
Computer Physics Communications 259 (2021) 107670

S

✩

C
s

i
H

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

SudoDEM: Unleashing the predictive power of the discrete element
method on simulation for non-spherical granular particles✩,✩✩

hiwei Zhao a,b,∗, Jidong Zhao a

a Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
b State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China

a r t i c l e i n f o

Article history:
Received 14 May 2020
Received in revised form 30 August 2020
Accepted 6 October 2020
Available online 22 October 2020

Keywords:
Discrete element
Granular
Non-spherical
Particle shape
Superellipsoid
Polyhedron
SudoDEM
Open-source

a b s t r a c t

This paper presents a novel open-source discrete element code, SudoDEM, for efficient modeling of
both 2D and 3D non-spherical particles under a GPL v3 or later license. Built upon a popular open-
source code YADE, our code inherits the core of a classic DEM framework empowered by OpenMP
acceleration, and further offers unique features of a rich library of prime particle shapes, including
poly-superellipsoids, superellipsoids, cylinders, cones, polyhedrons for 3D and disks and superellipses
for 2D. Unlimited choices of more complex particle shapes can be readily generated by clumping
these prime shapes. Efficient modeling of complex shaped particles hinges on contact detection. In
SudoDEM, we have developed three generic and efficient contact detection algorithms, the paramet-
ric common normal (PCN) algorithm, the Gilbert–Johnson–Keerthi (GJK) algorithm, and the hybrid
PCN–GJK algorithm, to handle contacts among complex-shaped particles during a typical DEM sim-
ulation. The new DEM code is validated and further showcased by multiple examples, including
granular packing, triaxial compression, and landslide, its robustness, efficiency and versatility in
providing realistic solutions to granular mechanics problems. The project is hosted at an open-source
page at https://sudodem.github.io, while the source codes are freely available at a GitHub repository
(https://github.com/SudoDEM). We foresee a great capability and potential for SudoDEM in advancing
future progress in granular physics and granular mechanics and in fostering advanced simulations of
critical engineering and industrial processes pertaining to granular media.
Program summary
Program title: SudoDEM
CPC Library link to program files: http://dx.doi.org/10.17632/brpk4g28zn.1
Developer’s repository link: http://github.com/SudoDEM/SudoDEM, http://sudodem.github.io
Licensing provisions: GNU General Public License 3
Programming language: C++, Python
Nature of problem: Grain shape underpins important aspects of the physical and mechanical behaviors of
granular media. The inability of realistic and robust modeling of particle shape has been a major obstacle
for discrete-based numerical methods in solving practical problems of granular materials.
Solution method: SudoDEM implements three generic algorithms of contact detection among non-spherical
particles in Discrete Element Method, which provides a rich library of particle shapes available for DEM
modeling of granular media.

© 2020 Elsevier B.V. All rights reserved.
✩ The review of this paper was arranged by Prof. D.P. Landau.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
ciencedirect.com/science/journal/00104655).
∗ Corresponding author at: Department of Civil and Environmental Engineer-

ng, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon,
ong Kong.

E-mail addresses: ceswzhao@ust.hk, swzhao@scut.edu.cn (S. Zhao).
ttps://doi.org/10.1016/j.cpc.2020.107670
010-4655/© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Granular media are second most processed materials on the
earth (next to water). Understanding their physical and me-
chanical behavior is critical for many engineering and industrial
sectors, such as grain storage in the agricultural industry, powder
processing in chemical engineering, tablet medicine manufactur-
ing, packing and transport in pharmaceutical industry, mineral
extraction and handling in mining engineering, and earthworks
in civil and geotechnical engineering. Micromechanics-based ap-
proaches, represented by the discrete element method (DEM) [1],

https://doi.org/10.1016/j.cpc.2020.107670
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107670&domain=pdf
https://sudodem.github.io
https://github.com/SudoDEM
http://dx.doi.org/10.17632/brpk4g28zn.1
http://github.com/SudoDEM/SudoDEM
http://sudodem.github.io
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:ceswzhao@ust.hk
mailto:swzhao@scut.edu.cn
https://doi.org/10.1016/j.cpc.2020.107670

