume element (RVE)
parallelism, inspired by the resemblance between a typical multiscale compu-
tational hierarchy and the hierarchical thread structure of graphics processing
units (GPUs). To solve a hierarchical multiscale problem, all computation in an
RVE is assigned a single block of threads so that the RVE runs entirely on a GPU
to avoid frequent data exchange with the host CPU. The thread blocks can mean-
while run in an asynchronization mode, which implicitly guarantees the inde-
pendence of inter-RVE computation as featured by the hierarchical multiscale
structure. The parallel computing algorithms are formulated and implemented
in an in-house code, GoDEM, involving the GPU-specific techniques such as
coalesced access, shared memory utilization, and unified memory implementa-
tion. Benchmark and performance tests are conducted against an open-source
CPU-based DEM code under three typical loading conditions. The performance
of GoDEM is examined with varying thread-block size and register pressure
of the GPU, and RVE number. It reveals that increasing GPU occupancy by
decreasing register pressure results in a significant degradation rather than
improvement in performance. We further demonstrate that the proposed GPU
parallelism framework may achieve a saturated speedup of approximately 350
compared with the single-CPU-core code. As a demonstration on its application
for multiscale modeling of granular media, the material point method is coupled
with the new framework powered DEM to simulate a typical engineering-scale
problem involving tens of millions of total particles having to be handled. It
demonstrates that a speedup of approximately 91 can be achieved by using the
proposed framework, compared with the performance of a similar CPU program
running on a cluster node of 44 parallel threads. The study offers a viable future
solution to large-scale and multiscale modeling of granular media.

K E Y W O R D S

continuum-discrete coupling, DEM, granular media, MPM, multiscale modeling, parallel
computing

[Correction added on 05 November 2020, after first online publication: In Funding information, the GRF Project No. “16205418” has been corrected to
“16207319”.]

Int J Numer Methods Eng. 2021;122:579–608. wileyonlinelibrary.com/journal/nme © 2020 John Wiley & Sons, Ltd. 579

https://orcid.org/0000-0002-3410-3935
https://orcid.org/0000-0002-6344-638X
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6549&domain=pdf&date_stamp=2020-10-07

580 ZHAO et al.

1 INTRODUCTION

Granular materials are widely encountered not only in nature but also in the practice of a wide range of industry and
engineering operations, such as grain handling and storing in the agricultural industry, the construction of geostructures
in civil engineering, and the processing of powders in chemical engineering and pharmaceutical industry. The mechan-
ical behavior of granular media underpins the design, operation, and risk management during the course of practice
for all these processes. Complex and intriguing phenomena arising from granular media under external loadings, such
as anisotropy and liquefaction,1 strain localization and failure,2 and noncoaxiality3 and the rich transitional behavior
between fluid and solid, have long been captivating for researchers across many disciplines of science and engineering.4-8

Yet puzzles remain and challenges persist for the past century of granular media research, as Science Magazine (2005)9

rated a general theory for granular media among 125 big unsolved questions facing scientific inquiry for the coming
century.

These pertinent issues to granular media pose tremendous challenges for the community of computational mechanics,
which has long been used to tackle granular media based on either continuum10 or discrete11 theories and methodolo-
gies. Continuum-based approaches typically employ phenomenological constitutive relations to describe the mechanical
behaviors of a granular material. By contrast, discrete-based methods, exemplified by the discrete element method
(DEM),12 enable more physical considerations at lower scales (e.g., grain-scale) such that the inherent discontinuum of
granular media can be captured. In DEM, the motion of each individual particle is tracked by Newton’s laws of motion
in conjunction with contact force models. Despite the rather simple contact models used at grain scales, DEM has been
demonstrated to be capable of capturing a rich spectrum of characteristics of a granular material and offering physically
sound interpretations on macroscopic observations.13-16 More recent progresses in both theoretical and methodologi-
cal aspects further enable us to consider particle shape17 and particle roughness18 with improved confidence, and to
tackle multiphase, multiphysics granular problems based on coupling with other computational methods including the
computational fluid dynamics (CFD)19 and the lattice Boltzmann method (LBM).20

Notwithstanding the various merits, DEM has its unresolved issues. The high computational cost has been an out-
standing one when it has to deal with large-scale problems. A direct and practical approach to speeding up a large-scale
DEM simulation is parallelizing the program, that is, by parallel computing. Conventional parallel computing has com-
monly been implemented on the CPU-based computing system with two prevailing parallelizing standards: (1) OpenMP
for single multiprocessor machine with shared memory (e.g., a node of a cluster)21 and (2) message passing interface (MPI)
for clusters with distributed memory.22 In addition to the CPU-based parallel computing, the general-purpose graphics
processing unit (GPU) computing has emerged to be a frontrunner in parallel computing for its outstanding computa-
tional performance and high memory bandwidth. That is benefited from the architecture of modern GPUs that equip
significantly more transistors for arithmetic logic units (ALUs) but less for flow control than CPU architecture.23 In a nut-
shell, the modern GPU is specifically designed for parallel computing, more powerful but less expensive than CPU-based
computing for large-scale simulations. It has hence drawn increasing interest in accelerating DEM simulations.24-26 For
example, a recent work reported a solution approach to dealing with billion-degree-of-freedom dynamics problems on a
workstation with one GPU,27 and the approach has been implemented in an open-source code Chrono.28 However, these
accelerating schemes, either on CPUs or GPUs, focus largely on problems with an entire domain (intuitively a huge pack-
ing) composed of discrete particles. They frequently encounter tremendous challenges to simulate real engineering-scale
problems, for example, a typical foundation failure in geotechnical engineering, if natural grain sizes are to be respected.

More recently, a hierarchical framework for multiscale modeling of granular materials has been attracting particu-
lar attention,29-35 which pushes a successful marriage between DEM and the continuum-based method such as the finite
element method (FEM) and the material point method (MPM). The hierarchical approach differs from the other cou-
pling schemes such as the concurrent approach36,37 and the two-scale FEM approach.38,39 In the hierarchical framework,
continuum boundary value problems (BVPs) can be solved by the continuum-based method at the macroscopic scale
in conjunction with the homogeneous responses of representative volume elements (RVEs) that are captured by DEM
instead of a conventional phenomenological constitutive relation. Specifically, DEM-simulated RVEs serve as Gaussian
quadrature points or material points in the hierarchical coupling of FEM×DEM29 or MPM×DEM,34 respectively, bridg-
ing the micro- (discrete-grain) and macro- (continuum) scales of granular media. Notably, the hierarchical framework
brings two noteworthy aspects of improvements: (1) the characteristics of a granular material can be readily modeled by
the continuum-based methods with DEM-simulated RVEs taking the place of phenomenological constitutive models and
(2) the domain occupied only by RVEs needs to be simulated by DEM instead of the entire domain of a granular material,

ZHAO et al. 581

thereby considerably reducing the computational cost of DEM and improving the efficiency. Moreover, the hierarchical
framework has such a parallel nature that all RVEs can be independently simulated in parallel. Indeed, Guo and Zhao31

proposed a parallel hierarchical coupling of FEM×DEM at the RVE level with MPI on the CPU-computing system.
The DEM simulation of RVEs holds the majority of computational complexity in the aforementioned hierarchical

framework of multiscale modeling. This article proposes a novel, efficient, robust, and scalable parallelism framework of
discrete element modeling of RVEs on a GPU, coined as thread-block-wise RVE modeling, motivated by the analogous
hierarchy of the multiscale hierarchical framework and the hierarchical organizational structure of GPU threads. In the
proposed framework, each RVE corresponds to a block of GPU threads where each thread undertakes the computation
involving single or several particles and/or contacts, as will be explained in Section 3. The proposed thread-block-wise
RVE parallelism framework differs completely from the various GPU-accelerated DEM studies reported in the literature,
for example, References 24-27, and among others. Three significant novelties of the proposed framework are highlighted
as follows: (1) Conventional GPU-accelerated DEMs are often developed to simulate problems with an entire domain
composed of DEM particles, while the present framework is specifically proposed for hierarchical multiscale modeling by
DEM based on coupled continuum-discrete methods. The present framework empowers us to simulate much larger scale
engineering boundary value problems than the conventional parallel DEMs can do. (2) In conventional GPU-accelerated
DEM, only critical processes of DEM computation, such as contact detection, contact force summation, and integration of
particle motion, are implemented and run on GPUs, while the main routine running on CPUs sequentially invoke these
critical processes during each DEM iteration; therefore, the GPU needs to communicate with the host CPU frequently
during each DEM iteration, which necessarily forfeits the full capability of what GPU can offer. By contrast, the proposed
framework runs RVEs entirely on GPUs, which helps avoid the frequent communication between the GPU and the host
CPU, and benefits for the performance of the Unified Memory technique employed in this work. (3) In analogy to the
RVEs in the proposed framework, there are also subdomains in the conventional GPU-accelerated DEMs, which can be
solved by one or more blocks of GPU threads. However, one subdomain shares boundary particles (often called ghost
particles) with its adjacent subdomains so that the computation of subdomains is not entirely independent of each other.
By contrast, in the proposed framework, the computation of all RVEs is completely independent of each other, which
facilitates the parallel computing in nature. Moreover, the independence of computation for difference RVEs is implicitly
guaranteed according to the asynchronization of thread blocks on a GPU.

The rest of this article is organized as follows. Section 2 introduces a brief theoretical background of modeling
RVEs using DEM with periodic boundary conditions, which offers convenience to depict the parallel algorithms of
thread-block-wise RVEs on a GPU in Section 3. For the completeness of the presentation, we also present the pseudo-codes
of the proposed GPU algorithms along with the description of the parallelism framework. Benchmark and performance
tests on the proposed parallelism framework and algorithms are carried out and are further compared against CPU codes
in Section 4. As a demonstration of applying the proposed framework to speeding up hierarchical multiscale modeling
of granular media, the material point method (MPM) is coupled with DEM to solve an engineering-scale problem in
Section 5. Section 6 presents the concluding remarks of this study. Tensorial indicial notations and Einstein summation
convention are followed in the study unless otherwise stated.

2 DISCRETE ELEMENT MODELING OF RVES

2.1 Discrete element method

2.1.1 Governing equations

DEM considers the motion of a particle is governed by the Newton-Euler equation as

Fi = mv̇i, (1a)

Ti = Iij𝜔̇j − 𝜖ijkIkl𝜔j𝜔l, (1b)

where 𝜖ijk is the permutation tensor; Fi and Ti are the resultant force and torque acting on the particle center of mass,
respectively; vi and 𝜔i are the translational and angular velocities, respectively, and the over dot denotes derivation with
respect to time; m is the particle mass; Iij is the principal moment tensor of inertia around the mass center (Iij = 0 for i≠ j).

582 ZHAO et al.

For spherical particles, Equation (1b) is reduced as Ti = Iij𝜔̇j due to I11 = I22 = I33; the resultant force Fi and the resultant
torque Ti are given as

Fi = Fb
i +

∑
c∈Nc

f c
i , (2a)

Ti =
∑
c∈Nc

𝜖ijkrc
i f c

j , (2b)

where Fb
i is the body force; f c

i is the contact force at contact c; Nc is the number of particles contacting with the given
particle; rc

i is the position vector of contact point at contact c with respect to the particle center of mass.