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

r
l
s
d
n
[

t
p
i
l
a
a
b
t
c
o
s
r
t
g
c
r
c
c
b
p
t
n
i
s
i
v
h
h
a
g
s
g
c
e
e
d
u
e
s
a
r
a
a

s
c
e
t
o
c
e
S
w
D
b
g
o
n
d
p

w
i

2

i
b
i
t
m
c
c
o
c
c
a
a
a
a
a
r
i

2

t

F

espect the discontinuous nature of granular media at particle
evel and derive their collective responses based on particle-
cale physics and mechanics. They have prevailed for over three
ecades in providing effective and efficient solutions to engi-
eering and industrial problems pertaining to granular materials
2–4].

Collective behavior of a granular assembly originates from
he microstructural characteristics at grain scales. Among many,
article morphology (especially particle shape) is one of the most
mportant features that dictates various key facets of granu-
ar responses, including deformation, strength, failure and flow,
s highlighted by numerous experimental observations, e.g., [5]
nd [6] in geomechanics, and [7] in other disciplines. DEM has
een conventionally and predominantly based on spherical par-
icles (3D) or circular disks (2D), due primarily to the physical
onvenience and computational efficiency it may offer. Sphere
r circular disk based DEM has largely employed two general
trategies to further consider the effect of particle shape. One
esorts to the use of spheres with artificially applied rolling resis-
ance models (e.g., [8]), and the other is the so-called clumped (or
lued) sphere technique (e.g., [9]). The rolling resistance approach
an help, to certain extent, to capture the resistance of particle
otation due to irregularity in shape. It is in all essence a mi-
romechanically phenomenological remedy that more likely may
ause unrealistic fabric and fail in the analysis of micro–macro
ridging. The clumped sphere approach is in line with the discrete
article concept of DEM itself, but bears two major drawbacks
hat are hard to overcome, namely, unwanted surface rough-
ess (or unrealistic multi-contacts) [10] and a dramatic decrease
n computational efficiency with increasing number of clumped
pheres [11]. Indeed, the past decade has witnessed an increas-
ng interest in directly modeling non-spherical particles with
arious shapes that are mathematically feasible to express and
andle, including ellipsoid [12,13], super-ellipsoid [14,15], poly-
edron [16,17], non-uniform rational basis spline (NURBS) [18],
mong many others. Accordingly, different contact detection al-
orithms have been developed to accommodate these different
hapes in DEM simulations. For example, a variety of methodolo-
ies and algorithms have been developed for contact detection of
onvex polyhedrons (Nezami et al. [19], Boon et al. [16], Wachs
t al. [20], Eliáš [21], Zheng et al. [22]). More recently, Kawamoto
t al. [23] employed the level set method to handle contact
etection among realistic particles in a brute-force manner by
sing lookup tables. Zhao and Zhao [24] proposed a novel and
fficient poly-superellipsoid-based approach for modeling non-
pherical particles based on hybrid Levenberg–Marquardt (LM)
nd Gilbert–Johnson–Keerthi (GJK) algorithms, by which a wide
ange of shape features (including elongation, flatness, angularity,
nd asymmetry) for real particles in nature can be well captured
nd efficiently modeled in DEM.
Practical implementation of contact detection for non-

pherical particles in DEM is significantly complicated than its
ounterpart for the sphere case, especially when the end users
xpect an uncompromised computational efficiency. Although
here have been published algorithms, there are rather scarce
pen-source DEM codes ever developed for non-spherical parti-
les. In answering the surging needs from the large scientific and
ngineering community, we present an open-source DEM code,
udoDEM, for large-scale simulation of granular media problems
ith non-spherical particles. SudoDEM is derived from a basic
EM framework of another open-source DEM code, YADE [25,26],
y retaining some fundamental features such as hybrid pro-
ramming of Python and C++, OpenMP acceleration and running
n a Unix-like operating system. The inheritance also enables
ew users and experienced YADE users to access the abundant
ocuments and supports from the YADE community in the first
lace. Based on the essential components, we further develop
2

Fig. 1. Computation flowchart of a single iteration of DEM.

unique and useful features into it with a rich library of prime
non-spherical particles that are either analytically expressible or
amiable for implementation of contact detection and computa-
tionally manageable, and can be further enriched to algebraically
form more complicated grain shapes to suit various special needs
in practical modeling of granular media. This paper aims to
present a concise introduction to SudoDEM on its essential frame-
work, workflow and algorithmic features, while skipping details
on numerical implementation to avoid unnecessary distractions.
For interested readers, we provide a quick guide accompany-
ing the source codes for more details. Note that all materials
mentioned in this paper are available online at our open-source
project page (https://sudodem.github.io).

2. Essential ingredients of SudoDEM

SudoDEM inherits the core framework of YADE that has been
ell documented in [26]. This section only presents the critical

ngredients required for the completeness of the presentation.

.1. Computation flowchart

Fig. 1 shows the computation flowchart of DEM for a single
teration. The DEM computation is associated with two solid
odies, i.e., particle and contact, referring to the dashed rectangles
n Fig. 1. In a particulate system, the particle position varies with
he generation or vanishing of contact, implying a one-to-one
apping between the topology of particle arrangement and the
ontact distribution. Specifically, given the particle positions, the
orresponding information of contact geometry (state) can be
btained by performing a procedure of contact detection. The
ontact force at each contact is then computed with a given
ontact model that offers a relationship between contact force
nd displacement. The resultant force (or torque), by summing up
ll contact forces and other body forces (e.g., gravitational forces)
cting on a given particle, drives the change of the particle state
ccording to a law of motion (i.e., the Newton second law). When
ll states of the particle under consideration are updated, it is
eady to proceed for another DEM iteration. The above flowchart
s applicable for all particles in an assembly of granular body.

.2. The motion of particle

The motion of a particle in a granular assembly is governed by
he following Newton–Euler equations:

(b)
i + f (d)i +

N∑
c=1

F (c)
i = m

dvi

dt
(1a)

T (d)
i +

N∑
M (c)

i = Ii
dωi

dt
− (Ij − Ik)ωjωk (1b)
c=1

https://sudodem.github.io

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

e

w
ω

a
i
s
a
r

a

w
r
f

t
G
p

t
c
a
I
r
t
o
i

a
s
T
t
a
r

∆

w
r
o
c
r
r
t
m
r
w
m
a
D
n
s

2

s

Fig. 2. Three-dimensional illustration of two touching particles with an
xaggerated overlap [15].

here i, j, k are sequential indices; m is the particle mass; vi and
i are the translational and angular velocities, respectively; N is

the number of contacts; F (c)
i is the contact force at contact c;

F (b)
i is the body force; Ii is the principal moment of inertia; M (c)

i
is the torque around the mass center at contact c; f (d)i and T (d)

i
re damping force and torque, respectively, which are artificially
ntroduced to facilitate the dissipation of kinetic energy in the
ystem. Two commonly-used damping schemes, local damping
nd viscous damping, applied to the particle body and the contact,
espectively, are given by the following equations,

= −αdaSign(v, a) (2a)

f = 2v̄βd
√
m̄k (2b)

here a and v are the acceleration and the velocity of the particle,
espectively; Sign is the signum function; f and k are the viscous
orce and the contact stiffness at the contact, respectively; m̄
is the equivalent mass of the two contacting particles, often
given by mAmB/(mA + mB) (mA and mB are the masses of the
two particles, respectively); v̄ is the relative velocity of the two
particles at the contact; αd and βd are the coefficients of local
damping and viscous damping, respectively. Note that the viscous
force f is often calculated by the two orthogonal components,
normal and tangential parts, in line with the calculation of the
contact force (see Contact Model in Section 2.3); the tangential
force is no longer damped once the contact slides (i.e., reaching
the maximum friction) for cohesionless granular materials. It is
worth noting that the Verlet scheme is adopted as the default
time integrator in the simulations presented in the demos, but
other elegant and complicated time integrators are available from
YADE.