2.1.2 Integration of motion

The motion of a particle (translation and rotation) is solved explicitly by using a central difference scheme with time
step of Δt. The prevailing leapfrog algorithm (Verlet scheme)40 is employed to integrate particle translation such that the
velocity and position are given by

v
t+Δt

2
i = v

t−Δt
2

i + v̇t
iΔt, (3a)

xt+Δt
i = xt

i + v
t+Δt

2
i Δt, (3b)

where Δt is the time step, and the superscript denotes the variable at the corresponding time; the acceleration v̇t
i is

calculated in terms of the Newton equation in Equation (1a) with artificial damping applied as follows

Δv̇t
i = −𝛼dSign(v̇t

i , v
t
i)v̇

t
i , (4a)

vt
i = v

t−Δt
2

i + 1
2

v̇t
iΔt, (4b)

where 𝛼d denotes a damping coefficient; Sign(x, y) is the sign-function which returns a value of 1 if x and y have the same
sign, otherwise, −1. Hence, the damped acceleration reads

v̇t
i =

Fi

m
+ Δv̇t

i . (5)

With respect to particle rotation, a quaternion q(qw, qx, qy, qz) = cos 𝜃̂

2
+ (êxi + êyj + êzk) sin 𝜃̂

2
is usually employed to

track particle orientation and rotation, where 𝜃̂ is the angle of the particle rotating around a unit axis ê(êx, êy, êz).17 Particle
rotation can be solved with a similar scheme to particle translation mentioned above for spherical particles. The rotational
velocity and orientation are given by

𝜔
t+Δt

2
i = 𝜔

t−Δt
2

i + 𝜔̇t
iΔt, (6a)

qt+Δt = Δqt+Δtqt, (6b)

where Δqt+Δt is the rotational increment (i.e., 𝜔
t+Δt

2
i Δt) in quaternion. However, for nonspherical particles (strictly with

nonequal principal moments of inertia), it is worth noting that the integration of rotation is complicated (see Reference
41), which is beyond the scope of this study. Interested readers are referred to the literature for discrete element modeling
of nonspherical particles.17,42

2.1.3 Contact force model

For two moving spherical particles (denoted by Particle 1 and Particle 2), as shown in Figure 1(A), contact occurs if and
only if the distance between the two centers of particles is less than the sum of their radii, that is,

||b|| < R(1) + R(2), (7)

ZHAO et al. 583

F I G U R E 1 Two contacting
particles: (A) the configuration of
motion; (B) the resultant contact forces
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

Particle 1

Particle 2

profile at last step
Particle 2

Particle 1

contact plane

contact point

where R is particle radius with the superscript (1) or (2) denoting Particle 1 or Particle 2 hereafter; b is the branch vector
joining the centers of the two particles, given as

bi = x(2)i − x(1)i . (8)

The intersection plane of the surfaces of the particles is taken as the contact plane. Its direction, that is, contact normal,
is defined as the unit vector of b

ni = bi∕||b||. (9)

The penetration of the two particles is given as

di = (R(1) + R(2) − ||b||)ni. (10)

With the assumption that the contact force acts at the intersection point (i.e., contact point) of the contact plane and
the branch line (from O1 to O2), the relative velocity of Particle 1 to Particle 2 at the contact point is given as

v1,2
i = v(2)i − v(1)i + 𝜖ijk𝜔

(2)
j r(2)k − 𝜖ijk𝜔

(1)
j r(1)k . (11)

The incremental tangential displacement at the current time step, that is, the incremental displacement of the contact
point along the contact plane, is given as

𝛿ui = (v1,2
i − nkv1,2

k ni)Δt. (12)

For the convenience of implementation, contact force f i is split into two orthogonal components: normal contact force
f n
i and tangential contact force f t

i (see Figure 1). The force–displacement law in conjunction with the Coulomb friction
model is employed as the contact force model at the microscopic scale,12 given as

f n
i = −kndi, (13a)

Δf t
i = −kt𝛿ui, (13b)

and

f t
i =

⎧⎪⎨⎪⎩
(||f ′t|| + ||Δf t||) 𝛿ui||𝛿u|| , if ||f ′t|| + ||Δf t|| ≤ 𝜇||f n||,
𝜇||f n|| 𝛿ui||𝛿u|| , otherwise,

(14)

http://wileyonlinelibrary.com

584 ZHAO et al.

F I G U R E 2 Periodic cell (“solid”) and its neighbor images (“open-dashed”)
aligned in a lattice form [Colour figure can be viewed at wileyonlinelibrary.com]

where Δf t
i is the incremental tangential contact force; f ′t is the tangential contact force at the previous time step; 𝜇 is the

coefficient of friction. As shown in Figure 1(B), the contact forces acting on Particle 1 and Particle 2, respectively, denoted
by f 1, 2 and f 2, 1 follow a relation with the contact force f

f 1,2
i = −f 2,1

i = fi. (15)

2.2 Periodic boundary conditions

2.2.1 Periodic cell

Periodic boundary conditions are, in general, introduced to reduce the boundary effect from rigid boundaries such as
rigid confining walls in DEM simulations.43-45 For simplicity but without losing generality, a parallelepiped-shaped cell
is adopted as the simulation domain of an RVE. Figure 2 shows a two-dimensional (2D) illustration of an RVE cell
as a parallelogram and its neighbor images periodically repeated in a lattice form. For the convenience of presenta-
tion and implementation in the following algorithms, two coordinates systems are introduced: one is the fixed global
Cartesian coordinate system; the other is the local oblique Cartesian coordinate system with basis vectors along the
boundaries of the RVE cell. These two coordinate systems are also known as Eulerian (spatial) and Lagrangian (mate-
rial) coordinates in continuum mechanics, respectively, but intuitively denoted as global and local coordinate systems for
short hereafter.

The global and local coordinates follow a relation of transformation as

xi = HijXj, (16a)

Xj = H−1
jk xk, (16b)

where Hij is the deformation (gradient) tensor with columns as the basis vectors of the cell, while H−1
ij is for the inverse

transformation. Points at the RVE cell also repeat periodically in the cell images in a similar fashion as the cell. Specif-
ically, given a point p in the RVE cell, its image p′ in the other cells can be periodically shifted in the local coordinate
system by

Xi(p′) = Xi(p) + Pi (17)

with

Pi = pijlj, (18a)

pij =
⎧⎪⎨⎪⎩

⌊
Xi(p′)

lj

⌋
, if i = j,

0, otherwise,
(18b)

http://wileyonlinelibrary.com

ZHAO et al. 585

where Pi is the periodic (shifted) vector; pij is coined as a period tensor with zero off-diagonal, and its main diagonal is
period number for the corresponding axis; lj is the base length of the cell along Xj, as shown in Figure 2; ⌊*⌋ denotes
rounding down to the nearest integer.

2.2.2 Homogeneous deformation

Applying derivative with respect to time at the both sides of Equation (16a), we have

ẋi = ḢijXj
⏟⏟⏟

vhi

+ HijẊ j
⏟⏟⏟

vfi

, (19)

where vhi is the affine mean-field velocity, which is attributed to the macroscopic homogeneous deformation of the RVE
cell; vfi is the fluctuating velocity, that is, particle velocity driven by the resultant force on the particle, which is, however,
nonaffine. With Equation (17), the mean-field velocity vhi(p′) and the fluctuating velocity vfi(p′) at the image p′ of a point
p can be written as

vhi(p′) = vhi(p) + ḢijPj, (20a)

vfi(p′) = vfi(p). (20b)

Therefore, in the presence of periodic boundary conditions, the mean-field velocity vhi is nonperiodic, while the fluctu-
ating velocity vfi is periodic. Accordingly, the period needs to be considered for the computation of relative velocity in
Equation (11) due to vhi.

Recalling the integration of particle motion in Section 2.1.2, particle translation is solved explicitly with a
central-difference scheme in the global coordinate system. Due to the homogeneous deformation of the RVE cell, the
additional velocity is applied to each individual particle, which is, thus, deduced in the global coordinate system with
Equations (16a) and (19), given by

vhi = Lijxj, (21a)

Lij = ḢikH−1
kj , (21b)

where Lij is the velocity gradient tensor of the cell deformation. Accordingly, the induced acceleration due to the cell
deformation is given by

v̇hi = L̇ikxk + Likẋk. (22)

Therefore, the additional incremental velocity Δv
t+Δt

2
h at time t + Δt

2
reads

Δv
t+Δt

2
h = ΔLtxt + Ltvt−Δt

2
⏟⏟⏟

Δv̇t

Δt, (23)

which is further summed to the right side of Equation (3a) to integrate particle translation when the macroscopic defor-
mation of the RVE cell is applicable. It is worth noting that the macroscopic homogeneous deformation of the RVE cell
does not yield additional angular velocities for individual particles.

2.3 Homogenized stress and strain

The homogenized stress tensor 𝜎ij within an RVE assembly is given by Love formula as46

𝜎ij =
1
V
∑
c∈V

f c
i bc

j , (24)

586 ZHAO et al.

where V is the volume of the assembly; f c
i and bc

j are the contact force and the branch vector, respectively. The mean stress
p and deviatoric stress q are given by

p = 1
n
𝜎ii, (25a)

q =
√

3n−2

2
𝜎

′

ij𝜎
′

ij (25b)

in which 𝜎′ij is the deviatoric stress tensor, 𝜎′ij = 𝜎ij − p𝛿ij, where 𝛿ij is the Kronecker delta (substitution tensor); n= 2 or 3
for 2D or 3D, respectively.

In the hierarchical multiscale modeling framework by coupling either FEM×DEM or MPM×DEM, all RVEs are sub-
jected to small deformation increments during each DEM step. That is to say, loading RVEs is strain-controlled. As for the
strain measure, the nonrotational deformation of the periodic cell (RVE) is homogenized by using the periodic boundaries
in terms of the infinitesimal strain tensor 𝜖ij, that is,

𝜖ij =
1
2
(H′

ij + H′
ji) − 𝛿ij, (26)

where H′
ij is the deformation gradient tensor with respect to the reference configuration. The volumetric strain 𝜖v and the

deviatoric strain 𝜖q are given by
𝜖v = 𝜖ii, (27a)

𝜖q =
√

2
3n−2 𝜖

′

ij𝜖
′

ij (27b)

in which 𝜖′ij is the deviatoric strain tensor, 𝜖′ij = 𝜖ij − 1
n
𝜖v𝛿ij; n= 2 or 3 for 2D or 3D, respectively. Note that for the

strain-controlled loading at each DEM step, the velocity gradient is performed.

3 PARALLEL ALGORITHMS OF THREAD-BLOCK-WISE RVES

3.1 RVEs parallelized at the thread-block level

Nvidia’s CUDA (Compute Unified Device Architecture) platform provides a scalable programming model for GPU com-
putation, where tens of thousands of concurrent threads offered by a modern GPU are organized in a hierarchy of thread
groups as illustrated in Figure 3. The top-level is called Grid, which is composed of many equal-sized (i.e., the same
number of threads) Blocks of threads. Both Grid and Block can be up to three-dimensional (3D), making the hierar-
chy like a multidimensional array so that each thread in the Grid can be located like accessing an element of an array
by index.