2.3. Contact model

Fig. 2 presents a snapshot of two contacting particles. For
the sake of convenience, the contact force is generally split into
two orthogonal components, the normal contact force F n and
the tangential contact force F t , which are calculated using a
force–displacement law [1] given as

F n = Knd (3a)

F t = F ′

t − kt∆u (3b)

where Kn and kt are contact normal-secant and shear-tangent
stiffnesses, respectively; d is contact penetration depth; ∆u is
the incremental tangential displacement during the current time
step, and F ′

t is the tangential contact force at the previous time

step which has been rotated to the current frame. Note that Kn u

3

and kt depend on the material properties, contact deformation,
and loading history, which may collectively yield complicated
contact constitutive behaviors that can be described by a non-
linear contact model, for example, the well-known Hertz–Mindlin
model as follows

Kn =
4π
3α

√
E

K3(A + B)
G∗

∥d∥
1
2 (4a)

kt = πb

((
µ1K − µ2

K − E
e2

)−1

+

(
µ1K + µ2

(1 − e2)K − E
e2

)−1
)

(4b)

where α, b and e are the geometrical parameters associated
with the contact profile between the two contacting particles;
A and B are the relative curvatures that can be calculated from
the principal curvatures of the two particle surfaces and the
contact profile; K and E are the complete elliptic integrals of
he first kind and the second kind of argument e, respectively;
∗ is the equivalent contact shear modulus determined by the
article shear modulus and Poisson’s ratio; µ1 and µ2 are the

parameters introduced in terms of the particle shear modulus
and Poisson’s ratio. More details on the Hertz–Mindlin model for
non-spherical particles are outlined in the literature [27]. For the
sake of computational efficiency, however, a linear-spring model
(i.e., constant Kn and kt) is frequently used in practical simula-
ions. Zhao et al. [27] reported that using a linear-spring model
an yield rather similar microscopic and macroscopic responses
s using the Hertz–Mindlin model for quasi-static simulations.
n addition to the normal and shear contact force–displacement
elationships, the Coulomb friction model is applied to each con-
act, i.e., ∥F t∥ = min{∥F t∥, µ∥F n∥} where µ is the coefficient
f friction. For more details about these ingredients of DEM,
nterested readers are referred to the literature [2].

Rolling resistance models are commonly introduced to provide
n additional anti-rotational torque to resist particle rotation for
pherical particles as a make up for their shape simplicity [8,28].
he anti-rotational torques Mr in the rolling direction and Mt in
he twisting direction are considered for three-dimensional cases,
s shown in Fig. 3(a). Referring to Fig. 3(b), a typical elasto-plastic
olling resistance model may be defined as [29]

Mr = 0.25β2knr1r2∆θr , Mr ≤ 0.25ξβfnr (5a)

∆Mt = 0.5β2kt r1r2∆θt , Mt ≤ 0.65βµfnr (5b)

here kn and kt are the normal and tangential contact stiffness,
espectively; r1 and r2 are radii (equivalent radii for non-spheres)
f the two contacting particles, respectively; ∆θr and ∆θt are in-
remental rotational angles in the rolling and twisting directions,
espectively; fn is the normal contact force; r is the (equivalent)
adius of the smaller one of the two contacting particles; µ is
he inter-particle coefficient of friction, and β and ξ are the
odel parameters, where β can be regarded as a shape parameter

elated to contact radius contributing to anti-rotational stiffness,
hile ξ describes the effects of local asperity crushing deter-
ining the maximum resistance that the contact can provide
nd related to the hardness of particle material [8]. In Sudo-
EM, the rolling resistance model can be installed at contact for
on-spherical particles, by which smaller-scale details of particle
hape (e.g., roughness) might be captured quantitatively.

.4. Contact detection

Contact detection, also known as collision detection in graphic
imulations, takes a dominant portion of running time in a sim-

lation, e.g., up to 97% for non-spherical particles [24]. Following

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

t
a
i
t
b
t
r
a

3

3

f
2
Y
D
V
p
i
i
c
o
s
f
e
f
P
C
m
f
f
a
s
p

i

r

Fig. 3. Schematic of the rolling resistance model [29].

he conventional implementation, a combination of approximate
nd exact detection phases (also called broad and narrow phases)
s adopted to reduce the computational pressure of contact detec-
ion at each time step. At the broad phase, the AABB (axis-aligned
ounding box) algorithm [30] is employed to rule out most of
he particles that are not touching one another. As for the nar-
ow phase, SudoDEM provides three generic contact detection
lgorithms, as depicted in Sections 4, 5, and 6, respectively.

. Major features of SudoDEM

.1. Two- and three-dimensional packages

SudoDEM includes two packages SudoDEM2D and SudoDEM3D

or two- and three-dimensional simulations, respectively [15,24,
7,29,31,32]. SudoDEM3D inherits similar data structures from
ADE, while the third-dimension data has been removed in Sudo-
EM2D. For example, in SudoDEM2D the three-dimensional vector
ector3r is replaced by a two-dimensional one Vector2r, and the
article orientation and rotation are represented by Rotation2D
nstead of quaternions. In so doing, not only a better performance
n computational efficiency but also computer-memory saving
an be achieved, compared with the general implementation that
ne may fix the third-dimensional degree of freedom in 3D to
imulate 2D cases. In addition, user-friendly GUIs are provided
or both packages, as shown in Fig. 4, which helps the model-
rs to have a quick simulation setting and visualization in the
irst place. Benefited from the hybrid programming of C++ and
ython, where the computationally heavy kernel is written in
++ for efficiency in computation while the frontend exposed to
odelers is the wrapped C++ functions in Python, it is efficient

or the modelers to set up a simulation. Listing 1 demonstrates a
eatured snippet in Python for a quick setup of a simulation with
ll ingredients of a general DEM simulation included, where we
imulate a sphere falling freely towards the ground under gravity

ull.

4

1 from sudodem import utils # module utils has
some auxiliary functions

2 # define and append a material into the
simulation

3 mat = RolFrictMat(Kn=1e8,Ks=7e7,frictionAngle
=0,density=2650)

4 O.materials.append(mat)
5 # add a sphere and an infinite plane (the

ground) into the simulation
6 O.bodies.append(sphere((0,0,10.0),1.0,

material = mat))
7 O.bodies.append(utils.wall(0,axis=2,sense=1,

material = mat))
8 # define the engines that will be executed at

each time step
9 O.engines=[

10 ForceResetter(), # reset the force container
11 # broad phase of contact detection by AABBs.
12 InsertionSortCollider([Bo1_Sphere_Aabb(),

Bo1_Wall_Aabb()]),
13 # narrow phase of contact detection
14 InteractionLoop(# loop all potentially

contacting pairs of particles
15 [Ig2_Wall_Sphere_ScGeom()], # contact

geometric info
16 [Ip2_RolFrictMat_RolFrictMat_RolFrictPhys()],

contact physical info
17 [RollingResistanceLaw(use_rolling_resistance=

False)] # contact force
18),
19 # Integration of particle motion
20 NewtonIntegrator(damping = 0.1,gravity

=(0.,0.0,-9.8))
21]
22 O.dt = 1e-5 # set a time step
23 O.run() # run the simulation

Listing 1: A Python snippet of modeling a sphere falling freely
towards the ground under gravity.

3.2. Particle shape

SudoDEM provides a rich library of prime particle shapes,
including superellipsoid, poly-superellipsoid, cylinder, cone, poly-
hedron for 3D, and disk, superellipse for 2D. A superellipsoid can
be defined by the following surface equation(⏐⏐ x

rx

⏐⏐ 2
ϵ1 +

⏐⏐ y
ry

⏐⏐ 2
ϵ1

) ϵ1
ϵ2

+
⏐⏐ z
rz

⏐⏐ 2
ϵ2 = 1 (6)

where rx, ry and rz are referred to as the semi-major axis lengths
n the direction of x, y, and z axes, respectively; and ϵi(i = 1, 2)
control the surface squareness. With the capability of represent-
ing a broad range of particle shapes as shown in Fig. 5, superellip-
soids have been employed popularly in graphic simulations and
robotic science.