In analogy to the hierarchy of GPU threads, the intrinsic multiscale characteristic yields a similar hierarchy of grains
for granular media, as shown in Figure 3. In detail, discrete grains are grouped into RVEs, which correspond to mate-
rial points at a higher level of scale, and the material points or RVEs are further grouped together to a continuum at the
macroscopic scale. Motivated by the similarity between these two hierarchies, we propose three mappings at different
hierarchical levels as follows: a single GPU thread corresponds to a single or multiple grains; a block of threads is for a
single RVE, and the entire grid of threads is for the macro continuum. That is to say, the computation task of each RVE
is handled by a block of threads, that is, thread-block-wise discrete element modeling of RVE. In addition, threads from
different blocks run independently and asynchronously, but the threads from the same block will be synchronized auto-
matically after the blockwise task is over. As a result, tens of thousands of blockwise RVEs can be simulated concurrently
and asynchronously. However, it is worth pointing out that the total number of threads concurrently running is limited
due to the hardware resource. For example, a GeForce RTX 2080 Ti GPU card has 68 so-called streaming multiproces-
sors (SMs) with 1024 physically concurrent lanes for each, so that the total number of physically concurrent threads is
68× 1024= 69, 632. Nevertheless, a grid can have a maximum dimension of (231 − 1, 216 − 1, 216 − 1) and up to 1024 threads
per block, that is, a massive number of threads in total, while the overloaded threads (i.e., the rest threads excluding the
69,632 concurrent threads) have to be queued for running.

ZHAO et al. 587

F I G U R E 3 A hierarchy of
thread groups (left column)
versus a hierarchy of material
points or RVEs (right column)
[Colour figure can be viewed at
wileyonlinelibrary.com]

RVE(1,1)

Macro Continuum

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Grid

Thread(0,0) Thread(1,0) Thread(2,0)

Thread(0,1) Thread(1,1) Thread(2,1)

Thread(0,2) Thread(1,2) Thread(2,2)

Thread(0,3) Thread(1,3) Thread(2,3)

Thread(0,4) Thread(1,4) Thread(2,4)

Thread(0,5) Thread(1,5) Thread(2,5)

Block(1,1)

RVE(1,1)

Algorithm 1. Pseudocode of the workflow kernel
Input: The set of RVEs, 𝑅𝑉 𝐸𝑛; the total number of RVEs in the simulation, NRVE;

1 for each block i in the Grid of Blocks of threads do
2 if i>NRVE then
3 //run the RVE on Block i;
4 for each step of 𝑅𝑉 𝐸𝑖 do
5 update the geometric info of 𝑅𝑉 𝐸𝑖;
6 if updateNL then
7 updating reference positions of particles;
8 updating neighbor list;

9 Computing contact forces for all contacts;
10 Integrating motion of all particles;

Algorithm 1 summarizes the pseudocode of running thread-block-wise RVEs in parallel on a GPU. The total number of
running steps of each RVE can be different, which offers the flexibility of performing different loading strains on different
RVEs in the possible hierarchical multiscale modeling, for example, FEM×DEM29 or MPM×DEM.34 For a single DEM
step (or iteration), three main procedures are sequentially executed as in a general implementation of DEM: (a) updating
the neighbor list, (b) computing contact forces for all contacts, and (c) integrating motion of all particles. However, in this
article, these three procedures are definitely parallelized in thread blocks for running on a GPU, and their corresponding
algorithms are introduced in the following sections. Note that updating the neighbor list is more time-consuming than
the other two procedures, but it can be executed less frequently and only be triggered by the switch updateNL that will be
flagged in the integration procedure of particle motion, referring to Section 3.4 for details.

3.2 Neighbor list with periodic boundary conditions

As a critical ingredient of DEM, contact detection among particles takes most of the running time during the course
of a single DEM step. A naive approach to searching all contacts in an RVE is the so-called brute-force search, which,
however, has a time complexity of O(N2

p) (Np is particle number). For a better performance, the neighbors of each

http://wileyonlinelibrary.com

588 ZHAO et al.

subCell (id = 3)

subCell's image (id = 3)

0
1

2
34

5
6

78
9

10
11

12
13

14
15

0

1

2

4

3
6

5

6

6

6

7

7

7

7

3 1

0

2

1
5

9

8

10

9

8

1

1

3

3

particle (id = 1)

particle's image (id = 1)

1

9

9

F I G U R E 4 An RVE cell (“shadowed”)
partitioned by equal-sized subCells with periodic
boundary conditions [Colour figure can be viewed at
wileyonlinelibrary.com]

particle are cached so that the possible contacts of a given particle are searched within its neighbors. Moreover, the
neighbors of a particle remain unchanged within certain DEM steps. Hence, a neighbor list is established for storing
neighbors of particles in the entire RVE. Motivated by the algorithm proposed by Nishiura and Sakaguchi,47 we proposed
a new algorithm to create the neighbor list with respect to periodic boundary conditions for thread-block-wise RVEs
on a GPU.

Figure 4 exemplifies a snapshot of an RVE configuration in 2D (with a few particles only for the sake of presentation),
where the entire domain of the RVE is partitioned by a series of equal-sized subCells with the same shape as the RVE cell.
Both particles and subCells are labeled by two consecutive integer sequences starting from zero, respectively. The order
of labeling particles is arbitrary, and the sort-and-relabel introduced by Nishiura and Sakaguchi47 is not necessary for our
proposed algorithms. Instead, the subCells maintain a prescribed order implicitly to facilitate locating themselves within
the RVE cell.

For the convenience of implementation, an integer coordinate system is introduced for subCells, as shown in Figure 5,
which is attached to the local coordinate system. The id of a given subCell is defined in terms of the coordinates (X ′

1,X
′
2)

for 2D by

id = DxX ′
2 + X ′

1, (28a)

Dx =
⌈

l1

ls
x

⌉
(28b)

so that the coordinates (X ′
1,X

′
2) can be decoded readily as

X ′
2 =

⌊
id
Dx

⌋
, (29a)

X ′
1 = id − DxX ′

2, (29b)

where Dx is the number of subCells spanning over the RVE cell along X1; ls
x and l1 are the lengths of the subCell and the

RVE cell along X1, respectively; ⌊*⌋ and ⌈*⌉ denote rounding down and up to the nearest integers, respectively.
Note that the minimum size of a subCell is controlled by how many particles to be covered by the subCell, which

affects the size of memory allocation of lists or arrays in the algorithms introduced in this work. Moreover, both sizes and
labels of the subCells are updated according to the deformation of the RVE cell. The detail of the algorithm of neighbor
list is depicted as follows.

3.2.1 Particle-subCell list: Mapping subCell id to particle id

Given a set of particle positions XNp (Np is particle number) in the global coordinate system, loop all particles and trans-
form each Xi into the local coordinate system X̃ i by Equation (16b). Then, the local position X̃ i is reduced by Equation (17)
so that the wrapped position X̃ i stays within the RVE cell. The corresponding period is also recorded in a list PNp . Note

http://wileyonlinelibrary.com

ZHAO et al. 589

F I G U R E 5 Integer coordinate system attached at the local
coordinate system for subCell locating [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 1 Exemplified particle-subCell list PCNp
for mapping subCell id to particle id

Particle id (i) 0 1 2 3 4 5 6 7 8 9 10

SubCell id (PCi) 8 12 8 2 5 13 3 0 11 15 9

that the subscript in the variables refers to an index for accessing a list or array rather than an indicial notation hereafter
unless otherwise stated. For example, Np in XNp denotes the dimension of a set or list X , while i in Xi denotes the ith item
in X , bewaring of that i starts from 0 for a C-like language in programming.

Next, the id PCi of the subCell that particle i belongs in can be identified by Equation (28). The pseudocode of cre-
ating a particle-subCell list is shown in Algorithm 2. The particle-subCell list for the exemplified RVE in Figure 4 is
in Table 1.

Algorithm 2. Creating particle-subCell list PCNp

Input: The set of particle positions at the global coordinate system, Xn; The particle number in the RVE, Np;
Output: The set of particle position at the RVE local coordinate system, X̃n; The set of periods of particles, Pn;

The particle-cell list, PCn;
1 for each thread i in the Block of threads do
2 while i>Np do
3 X̃i = local position from Xi by Eq. (16b);
4 X̃i,Pi = reduced coordinates and period by Eqs. (17) and (18);
5 PCi = id of the subCell by Eq. (28);
6 i = i + BlockDim;

3.2.2 SubCell-particle list: Mapping particle id to subCell id

With a particle-subCell list PCNp , it is necessary to create a subCell-particle list CPNs (Ns is subCell number) so that all
particles for a given subCell i are accessible immediately by a sublist CPi. To this end, a direct algorithm is traversing all
particles, that is, all items in PCNp , and pushing back the particle id into the sublist CPi for a given subCell id i. The time
complexity of pushing back particle ids into the list is O(Np), which cannot be less for a serial running. Parallelly traversing
all particles seems to promote the performance, but meanwhile, special attention should be paid to the possible race
conditions that may yield a worse performance even wrong results. In detail, a sublist CPi will be read and/or written by
multithreads at the same time, that is, a race condition. Thus, these multithreads have to be serialized manually (e.g., using
atomic operation or mutex lock) to make sure correct results, which, however, definitely slows down the parallelism. As a
workaround, the parallelism is conducted on subCells instead of particles to avoid race conditions. Listed in Algorithm 3
is the corresponding pseudocode, in which all particles are traversed for each subCell id in a brute-force fashion, but the
test condition at Line 4 is executed so fast that the total time complexity remains O(Np). Table 2 lists the subCell-particle
list CPNs for the exemplified RVE configuration in Figure 4.

http://wileyonlinelibrary.com

590 ZHAO et al.

SubCell id (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Particle id (CPi) 7 – 3 6 – 4 – – [0, 2] 10 – 8 1 5 – 9

T A B L E 2 Exemplified subCell-particle list CPNs
for

mapping particle id to subCell id

Algorithm 3. Creating subCell-particle list CPNs

Input: The particle-subCell list, 𝑃𝐶𝑁𝑝
; the subCell number, Ns; the particle number, Np;

Output: The list of particle ids indexed by cell ids, 𝐶𝑃𝑁𝑠
;

1 for each thread i in the Block of threads do
2 while i<Ns do
3 for each particle id j do
4 if 𝑃𝐶𝑗 = 𝑖 then
5 push back particle id j into 𝐶𝑃 𝑖;
6 j++;

7 i = i + BlockDim;

Algorithm 4. Creating neighbor list for particle id and period of Np particles

Input: The set of wrapped global particle positions, X̃n; The set of particle radii, Rn; The set of periods of
particles, Pn; The amplified factor, 𝛿;

Output: The neighbor list of particle ids, NL and particle periods, NLP;Njgi
Np

;Njli
Np

;
1 for each thread i in the Block of threads do
2 while i<Np do
3 Xi = wrapped global position from X̃i;
4 i = i + BlockDim;

5 for each thread i in the Block of threads do
6 while i<Np{loop all particles} do
7 for each subCell id k in {𝐶𝑃 𝑖 and its adjacent} do
8 for each particle id j in subCell k and {j ≠ i} do
9 if distance is less than the threshold, that is, Eq. (30b) then

10 if j>i then
11 push j and pg into 𝑁𝐿𝑖 and 𝑁𝐿𝑃 𝑖 respectively from left;

12 else
13 push j and pg into 𝑁𝐿𝑖 and 𝑁𝐿𝑃 𝑖 respectively from right;

14 record Njgi
i and Njli

i ;
15 i = i + BlockDim;

3.2.3 Neighbor list for particle id and period

Algorithm 4 lists the pseudocode of creating the neighbor list for particle id and period. Prior to creating the neighbor
list, the wrapped local particle positions X̃Np need transforming back to the global coordinate system by Equation (16a),
yielding the wrapped global particle positions XNp . The neighbors of a given particle i can be searched with the following
three steps:

ZHAO et al. 591

(1) Locating the subCell that the particle belongs in, that is, the sunCell id given by PCi.
(2) Finding the nearest adjacent subCells in which the particles are the potential neighbors of the given particle i.