Based on superellipsoids, we further propose a novel and
versatile shape, coined as poly-superellipsoid, which can capture
more shape features including elongation, flatness, angularity,
and asymmetry. A poly-superellipsoid is an assemblage of eight
pieces of superellipsoids for the eight octants, mathematically
controlled by the following surface function [24,33](⏐⏐ x

rx

⏐⏐ 2
ϵ1 +

⏐⏐ y
ry

⏐⏐ 2
ϵ1

) ϵ1
ϵ2

+
⏐⏐ z
rz

⏐⏐ 2
ϵ2 = 1 (7)

with

rx = r+

x if x ≥ 0 else r−

x (8a)

y = r+

y if y ≥ 0 else r−

y (8b)

r = r+ if z ≥ 0 else r− (8c)
z z z

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

0
1

w
t
t
s
s
s

r

r

r

w
e

t

Fig. 4. GUIs for SudoDEM3D (left) and SudoDEM2D (right).
o
A
d
t
b⏐⏐

a

Fig. 5. Superellipsoids with rx = 1.0, ry = 1.5, rz = 2.0 and varying ϵ1, ϵ2 [24].

Fig. 6. Poly-superellipsoids with r+
x = 1.0, r−

x = 0.5, r+
y = 0.8, r−

y = 0.9, r+
z =

.4, r−
z = 0.6 and (a) ϵ1 = 0.4, ϵ2 = 1.5, (b) ϵ1 = ϵ2 = 1.0, (c) ϵ1 = ϵ2 =

.5 [33].

here r+
x , r+

y , r+
z and r−

x , r−
y , r−

z are the principal elongation along
he positive and negative directions of x, y and z axes, respec-
ively; ϵ1 and ϵ2 control the squareness or blockiness of particle
urface, and their possible values are within (0, 2) for convex
hapes as exemplified in Fig. 6. To quantify particle shape, two
hape descriptors are introduced such that
+

x = lxex, r−

x = lx(1 − ex) (9a)
+

y = lyey, r−

y = ly(1 − ey) (9b)
+

z = lzez, r−

z = lz(1 − ez) (9c)

here lx, ly and lz are principal lengths; ex, ey and ez are principal
ccentricities.
With respect to cylinder, cone and polyhedron, their defini-
ions are not presented here for brevity. Fig. 7 shows a series

5

f granular packings with built-in particle shapes in SudoDEM3D.
s for the two-dimensional particle shapes, the corresponding
efinitions can be readily obtained by degenerating from the
hree-dimensional cases. For example, a superellipse can be given
y
x
rx

⏐⏐ 2ϵ +
⏐⏐ y
ry

⏐⏐ 2ϵ = 1 (10)

where rx and ry are referred to as the semi-major axis lengths
in the direction of x and y axes, respectively; ϵ is for the surface
squareness. Furthermore, with a variation of the semi-major axis
lengths rx and ry given by

rx = r+

x if x ≥ 0 else r−

x (11a)

ry = r+

y if y ≥ 0 else r−

y (11b)

poly-superellipse can be defined, where r+
x , r+

y and r−
x , r−

y are
the principal elongation along the positive and negative direc-
tions of x and y axes, respectively.

3.3. Flexible membranes

A flexible membrane can be constructed by deformable trian-
gular facets, i.e., constant strain triangles in the finite element
method (FEM). The deformation of a facet is computed by the
nodal motion, where each node has a lumped mass and equally-
distributed contact forces from its associated facets. The contact
between an FE facet and a particle is a degenerate case for the
general inter-particle contact that is depicted in Sections 4–6.
Fig. 8 demonstrates the deformation of a flexible member im-
pacted by a granular column of poly-superellipsoidal particles
falling freely under gravity.