There are 3n − 1 (n= 2 or 3 for 2D or 3D, respectively) adjacent subCells for a given subCell. At the subCell’s integer
coordinate system, referring to Figure 5, the coordinates of adjacent subCells are shifted by ΔX ′ (ΔX ′ ∈ {−1, 0, 1})
for each axis. Note that the one with all ΔX ′ equal to 0 along all axes is the subCell of interest itself. In the presence
of the periodic boundary conditions, the adjacency of subCell situating at the boundary may have a coordinate
X′ negative or beyond the number of subCell at the corresponding axis. In this case, the subCell at the opposite
boundary is shifted by a certain period vector as the adjacent subCell. In a vivid 2D illustration in Figure 6, attention
is paid to the subCell of interest with id equal to 12, where part of its adjacent subCells is shifted from the opposite
boundary (see the arrows in Figure 6(A) for shifting action). Similar to locating a particle, we also attach a period
ps

k (but only in {− 1, 0, 1}) to a subCell k. For example, subCell 15 is shifted to the left with a period of −1 along X ′
1,

while subCell 0 is shifted to the top with a period of 1 along X ′
2. Figure 6(B) shows shifting periods of subCell 12

and its adjacent subCells. The shifted adjacent subCells with at least a shifting period nonzero can be regarded as
images of the corresponding subCells. Hence, the particles within these images of subCells are also images as shown
in Figure 6(C). However, we still regard these particle images as real particles (wrapped into the RVE cell) staying
within the RVE cell since the shifting periods are already recorded.

(3) Traversing all particles belong in the subCell of interest and its adjacent subCells. A particle j is taken as a neighbor
if the distance d between particle j and particle i is less than a threshold, that is,

||Xi − Xj − dshift|| < 𝛿(Ri + Rj), (30a)

dshift = ps
kl, (30b)

where RNp is a set of particle radii; dshift and ps
k are the shifting vector and period of the adjacent subCell k; l is the

base vector of the RVE cell boundary; 𝛿 is an amplified factor to scale up the searching radius. Then, the neighbor
lists NLi and NLPi are filled with the neighbor particle id j and the relative shifting period pg of the neighbor particle
j at the global coordinate system. To facilitate the implementation, both j and pg are pushed into the sublists from
left if particle id j is greater than particle id i, referring to the columns with i= 0, 1 in Table 3, otherwise from right,
referring to the columns with i= 2, 6 in this table. The relative shifting period pg is given by

pg =

{
Pi − Pj + ps, if j > i,
Pj − Pi − ps, otherwise,

(31a)

where PNp is the set of particle periods; ps is the shifting period of the subCell k that the neighbor particle j belongs in.

Table 3 shows both neighbor lists NLNp and NLPNp for the exemplified RVE configuration in Figure 4. It is worth noting
that each sublist has an equal-length segment of memory preallocated on a GPU, which should be sufficiently large to
cover all possible neighbors for each particle but sufficiently small to avoid a significant waste of hardware resources (i.e.,
GPU memory). The reader may wonder that the neighbor lists presented here doubly store the neighbor information,

F I G U R E 6 A subCell (id = 12) surrounded by adjacent
subCells with periodic boundary conditions [Colour figure can be
viewed at wileyonlinelibrary.com]

8
9

13

0

1

2

5
6

7

9

8

10

11

15

0
1

3

12

8
9

12
13

11

15

0
1

3

0
1

2
34

5
6

78
9

10
11

12
13

14
15

11

15

0
1

3

3

(A) (B)

(C)

(-1,1)

(0,1)
(0,1)

(-1,0)
(0,0)

(0,0)

(-1,0)
(0,0)

(0,0)

shifting action
shifting period

http://wileyonlinelibrary.com

592 ZHAO et al.

T A B L E 3 Exemplified neighbor lists NLNp
and NLPNp

for particle id i and period within an Np-particle RVE

i 0 1 2 3 4 5 6 7 8 9 10

NLi [2, *] [2, 6, *] [* , 0, 1] [*][*][*] [* , 1] [*][*][*][*]

NLPi [(0, 0), *] [(0, 0), (− 1, 1), *] [* , (0, 0), (0, 0)] [*][*][*] [* , (1,− 1)] [*][*][*][*]

Njgi
i 1 2 0 0 0 0 0 0 0 0 0

Njli
i 0 0 2 0 0 0 1 0 0 0 0

Sjgi
i 0 1 3 3 3 3 3 3 3 3 3

Note: The star symbol * denotes the preserved GPU memory not updated yet for the list.

Contact id (i) 0 1 2

Particle id1 (Cid1
i) 0 1 1

Particle id2 (Cid2
i) 2 2 6

Period (Cperiod
i) (0,0) (0,0) (−1,1)

T A B L E 4 Exemplified contact list

resulting in data redundancy; for example, Particle 2 is stored in the neighbor list of Particle 0, while Particle 0 is restored
in the neighbor list of Particle 2. However, the presented data structure is designed due to the following facts: (1) the
equal-sized sublist offers better efficiency in data accessing on a GPU, for example, coalesced access from global memory;
(2) the particle-contact list introduced in the next subsection benefits from such a structure. In addition, we also note that
it is not necessary to erase or initialize the memory area prior to updating NLNp and NLPNp (see the nonupdated memory
denoted by a star * in Table 3). Another two accompanying lists Njgi

Np
and Njli

Np
are introduced to record the numbers of

neighbors with id j greater or less than particle id i, respectively, so that the neighbors for a given particle i can be accessed
readily.

3.2.4 Contact list and particle-contact list

As aforementioned, the neighbor list doubly stores the information of neighbors (contact pairs). Hence, the contact pairs
are accessible by traversing only half of the neighbor list, for example, neighbors with id j greater than i. Indeed, the list
of contact ids can be established by

cid = Sjgi
i + j, j ∈ {0, … ,Njgi

i − 1}, (32a)

Sjgi
i =

⎧⎪⎨⎪⎩
0, if i = 0,

i−1∑
k=0

Njgi
k , otherwise,

(32b)

where Sjgi
Np

is the prefix sum of Njgi
Np

, referring to Table 3 as an example. Prior to creating the contact list, Sjgi
Np

is computed
first by using the parallel algorithm48 with one block of threads, and the total number Nc of contacts is then given by

Nc = Sjgi
Np−1 + Njgi

Np−1. (33)

For a given contact i, we introduce three ingredients, namely particle id1, particle id2 for the two contacting parti-
cles, respectively, and contact period by which particle id2 is shifted to particle id1 for contact computation at the global
coordinate system. For the convenience of implementation, id1 is specified less than id2 by default. Then, three lists Cid1

Nc
,

Cid2
Nc

and Cperiod
Nc

are allocated for the lists of particle id1, particle id2, and contact period for all contacts, respectively. The
contact list for the exemplified RVE configuration is listed in Table 4. Note that the contact periods listed in this table are
calculated assuming zero-periods of particles, that is, Pi = 0 in Equation (31).

ZHAO et al. 593

Algorithm 5. Creating contact list and particle-contact list NLC

Input: Njgi; Njli; NL; NLP; Sjgi;
Output: Cid1; Cid2; Cperiod; 𝑁𝐿𝐶 ;

1 for each thread i in the Block of threads do
2 while i<Np do
3 for each j in {1,… ,Njgi

i } do
4 particle id2 = the j-th item in 𝑁𝐿𝑖;
5 cid = Sjgi

i + id2;
6 Cid1

cid = i;Cid2
cid = id2;Cperiod

cid = the j-th item in 𝑁𝐿𝑃 𝑖;
7 the j-th from the left in 𝑁𝐿𝐶𝑖 = cid ;
8 for each k in {1,… ,Njgi

j } do
9 if the k-th from the right in 𝑁𝐿𝑗 is equal to i then

10 the k-th from the right in 𝑁𝐿𝐶𝑗 = cid ;

11 i = i + BlockDim;

Algorithm 5 lists the pseudocode of creating both contact list and particle-contact list. For a given particle i, a
particle-contact list NLCi is designed to group all its contact ids. The particle-contact list NLCNp has the same size as the
neighbor list NLNp so that it can be accessed in a similar fashion as NLCNp , which significantly facilitates the implementa-
tion on a GPU. Hence, we first traverse the neighbor list NLi with particle id j greater than i (i.e., the left Njgi

i particles) to
obtain a sublist contact ids by Equation (32) and store in the corresponding position in NLCi. Then, the contact id for par-
ticles i and j is pushed into the corresponding position (where NLj is equal to i) in NLCj. Table 5 lists the particle-contact
list NLCNp for the exemplified RVE configuration in Figure 4.

3.3 Contact force

For a given contact i with two particles Cid1 and Cid2, the position of particle id2 is first shifted by dshift, that is,

dshift = Cperiod
i l, (34)

where l is the base vectors of the RVE cell. Then, the contact geometric quantities (such as branch vector b, contact normal
n, and penetration d) can be obtained by Equations (8), (9), and (10), respectively, in terms of particle positions (XCid1

i
and

XCid2
i

), particle radii (RCid1
i

and RCid2
i

). For a contact i where the penetration depth is greater than zero (i.e., real contact), the
normal contact force FNi is obtained by Equation (13a); as for the tangential contact force, the tangential displacement
increment 𝛿u is computed by Equation (12) with the relative velocity in Equation (11) in consideration of the mean-field
velocity in Equation (20a) due to the deformation of RVE cell, then substituted into Equation (13b) for the incremental
tangential contact force Δf t.

The Coulomb condition is performed on the accumulated tangential contact force in terms of the present normal
contact force FNi by Equation (14), yielding the tangential contact force FTi. With the tangential contact force, the torques
for both particle id1 and particle id2 are obtained by

Ct1
i = r1 × FTi, (35a)

Ct2
i = r2 × FTi, (35b)

T A B L E 5 Exemplified particle-contact list NLCNp
within an Np-particle RVE

Particle id i 0 1 2 3 4 5 6 7 8 9 10

NLCi [0, *] [1, 2, *] [… , 0, 1] [*] [*] [*] [* , 2] [*] [*] [*] [*]

Note: The star symbol * denotes the preserved GPU memory not updated yet for the list.

594 ZHAO et al.

where Ct1
Nc

and Ct2
Nc

are the lists of torques on particle id1 and particle id2, respectively; r1 and r2 are the position vectors
of the contact point with respect to the two particle centers, respectively; × denotes cross product. Algorithm 6 lists the
pseudocode of computing contact forces in parallel on a GPU.

Algorithm 6. Contact force computation at the global coordinate system

Input: XNp ; RNc ; VNc ; Cid1
Nc

; Cid2
Nc

;Cperiod
Nc

; Cid2pre
Nc

; Sjgipre
Np

; 𝐹𝑇 𝑝𝑟𝑒
𝑁𝑐

;
Output: 𝐹𝑁𝑁𝑐

; 𝐹𝑇𝑁𝑐
; Ct1

Nc
; Ct2

Nc
; 𝐶𝑆𝑇𝑁𝑐

;
1 for each thread i in the Block of threads do
2 while i<Nc do
3 id1 = Cid1

i ; id2 = Cid2
i ;

4 Xid2 shifted by dshift in Eq. (34);
5 b by Eq. (8), n by Eq. (9), d by Eq. (10) with XCid1

i
, XCid2

i
, RCid1

i
, RCid2

i
;

6 if it is a real contact then
7 𝐹𝑁𝑖 by Eq. (13a);
8 v1,2 by Eq. (11) and Eq. (20a), 𝛿u by Eq. (12), Δf t by Eq. (13b);
9 finding previous contact id cidpre; ftpre = FTpre

cidpre ;
10 𝐹𝑇 𝑖 subjected to the Coulomb condition in Eq. (14) with 𝐹𝑁𝑖;
11 CPt1

i , CPt2
i by Eq. (35);

12 CSTi = (𝐹𝑁𝑖 + 𝐹𝑇 𝑖)⊗ b;
13 //⊗ denotes dyadic product

14 else
15 FNi, FTi, Ctorque1

i , Ctorque2
i , CSTi are set to zeros;

16 i = i + BlockDim;

3.4 Integration of particle motion

Given that contact forces and torques for all contacting particle pairs are stored independently in the lists (FNNc , FTNc ,
Ct1

Nc
, and Ct2

Nc
), the resultant force f and torque T for each particle can be obtained in parallel by summing over all contacts

that belong to the particle as

f =
∑

c∈Cjgi
i

(FNc + FTc) −
∑

c∈Cjli
i

(FNc + FTc) , (36a)

T =
∑

c∈Cjgi
i

Ct1
c +

∑
c∈Cjli

i

Ct2
c (36b)

with

Cjgi
i = {c| the kth item from the left in NLCi, k = 1, … ,Njgi

i }, (37a)

Cjli
i = {c| the kth item from the right in NLCi, k = 1, … ,Njli

i }, (37b)

where Cjgi
i and Cjli

i are the contact subsets of particle i with its neighbor j greater than or less than i, respectively. As
for Equation (36), it is clear that each item in both Ct1

Nc
and Ct2

Nc
is accessed only once without any race conditions for

multithreads. By contrast, each item in both FNNc and FTNc is accessed twice, since each contact force is shared by two
particles and decoded with Equation (15) for saving GPU memory, which may result in race conditions. However, such a
worse case can be successfully avoided by partitioning the twice access into two subloops so that each item in both FNNc

and FTNc is accessed only once at each loop, as listed at Line 3 and Line 5 in Algorithm 7.

ZHAO et al. 595

Algorithm 7. Integrating particle motion at the global coordinate system

Input: XNp ;RNp ;Xref
Np

;VNp ;WNp ;𝐹𝑁𝑁𝑐
;𝐹𝑇𝑁𝑐

;Ct1
Nc

;Ct2
Nc

;𝑀𝐼𝑁𝑝
;𝑁𝐿𝐶𝑁𝑝

;
Output: updated XNp ; updated VNp ; updated WNp ;

1 for each thread i in the Block of threads do
2 while i<Np do
3 for each contact c ∈ Cjgi in Eq. (37a) do
4 f+ = FNc + FTc; T+ = Ct1

c ;

5 for each contact c ∈ Cjli in Eq. (37b) do
6 f− = FNc + FTc; T+ = Ct2

c ;

7 v̇ = f ∕Mi; 𝝎̇ = T∕Ii;
8 ΔL = L − L′;
9 damping v̇ and 𝝎̇ with Eqs. (4) and (38);

10 updating Vi and Wi with Eqs. (39a) and (39b);
11 Xi+ = ViΔt;
12 L′ = L;
13 if (‖Xi − Xref

i ‖<threshold) set updateNL true;
14 i = i + BlockDim

With the resultant force and torque of particle i, the corresponding linear acceleration v̇ and angular acceleration 𝝎̇

are obtained by Equations (1a) and (1b), respectively, which are then damped with Equation (4) (𝝎̇ is damped by a similar
equation). Note that in the presence of periodic boundary conditions, the linear acceleration v̇ is damped with respect to
the fluctuating velocity vf of the particle rather than the total one V i (VNp is the list of particle linear velocities). In other
words, the linear velocity v in Equation (4b) should exclude the mean-field velocity, that is,

vf = Vi − L′Xi, (38)

where L′ is the velocity gradient at the last time step. The increments for both linear and angular velocities are given by

Δv = ΔLXi + (v̇d + LVi)Δt, (39a)

Δ𝝎 = 𝝎̇dΔt, (39b)

where v̇d and 𝝎̇d are damped linear and angular accelerations, respectively. The linear velocity V i and angular velocity
W i of particle i are then updated in terms of Equations (39a) and (39b), respectively, followed by updating the position
Xi. Note that it may be not necessary to save the orientation for spherical particles. Furthermore, the flag updateNL
introduced in Section 3.1 (see Line 6 in Algorithm 1) is updated once the accumulative displacement (i.e., ||Xi − Xref

i ||)
of a particle with respect to its reference position Xref

i exceeds the prescribed threshold (e.g., one subCell size). The list of
reference positions Xref

Np
for all particles needs updating with the current positions prior to updating the neighbor list. The

entire pseudocode of integrating particle motion in parallel is listed in Algorithm 7.

4 GODEM TESTS

4.1 Test setup

The open-source CPU-based DEM code, SudoDEM,17,42,49 developed by the authors, is employed as a baseline to bench-
mark the proposed thread-block-wise algorithms on GPU. SudoDEM is available at its project page online, and the
Python snippets and data sets involving in this section are available on the Github repository (https://github.com/SwaySZ/
ExamplesSudoDEM) for interested readers. The proposed GPU algorithms are implemented using CUDA C++ in our

https://github.com/SwaySZ/ExamplesSudoDEM
https://github.com/SwaySZ/ExamplesSudoDEM

596 ZHAO et al.

in-house code, GoDEM (GPU-supported Object-oriented Discrete Element Modeling), which will be publicly shared in
an open-source manner in the future. The GPU-specific techniques such as coalesced reading/writing, shared memory
utilization and unified memory implementation are utilized in GoDEM for better computational efficiency.

SudoDEM runs in double-precision on a desktop with an Intel Core I7-6700 CPU (3.4 GHz, four physical cores,
and eight logical cores) and 16 GB RAM, while GoDEM runs in single-precision on an Nvidia GeForce RTX 2080 Ti
GPU card (68 streaming multiprocessors with 4352 CUDA cores and 11 GB GDDR6 memory). Note that the GPU
computing prefers to use single-precision for performance, and the possible difference in results will be examined in
the following section. More details on the specifications of the Intel CPU and the Nvidia GPU are available online.
The operating system is Ubuntu 18.04, and the program compilers are GCC 7.4 and NVCC 10.1. It is worth noting
that GoDEM runs entirely on the GPU without communicating with the host CPU during the course of RVE simulat-
ing, benefiting from our novel parallelism framework. Indeed, the performance of GoDEM is independent of the CPU
performance.

4.2 Validation

4.2.1 Simulation setup

We prepare a dense RVE packing of 400 disks with radii uniformly distributed between 2.5 and 5.0 mm following the
well-established protocol in the literature.1,50 Using a dense specimen meets the following two highlighted considerations:
(1) reducing the possible discrepancy in contact force (especially the tangential part) between the two initial packings
for SudoDEM and GoDEM and (2) making the computation sufficiently intensive with increasing contact number for a
better estimation of performance at the worst case. Moreover, the sample size of an RVE (i.e., 400 particles) ensures suffi-
ciently isotropic fabric when subjected to isotropic compression (similar to consolidation in geomechanics) as reported in
our previous study.29 The simulation parameters are selected as follows: both normal and tangential contact stiffnesses kn
and kt are set to 1× 106 N/m; the friction of coefficient 𝜇 = 0.5, the mass density of particle 𝜌 = 2650 kg/m3, and the arti-
ficial damping 𝛼d = 0.3. Figure 7 shows the initial configuration of the RVE packing with an isotropic confining stress of
100 kPa.

Uniaxial compression, simple shear, and biaxial compression tests are performed on the confined RVE packing with
a loading strain rate of 0.05/s. As shown in Figure 8, the loading strain rate is applied to 𝜖11, 𝜖01, and 𝜖11 by moving
the corresponding periodic boundaries for uniaxial compression, simple shear, and biaxial compression tests, respec-
tively. In addition, the side boundaries are fixed for the uniaxial compression test, while for the biaxial compression
test a confining stress of 𝜎0 is maintained constant (i.e., 100 kPa) with a numerical stress-controlled servo mecha-
nism. As for the simple shear test, the periodic cell experiences a homogeneous deformation with a constant velocity
gradient (L01 = 0.05/s).

(A) (B)

F I G U R E 7 (A) Initial
configuration of an RVE packing
with an isotropic confining
stress of 100 kPa and (B) the
corresponding superimposed
normal contact force chains
[Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com

ZHAO et al. 597

(A) (B) (C)

Loading strain Loading strain Loading strain

F I G U R E 8 Loading conditions for the three tests: (A) uniaxial compression; (B) simple shear; (C) biaxial compression with a confining
stress of 𝜎0. Note: solid and open disks correspond to initial and compressed/sheared configurations, respectively; blue wireframes indicate
the periodic boundaries [Colour figure can be viewed at wileyonlinelibrary.com]

4.2.2 Effect of thread-block size

Given that GoDEM runs completely on a GPU with multithreads for every single RVE, the results may vary once any
race conditions occur among threads. To validate the implementation of the proposed algorithms, different numbers
of threads (i.e., different thread-block sizes of 1, 32, 128, and 256 threads) are used for the three simulation tests. It is
worth noting that the threads are handled group by group, and each group is composed of 32 threads, that is, a warp in
the terminology of CUDA. All 32 threads in a warp execute the same instruction, that is, the single instruction multiple
threads (SIMT) mechanism, meaning that the number of active threads is recommended to be integer multiple of 32 in
practice for maximizing the utilization of hardware (only four warp schedulers per streaming multiprocessor). However,
since a single thread is race-condition free, the block with a single thread is adopted to benchmark the multithread results
hereby.

Figure 9 shows the deviatoric stress ratio q/p and volumetric strain for the three tests with different numbers of threads
using GoDEM. It can be seen that there is no significant discrepancy at all between results from different numbers of
threads for the uniaxial compression test and the simple shear test, shown in Figure 9(A,B), respectively. Interestingly,
as for the biaxial compression test, both deviatoric stress ratio and volumetric strain are not significantly influenced by
thread number until reaching some level (approximately 4% here) of axial strain in Figure 9(C,D), respectively. Nev-
ertheless, it is not surprising to see the accumulative discrepancy in results causing by thread number for the biaxial
compression test, and the reason is analyzed as follows. Compared with the uniaxial compression and simple shear tests,
one more module has been installed in the biaxial compression test to offer a constant confining stress of 𝜎0, that is,
stress-controlled servo, in which the stress is obtained by summing over all contacts in parallel. Since floating-point arith-
metic is nonassociative, that is, (a+ b)+ c≠ a+ (b+ c), summing up the stress in a different order (access order varies
with thread number) can yield different results. The discrepancy in stress is then propagated back into the system due
to the stress-controlled servo for the biaxial compression test, thereby varying results after some level of loading strain.
Nevertheless, the discrepancy in results is not significant, as can be seen in Figure 9(C,D). Moreover, in multiscale model-
ing by using either FEM×DEM29 or MPM×DEM34 coupling approaches, the strain-controlled deformation (i.e., applying
incremental strain to an RVE assembly) is applied rather than the stress-controlled servo, thereby no issue as mentioned
earlier at all.

4.2.3 Comparison with CPU results

Prior to comparing the performance of between GoDEM and SudoDEM, the results from GoDEM need validating against
those from SudoDEM. To this end, the results from GoDEM using 128 threads (without losing generality) are plotted
against those from single-CPU-core SudoDEM in Figure 10 for the three simulation tests. It is clear that the GPU results
are well consistent with the CPU results, validating the implementation of the proposed algorithms accordingly. However,
one may see a small discrepancy in results between these of the two codes for the biaxial compression test, which is
caused by the stress-controlled servo due to the nonassociative property of float point arithmetic as analyzed in the last
subsection.

http://wileyonlinelibrary.com

598 ZHAO et al.

(A) (B)

(C) (D)

F I G U R E 9 Comparison of
results from different threads
using GoDEM: deviatoric stress
ratio q/p in (A) uniaxial
compression, (B) simple shear
and (C) biaxial compression
tests; and (D) volumetric strain
in the biaxial compression test
[Colour figure can be viewed at
wileyonlinelibrary.com]

Max. blocks per SM

Group tag
Threads (T)
per block

Registers (R)
per thread

Block
limit

Register
limit Occupancy

G128T-130R 128 130 8 3 37.5%

G256T-130R 256 130 4 1 25.0%

G128T-64R 128 64 8 8 100%

G256T-64R 256 64 4 4 100%

T A B L E 6 Four groups of GoDEM
configurations

4.3 Performance

4.3.1 Test setup and remarks

The performance of a GPU code is sensitive to the run-time configuration, such as thread-block size, shared memory
usage, and register pressure due to the limited hardware resources. For example, the GPU card employed in this study,
Nvidia GeForce RTX 2080 Ti, has one TU102 GPU with the Turing architecture: the maximum number of resident threads
per block is 1024; the maximum number of resident blocks per Streaming Multiprocessor (SM) is 16; there are 64 KB
shared memory per SM, and 48 KB shared memory per block by default, and 64 KB 32-bit registers per SM. In the imple-
mentation of GoDEM, shared memory is dynamically allocated for each block/RVE with 2Np bytes for particle positions
and 4BlockDim bytes for cache so that the GPU occupancy is not limited by shared memory for the following test set-
ting (see, e.g., Table 6). Note that shared memory has much lower latency than global memory, and it can considerably
promote the performance. However, it is the responsibility of the designer to make sure a correct access pattern when
using shared memory; otherwise, the performance becomes even worse when there are bank conflicts in shared mem-
ory. Detailed introduction to shared memory is beyond the scope of this work, and interested readers are referred to the
literature.48

The register-usage has nothing to do with computational results but may influence the computational efficiency to
some extent. Indeed, the register operation is hidden inside the processing of a high-level language compiler (e.g., GCC

http://wileyonlinelibrary.com

ZHAO et al. 599

F I G U R E 10 Comparison
of results from SudoDEM (single
CPU-core) and GoDEM (128
GPU-threads): mean stress p and
deviatoric stress q in (A) uniaxial
compression, (B) simple shear
and (C) biaxial compression
tests; and (D) volumetric strain
in the biaxial compression test
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

(C) (D)

and NVCC for compiling C/C++ source files). Registers can be regarded as a block of on-chip memory with the lowest
latency in reading and writing, also known as L0 Cache. As documented in Nvidia’s guide,23 registers are much faster
than global memory (the off-chip RAM), so that a program runs faster with higher usage of registers in general. How-
ever, the register file size is extremely limited, for example, only 65,536 (64 KB) 32-bit registers per SM on Nvidia’s Turing
architecture. Therefore, a high register-usage may cause significant register pressure on multithreads running concur-
rently, thereby resulting in low occupancy for an SM. With the default compiler’s optimization provided by NVCC 10.1,
GoDEM has a relatively high register-usage of 130 registers per thread. After a quick calculation, an SM can run at most
65, 536/130≈ 504 threads concurrently, which almost halves the designed capability (1024 threads for the Turing archi-
tecture) of an SM, that is, a low SM occupancy. Moreover, the number of active threads is set to an integer multiple of 32
for maximizing the utilization of warp schedulers. Hence, the theoretical maximum thread number that can be issued is
480 (15 warps) instead of the aforementioned 504 for a register pressure of 130. To improve the occupancy, the register
pressure is reduced as a trade-off. Hence, the second version of GoDEM binary is compiled with a moderate register-usage
of 64 registers per thread by forcing the compiler to rearrange the register-usage with the option “maxrregcount,” thereby
no register pressure on the SM with 1024 threads.

To sum up, we compile two binaries of GoDEM with 130- and 64-register pressure per thread, respectively. Following
the same simulation setups as introduced in Section 4.2.1, the performance tests on both single and many RVEs are
carried out with the three typical tests, including uniaxial compression, simple shear, and biaxial compression. For the
single-RVE test, only one block of threads is launched, and the performance is monitored with different block sizes. For the
many-RVE test, sequential blocks of threads are launched for each RVE with the same simulation, and the performance
is recorded for different RVE numbers.

4.3.2 On a single RVE

The computational performance of GoDEM is examined first for a single RVE packing, which can be quantified by the
computational speed, that is, simulation steps (iterations) per wall-clock second. We run each simulation test 10 times
with different thread numbers (1, 32, 64, 128, and 256), and each simulation runs 30,000 steps (iterations) in total. The
average computational speeds of the two versions of (130- and 64-register-per-thread) GoDEM are recorded for the three

http://wileyonlinelibrary.com

600 ZHAO et al.

(A) (B)

F I G U R E 11 Computational speed (steps per wall-clock second) of a single RVE simulation for the three tests varying with GPU thread
number using GoDEM: (A) 64 registers per thread and (B) 130 registers per thread. Error bars represent the standard deviation for 10
repetitions [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Speedup of GoDEM with respect to single-CPU-core SudoDEM on a
single RVE varying with thread number. “Uniaxial*,” “Simple*,” and “Biaxial*” are short
for uniaxial compression, simple shear, and biaxial compression tests with * registers
per thread, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

simulation tests in Figure 11. It can be seen that there is no significant difference among the average speeds of the three
simulation tests, indicating that the computational efficiency is relatively stable for different loading paths performed on
the RVE packing. Moreover, the computational speed increases with thread number increasing as expected.

The average computational speeds of GoDEM is then normalized by that of single-CPU-core SudoDEM to obtain
speedup ratios, as shown in Figure 12. The speedup is approximately 0.15 for a single GPU thread, indicating that the
performance of a single GPU thread is much lower than that of a CPU thread. However, the performance of the GPU
is promising with increasing thread-usage. For example, the performance of a single warp (32 threads) doubles with
respect to single-CPU-core performance. Increasing thread number definitely promotes the computational efficiency of a
single RVE simulating, but the incremental speedup per thread is likely to decrease with further increasing thread num-
ber, implying an increasing waste of hardware resources meanwhile. A reasonable explanation is that part of threads in
the thread-block is likely to become idle. Taking the 256-thread setting as an example, there are 400− 256= 144 parti-
cles left after the first-round loop for particlewise parallelism (e.g., particle motion integration in Algorithm 7), so that
256− 144= 112 threads are idle for the second-round loop. Furthermore, special attention is paid to the thread-block size
of 128 threads, where the register pressure has a significant effect on the performance of GoDEM. It suggests that increas-
ing GPU occupancy by decreasing register-usage may not necessarily yield a better performance, which is verified in the
following subsection.

4.3.3 On many RVEs

The performance analysis of GoDEM on simulating a single RVE ends up with the inference that the thread-block sizes
of 128 or 256 threads in conjugation with either 130- or 64-register pressure can achieve a relatively high speedup ratio
for many RVEs simulating in parallel. Hence, we increase the RVE number (up to 10,000 RVEs composed of four million
particles in total) and conduct another four groups of tests with four combinations of setting listed in Table 6, respectively.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

ZHAO et al. 601

F I G U R E 13 Speedup of
GoDEM with respect to
single-CPU-core SudoDEM
varying with RVE number for
different thread-block-wise
configurations (optimization
schemes): (A) G128T-130R, (B)
G256T-130R, (C) G128T-64R,
and (D) G256T-64R. “Uniaxial,”
“Simple,” and “Biaxial” are short
for uniaxial compression, simple
shear, and biaxial compression
tests, respectively [Colour figure
can be viewed at
wileyonlinelibrary.com]

(A) (B)

(C) (D)

Due to the limited hardware resources, the maximum concurrent block number per SM is limited by both block size and
register pressure, respectively, listed in the fourth and fifth columns of Table 6. Accordingly, the occupancy of an SM is
theoretically calculated as the ratio of the maximum active warps to the device-supported maximum warps (1024/32= 32
for the Turing architecture), referring to the last column of Table 6.

As for the performance of single-CPU-core SudoDEM, given that sequentially simulating a number of RVEs (e.g.,
10,000 RVEs) is time-consuming, the computational speed for a single RVE is taken as the baseline to evaluate the speedup
of GoDEM. It is worth noting that the performance of SudoDEM is likely to degrade to some extent due to heavier memory
cache with RVE number increasing, thereby that the speedup ratio is somewhat underestimated.

The computation of a set of RVEs is encapsulated into a so-called Kernel function that is invoked by the host CPU
but runs on GPUs. Simulations run with a single Kernel function by which all RVEs are attached automatically to thread
blocks at once. The speedups of GoDEM for the four configurations are plotted against RVE number in Figure 13 (see
the solid lines). For the configurations, G128T-130R and G256T-130R shown in Figure 13(A,B), respectively, the speedup
ratio of GoDEM increases and then reaches a plateau (up to approximately 350) with RVE number increasing, while
the speedup ratio increases first to a peak (approximately 280), then decreases to a plateau (approximately 170) for the
configurations G128T-64R and G256T-64R shown in Figure 13(C,D), respectively. Note that the plateau corresponds to the
maximum occupancy that all SMs have already reached. Thus, it is evident that increasing occupancy can either increase
or decrease performance. For example, G128T-130R has a higher occupancy and a better performance than G256T-130R;
however, G128T-64R has a higher occupancy than G128T-130R but a significant degradation in performance. Therefore,
it can be concluded that increasing occupancy does not always increase performance. Furthermore, it is of interest to see
that the peak and/or plateau of speedup first appears at an RVE number of approximately 100. A reasonable explanation
is given as follows: the GPU card, GeForce RTX 2080 Ti, is equipped with 68 SMs so that there are no resource limits for
SM occupancy at a small RVE number (e.g., 100 RVEs) because the GPU driver assigns thread-blocks/RVEs to SMs in
such a manner that the workloads on all SMs are as balanced as possible. With this fact, as can be seen in the figure, it is
not surprising that the performance for the configuration with a larger block size is better than that with a smaller block
size for RVE number smaller than 100.

Increasing occupancy by decreasing register pressure results in significant performance degradation when the maxi-
mum occupancy is reached. The deep reason may be that the register usage is simply spilled into L1 and L2 caches when
the compiler reduces the register pressure below the imposed limit, that is, 64 registers per thread, making the memory

http://wileyonlinelibrary.com

602 ZHAO et al.

F I G U R E 14 Coupling scheme of MPM and DEM,
after34 [Correction added on 05 November 2020, after
first online publication: Figure 14 was published in
black, which caused significant loss of information and
has been replaced with the colored version.] [Colour
figure can be viewed at wileyonlinelibrary.com]

cache overloaded. To verify this inference, we re-run all simulations with a sequence of Kernel functions by which each
Kernel function handles only 100 RVEs. The corresponding speedup ratios are plotted in Figure 13 (see the dashed lines)
together with that from a single Kernel function. It can be seen that the speedup ratio from multi-Kernels is almost iden-
tical with that from a single Kernel for 130-register pressure shown in Figure 13(A,B). By contrast, for 64-register pressure
shown in Figure 13(C,D), it is clear that there is a significant promotion in performance when multi-Kernels are applied.
With multi-Kernel functions, all SMs maintain a relatively low level of occupancy regardless of RVE number, which is
almost the same as that of a single Kernel function with 100 RVEs, so that the performance reaches saturation with RVE
number increasing beyond 100. Moreover, the memory cache (especially L1 cache) with multi-Kernel functions is indeed
not as busy as that with single Kernel function, thereby yielding better performance.

5 NEW PARALLEL COMPUTING POWERED HIERARCHICAL
MULTISCALE MODELING: An MPM×DEM CASE

5.1 Coupling scheme

The hierarchical multiscale coupling of MPM and DEM (MPM×DEM) has been well introduced in our previous work.34

The critical techniques are depicted here for the completeness of the presentation. As illustrated in Figure 14, the macro-
scopic engineering domain is firstly discretized by a set of material points in MPM. The mechanical response of each
material point is captured by an RVE (a DEM assembly) composed of discrete particles.

The MPM×DEM coupling cycle mainly comprises the following tasks:

(1) MPM derives the deformation of each material point in the continuum domain.
(2) The deformation information (incremental displacement gradient dH, consisting of the incremental strain Δ𝜺 and

incremental rotation Δ𝝎) at each material point is passed to its corresponding RVE to serve as mesoscopic boundary
conditions.

(3) DEM solves the motion of discrete particles inside every RVE.
(4) Cauchy stress is homogenized over the deformed RVE by Equation (24) and transferred back to its attached MPM

material point for subsequent computation.

An open-source MPM solver NairnMPM51 is employed to couple with a DEM solver, either SudoDEM or GoDEM,
yielding two coupling MPM×DEMs, that is, NairnMPM/SudoDEM, and NairnMPM/GoDEM, respectively. In the pro-
posed MPM×DEM coupling approach, DEM consumes the majority of computation time. Moreover, the computation of
each RVE is independent with each other, which facilitates a highly parallel computing scheme. Hence, the computation

http://wileyonlinelibrary.com

ZHAO et al. 603

of all RVEs are handled in parallel with SudoDEM or GoDEM running on CPU or GPU, respectively. Such a parallelism
scheme helps substantially shorten the computational time and greatly enhance the performance of MPM×DEM for
multiscale simulations.

In the following subsection, a practical engineering problem, rigid footing, is simulated by using the two coupling
MPM×DEMs, where the simulated results and computational efficiency are examined.

5.2 Simulation setup of rigid footing problem

As shown in Figure 15, two model setups are adopted for the rigid footing problem with two domains, the full domain and
the half domain, respectively. Both domains are discretized into square elements with a dimension of 0.1 m by 0.1 m. The
initial number of material points per MPM cell is set to 1. The lateral boundaries for the soil domain are constrained hor-
izontally while the bottom is fixed in both directions. A constant, uniform surcharge qs = 20 kPa is applied to the ground
surface except the resting area of the footing. The surface of the footing is rough. Gravity is neglected here. Correspond-
ing to the half and full domains, two simulation cases are denoted by Half and Full with 3,840,000 and 7,680,000 DEM
particles. The problem sizes for the two cases are summarized in Table 7.

The RVE packing is prepared with a confining stress of 20 kPa, following the same protocol with the same material
properties adopted in Section 4.2.1. The configuration of the initial RVE packing is similar to that shown in Figure 7(A)
but with an isotropic stress of 20 kPa and a void ratio (2D) of 0.180 (a medium dense packing). It is worth noting that both
RVE packings generated by SudoDEM and GoDEM, respectively, have almost the same configuration according to the
preparation protocol depicted in Section 4.2.1, which ensures almost the same initial microstructure for two computing
framework.

As for the hardware platform, the CPU-based MPM×DEM program runs on a cluster node with two Intel Xeon
E7-2670 v3 (12 physical cores each, 2.3 GHz) and 128 GB DDR4-2133 RAM, while the GPU-based MPM×DEM program
runs on an Nvidia RTX 2080 Ti GPU (11 GB GDDR6). Note that even though 44 logical cores are used in the simulation
with the CPU-based MPM×DEM program, the simulation is still time-consuming. Hence, the CPU-based MPM×DEM
only conducts the Half case simulation, while the GPU-based MPM×DEM simulates the two cases. In the simulation,
the loading velocity for the footing is set to linearly increase up to 0.1 m/s and maintain constant thereafter in order
to alleviate the stress oscillation caused by the potential dynamic effect. Note that the selected loading velocity is suf-
ficiently small to loosely maintain a quasi-static condition but adequately large to ensure a feasible computational cost
for the CPU-based MPM×DEM computation. The whole computation is terminated once the target settlement d= 0.6 m
is reached.

B=2m, h=2m

24m

8
m

qs=20kPa

B=1m, h=2m

12m

8
m

qs=20kPa

CL

(A) (B)

F I G U R E 15 Geometric setup for rigid footing problem: (A) Full domain and (B) half domain

T A B L E 7 Problem sizes for the two
simulation cases

Case Dimension (width*height) Material point # DEM particle #

Half 12*8 9600 3,840,000

Full 24*8 19,200 7,680,000

604 ZHAO et al.

5.3 Results and discussion

5.3.1 Mechanical responses

The bearing capacity for the footing is calculated by dividing the total reaction force acting on the footing by its width.
The variation of bearing capacity with the settlement of the footing is shown in Figure 16. As expected, CPU and GPU
computing show almost identical results in the half domain case: the resistant pressures quickly build up, reach their
peak ppeak ≈ 186 kPa at d= 0.12 m before a mild drop. The resistant pressure for the full domain case is slightly smaller
than the cases of half domain.

It is instructive to investigate the deformation pattern for these cases. As shown in Figures 17 and 18, which respec-
tively depict the contour of displacement u and deviatoric strain 𝜀q, all three cases preserves a general shear failure pattern.
For the Half domain cases, CPU and GPU based MPM×DEM once again offers almost identical results in terms of the
failure pattern. As can be seen from Figure 18, three shear bands emerge within the soil domain. Two straight shear bands
originate from the corner of the footing whereas the other curved one (main slip surface) arises from the intersection

0 0.1 0.2 0.3 0.4 0.5 0.6

Settlement [m]

0

50

100

150

200

250

,ec
natsiser

g
nit

o
o

F
p

]a
P

k[

Half, CPU

Half, GPU

Full, GPU

F I G U R E 16 Resistant pressure acting on the footing [Colour
figure can be viewed at wileyonlinelibrary.com]

(A) (B)

(C)

F I G U R E 17 Displacement contours for
footing problem: (A) Half domain, CPU; (B) half
domain, GPU; and (C) full domain, GPU [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

ZHAO et al. 605

(A) (B)

(C)

F I G U R E 18 Deviatoric strain contours for footing problem: (A) Half domain, CPU; (B) half domain, GPU; and (C) full domain, GPU
[Colour figure can be viewed at wileyonlinelibrary.com]

of one shear band and center line, and propagates toward the ground surface. The soil underneath the footing is mobi-
lized downward and in turn pushes its surrounding soil aside along the main slip surface 17. As for the full domain case,
it is interesting to observe that the final failure pattern is nonsymmetric. Such asymmetric pattern probably originates
from the initial anisotropy of the RVE packing (though mild) that results in asymmetric configuration with respect to the
central line at the particle scale.

5.3.2 Computational efficiency

The elapsed (wall-clock) times for the three simulations are compared in Table 8 with both software and hardware con-
figurations presented. For the half domain cases, the coupling program of NairnMPM and GoDEM takes only 16.6 min,
which is significantly faster than the coupling program of NairnMPM and SudoDEM. The latter takes 25 h and 11.7
min to complete the simulation, even though it runs on a high compute end node (from HPC clusters at HKUST) with

T A B L E 8 Computational time for running 6500 MPM steps

MPM×DEM Hardware Case Elapsed time

NairnMPM CPU 2x Intel Xeon E5-2670 v3 (2.3 GHz)a Half 25 h 11.7 min

SudoDEM Memory 128GB DDR4 RAM

NairnMPM GPU 1x Nvidia GeForce RTX 2080 Ti Half 16.6 min

GoDEM Memory 11GB GDDR6 Full 33.5 min

a24 physical cores (48 logical cores available) in total for two CPUs, but 44 logical cores are used in the simulation.

http://wileyonlinelibrary.com

606 ZHAO et al.

44 parallel threads. Notably, the proposed parallelism framework GoDEM elevates the performance of MPM×DEM cou-
pling approximately 91 times faster, suggesting that the proposed framework can be successfully and efficiently applied
to solving real engineering-scale problems. Moreover, for the two GPU simulations, the elapsed time of the full case is
almost double that of the half domain case, implying that the proposed framework has an excellent scalability without
showing appreciable degradation of computational efficiency. This feature can also be observed during the pure RVE run-
ning tests in Figure 13. Besides, it is worth noting that the simulation by the DEM solver dominates the running time (up
to 90%) in the MPM×DEM coupling scheme.

6 CONCLUDING REMARKS

We presented a novel and efficient GPU parallelism framework on discrete element modeling of representative vol-
ume elements (RVEs) of granular media, where all RVEs entirely run on a GPU without any interference from the
host CPU during the course of a simulation, that is, thread-block-wise RVE modeling. Within the framework, the
RVEs are parallelized at the thread-block level with implicit asynchronization for each other, thereby guaranteeing the
inter-RVE independence that considerably promotes the parallel efficiency. Moreover, specific parallel algorithms of
thread-block-wise RVEs are proposed to fully take the advantages of the parallel nature of the GPU, which are then imple-
mented in the object-oriented program GoDEM using CUDA C++, and further benchmarked against the simulations by
CPU code SudoDEM for different loading conditions, including uniaxial compression, simple shear, and biaxial compres-
sion tests. It is found that the single-precision GoDEM yields results well consistent with that from the double-precision
SudoDEM, suggesting a sufficient accuracy of GoDEM in single-precision for RVE modeling. In the pure RVE parallelism
test, the proposed implementation of GoDEM can achieve a saturated speedup of approximately 350 on an Nvidia GeForce
RTX 2080 Ti GPU card with respect to the single-CPU-core SudoDEM on an Intel Core I7-6700 CPU, which shows a
tremendous performance of a GPU with the proposed parallelism framework. Furthermore, a hierarchical coupling of
MPM and DEM is proposed to simulate an engineering-scale problem. It demonstrates that a speedup of approximately
91 can be achieved by using the proposed framework, compared with the CPU program running on a cluster node (two
Intel Xeon E5-2670 v3 CPUs) with 44 parallel threads. To sum up, the efficient GPU parallelism framework contributed
in this work offers a novel pathway to considerably speed up the hierarchical multiscale modeling of granular media by
coupling either FEM×DEM29 or MPM×DEM.34

The present parallelism framework opens a number of exciting future opportunities. First, GoDEM can be readily
extended to the three-dimensional without modification to the implementation; moreover, for simulations where parti-
cle shape does matter to the computational cost,52,53 such as nonspherical particle shape17 and particle crushing,54 the
presented framework can be readily adapted with only minor revisions of the CPU-based algorithms. For example, the
authors developed an open-source code, SudoDEM (https://sudodem.github.io), for DEM modeling of nonspherical par-
ticles, which can be readily implemented in this framework. GoDEM can also be extended to accelerate multiphysics
modeling, for example, modeling thermomehcanical responses of granular media.55

GoDEM is a generic thread-block-wise parallelism framework to accelerate hierarchical multiscale modeling, which
is proposed to match the physical structure of thread-block computing units, for example, GPUs and TPUs. As for the
efficiency, there are two major aspects of possible improvements on GPUs: (1) multi-GPU cards can be easily connected
together with the help of unified memory to speed up the simulations for better efficiency; (2) warp divergence needs
reducing for maximizing the utilization of warp schedulers, which is, however, nontrivial due to the conditional branches
involved in the algorithm.

ACKNOWLEDGMENTS
This work was financially supported by the Hong Kong Scholars Program (2018), the National Natural Science Foundation
of China (by Project No. 51679207, No. 51909095, and No. 11972030), Research Grants Council of Hong Kong (by GRF
Project No. 16207319, TBRS Project No. T22-603/15N, and CRF Project No. C6012-15G). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the financial bodies.

ORCID
Shiwei Zhao https://orcid.org/0000-0002-3410-3935
Jidong Zhao https://orcid.org/0000-0002-6344-638X

https://sudodem.github.io
https://orcid.org/0000-0002-3410-3935
https://orcid.org/0000-0002-3410-3935
https://orcid.org/0000-0002-6344-638X
https://orcid.org/0000-0002-6344-638X

ZHAO et al. 607

REFERENCES
1. Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Comput Geotech. 2013;47:1-15.
2. Chen Q, Andrade JE, Samaniego E. AES for multiscale localization modeling in granular media. Comput Methods Appl Mech Eng.

2011;200(33-36):2473-2482.
3. Li X, Yu H-S. Particle-scale insight into deformation noncoaxiality of granular materials. Int J Geomech. 2015;15(4):04014061.
4. Ouadfel H, Rothenburg L. Stress–force–fabric’relationship for assemblies of ellipsoids. Mech Mater. 2001;33(4):201-221.
5. Nicot F, Darve F. The H-microdirectional model: accounting for a mesoscopic scale. Mech Mater. 2011;43(12):918-929.
6. Li XS, Dafalias YF. Anisotropic critical state theory: role of fabric. J Eng Mech. 2012;138(3):263-275.
7. Fonseca J, O’Sullivan C, Coop MR, Lee P. Quantifying the evolution of soil fabric during shearing using directional parameters.

Géotechnique. 2013;63(6):487-499.
8. Herrmann HJ, Hovi J-P, Luding S. Physics of Dry Granular Media. Vol 350. Berlin, Germany: Springer Science & Business Media; 2013.
9. American Association for the Advancement of Science. So much more to know. Science. 2005;309(5731):78-102.

10. Gao Z, Zhao J, Li X-S, Dafalias YF. A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech.
2014;38(4):370-390.

11. O’Sullivan C. Particle-based discrete element modeling: geomechanics perspective. Int J Geomech. 2011;11(6):449-464.
12. Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Géotechnique. 1979;29(1):47-65.
13. Zhao S, Evans TM, Zhou X. Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int J Solids

Struct. 2018;150:268-281.
14. Zhao S, Zhao J, Guo N. Universality of internal structure characteristics in granular media under shear. Phys Rev E. 2020;101(1):012906.
15. Lai Z, Chen Q, Huang L. Fourier series-based discrete element method for computational mechanics of irregular-shaped particles. Comput

Methods Appl Mech Eng. 2020;362:112873.
16. Shi X, Nie J, Zhao J, Gao Y. A homogenization equation for the small strain stiffness of gap-graded granular materials. Comput Geotech.

2020;121:103440.
17. Zhao S, Zhao J. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int J Numer Anal

Methods Geomech. 2019;43(13):2147-2169.
18. Feng Y, Zhao T, Kato J, Zhou W. Towards stochastic discrete element modelling of spherical particles with surface roughness: a normal

interaction law. Comput Methods Appl Mech Eng. 2017;315:247-272.
19. Zhao J, Shan T. Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technol. 2013;239:248-258.
20. Galindo-Torres S. A coupled discrete element lattice Boltzmann method for the simulation of fluid–solid interaction with particles of

general shapes. Comput Methods Appl Mech Eng. 2013;265:107-119.
21. Kozicki J, Donze FV. A new open-source software developed for numerical simulations using discrete modeling methods. Comput Methods

Appl Mech Eng. 2008;197(49-50):4429-4443.
22. Berger R, Kloss C, Kohlmeyer A, Pirker S. Hybrid parallelization of the liggghts open-source dem code. Powder Technol. 2015;278:234-247.
23. Nvidia Corporation CUDA C++ Programming Guide, Version 10.1, Santa Clara, CA: NVIDIA Corporation, (2019). https://docs.nvidia.

com/.
24. Govender N, Wilke DN, Kok S, Els R. Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler

based GPUs. J Comput Appl Math. 2014;270:386-400.
25. Gan J, Zhou Z, Yu A, GPU-based A. DEM approach for modelling of particulate systems. Powder Technol. 2016;301:1172-1182.
26. Spellings M, Marson RL, Anderson JA, Glotzer SC. GPU accelerated Discrete Element Method (DEM) molecular dynamics for conservative

faceted particle simulations. J Comput Phys. 2017;334:460-467.
27. Kelly C, Olsen N, Negrut D. Billion degree of freedom granular dynamics simulation on commodity hardware via heterogeneous data-type

representation. Multibody Syst Dyn. 2020;1-25. https://doi.org/10.1007/s11044-020-09749-7.
28. Chrono Project Chrono: an open source framework for the physics-based simulation of dynamic systems; (2020). http://projectchrono.org.
29. Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng.

2014;99(11):789-818.
30. Liu Y, Sun W, Yuan Z, Fish J. A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials.

Int J Numer Methods Eng. 2016;106(2):129-160.
31. Guo N, Zhao J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput Methods

Appl Mech Eng. 2016;305:37-61.
32. Guo N, Zhao J. 3D multiscale modeling of strain localization in granular media. Comput Geotech. 2016;80:360-372.
33. Argilaga A, Desrues J, Dal Pont S, Combe G, Caillerie D. FEM×DEM multiscale modeling: model performance enhancement from Newton

strategy to element loop parallelization. Int J Numer Methods Eng. 2018;114(1):47-65.
34. Liang W, Zhao J. Multiscale modeling of large deformation in geomechanics. Int J Numer Anal Methods Geomech. 2019;43(5):1080-1114.
35. Wu H, Papazoglou A, Viggiani G, Dano C, Zhao J. Compaction bands in tuffeau de maastricht: insights from X-ray tomography and

multiscale modeling. Acta Geotech. 2020;15(1):39-55.
36. Munjiza A, Lei Z, Divic V, Peros B. Fracture and fragmentation of thin shells using the combined finite–discrete element method. Int

J Numer Methods Eng. 2013;95(6):478-498.
37. Fukuda D, Mohammadnejad M, Liu H, et al. Development of a gpgpu-parallelized hybrid finite-discrete element method for modeling

rock fracture. Int J Numer Anal Methods Geomech. 2019;43(10):1797-1824.

https://docs.nvidia.com/
https://docs.nvidia.com/
https://doi.org/10.1007/s11044-020-09749-7
http://projectchrono.org

608 ZHAO et al.

38. Feyel F. A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua.
Comput Methods Appl Mech Eng. 2003;192(28-30):3233-3244.

39. Verhoosel CV, Remmers JJ, Gutiérrez MA, De Borst R. Computational homogenization for adhesive and cohesive failure in quasi-brittle
solids. Int J Numer Methods Eng. 2010;83(8-9):1155-1179.

40. Rapaport DC, Rapaport DCR. The Art of Molecular Dynamics Simulation. Cambridge, MA: Cambridge University Press; 2004.
41. Fincham D. Leapfrog rotational algorithms. Mol Simul. 1992;8(3-5):165-178.
42. Zhao S, Zhang N, Zhou X, Zhang L. Particle shape effects on fabric of granular random packing. Powder Technol. 2017;310:175-186.
43. Thornton C. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique. 2000;50(1):43-53.
44. Yang W, Zhou Z, Pinson D, Yu A. Periodic boundary conditions for discrete element method simulation of particle flow in cylindrical

vessels. Ind Eng Chem Res. 2014;53(19):8245-8256.
45. Radjai F. Multi-periodic boundary conditions and the contact dynamics method. Comptes Rendus Mécanique. 2018;346(3):263-277.
46. Christoffersen J, Mehrabadi MM, Nemat-Nasser S. A micromechanical description of granular material behavior. J Appl Mech.

1981;48:339-344.
47. Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. J Comput Phys.

2011;230(5):1923-1938.
48. Kirk DB, Wen-Mei WH. Programming Massively Parallel Processors: A Hands-on Approach. San Francisco, CA: Morgan kaufmann; 2016.
49. Zhao S, Evans T, Zhou X. Effects of curvature-related DEM contact model on the macro-and micro-mechanical behaviours of granular

soils. Géotechnique. 2018;68(12):1085-1098.
50. Zhao S, Zhou X. Effects of particle asphericity on the macro-and micro-mechanical behaviors of granular assemblies. Granul Matter.

2017;19(2):38.
51. Nairn JA. Material point method (NairnMPM) and finite element analysis (NairnFEA) open-source software; (2011). http://osupdocs.

forestry.oregonstate.edu/index.php/NairnMPM.
52. Kawamoto R, Andò E, Viggiani G, Andrade JE. All you need is shape: predicting shear banding in sand with ls-dem. J Mech Phys Solids.

2018;111:375-392.
53. Xiao Y, Long L, Matthew Evans T, Zhou H, Liu H, Stuedlein AW. Effect of particle shape on stress-dilatancy responses of medium-dense

sands. J Geotech Geoenviron. 2019;145(2):04018105.
54. Zhu F, Zhao J. A peridynamic investigation on crushing of sand particles. Géotechnique. 2019;69(6):526-540.
55. Zhao S, Zhao J, Lai Y. Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete

coupling approach. Comput Methods Appl Mech Eng. 2020;367:113100.

How to cite this article: Zhao S, Zhao J, Liang W. A thread-block-wise computational framework for
large-scale hierarchical continuum-discrete modeling of granular media. Int J Numer Methods Eng.
2021;122:579–608. https://doi.org/10.1002/nme.6549

http://osupdocs.forestry.oregonstate.edu/index.php/NairnMPM
http://osupdocs.forestry.oregonstate.edu/index.php/NairnMPM