3.4. Visualization tools

In addition to the integrated view in the GUI powered by
OpenGL, SudoDEM also provides modules to export the simula-
tion scene into vtk and pov files that can be rendered by using the
third-party software such as Paraview and POV-Ray. For example,
two auxiliary POV-Ray macros are defined as listed in Listing 2
for the visualization of poly-superellipsoids with POV-Ray. Fig. 9
shows an example of high-quality simulation visualization by
using POV-Ray with the export interface of SudoDEM.

3.5. Contact detection algorithms

Two generic and efficient contact-detection algorithms, the
parametric common normal (PCN) algorithm and the Gilbert–
Johnson–Keerthi (GJK) algorithm, are employed in SudoDEM. The

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

t

Fig. 7. Packings with different particle shapes: (a) polyhedrons; (b) mixture of polyhedrons and spheres; (c) super-ellipsoids; (d) mixture of polyhedrons, cones,

cylinders and spheres; (e) poly-superellipsoids.
Fig. 8. A granular column of poly-superellipsoidal particles falling freely towards a flexible membrane: the initial state (left) and the final state with different views
(right).
Fig. 9. Visualization of simulation: a quick real-time view integrated in the GUI (left) and a post-processing high-quality view with the export interface to third-party
ools (right).
detailed implementation of PCN and GJK algorithms is referred to
the literature, e.g., [15,24]. For the current released version, the
built-in prime shapes such as superellipsoid, poly-superellipsoid,
and superellipse are handled with PCN, while GJK handles
the other shapes including polyhedron, cylinder, and cone. In
6

addition, a hybrid algorithm between PCN and GJK is proposed as
a complementary one, which has been implemented for
poly-superellipsoid in our recent work [24]. We note here that
SudoDEM provides a generic interface to extend the application
of PCN and GJK to other possible customized particle shapes.

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

w
c
s
t

f

p

w
c
a

o

n

w

m

p

n
n

d

4

i
m

m

w
a
a
f
s

1 //
2 #macro octantSuper(ep1,ep2,rx,ry,rz,s1,s2,s3)
3 superellipsoid{ <ep1,ep2>
4 clipped_by{plane{-s1*x,0}}
5 clipped_by{plane{-s2*y,0}}
6 clipped_by{plane{-s3*z,0}}
7 scale <rx,ry,rz>}
8 #end
9 #macro polySuperEllipsoid(ep1,ep2,a1,a2,b1,b2,

c1,c2,t1,t2,t3,r1,r2,r3)
10 union{
11 octantSuper(ep1,ep2,a2,b2,c2,-1,-1,-1)
12 octantSuper(ep1,ep2,a1,b2,c2,1,-1,-1)
13 octantSuper(ep1,ep2,a2,b1,c2,-1,1,-1)
14 octantSuper(ep1,ep2,a1,b1,c2,1,1,-1)
15 octantSuper(ep1,ep2,a2,b2,c1,-1,-1,1)
16 octantSuper(ep1,ep2,a1,b2,c1,1,-1,1)
17 octantSuper(ep1,ep2,a2,b1,c1,-1,1,1)
18 octantSuper(ep1,ep2,a1,b1,c1,1,1,1)
19 rotate<r1,r2,r3>
20 translate <t1,t2,t3>}
21 #end

Listing 2: Two auxiliary macros for the visualization of
poly-superellipsoid in POV-Ray.

4. Parametric common normal algorithm

4.1. Parametric surface and outward normal

For an arbitrary smooth convex closed surface S, the local
coordinate x (fixed in S) of a given surface point p can be defined
as a function of the outward normal n of S:

x = S(n) (12)

The outward normal n can be parameterized by two angles in a
local spherical coordinate system, i.e.,

n(α, β) = cosαcosβi + sinαcosβj + sinβk (13)

here i, j , and k are unit base vectors of the global Cartesian
oordinate system. Note that the axes of the local coordinate
ystem coincide with that of the global one except a shift between
he two corresponding origins.

In consideration of particle position and orientation, the sur-
ace point p is given by

(α, β) = T−1S(Tn(α, β)) + r (14)

here T is the rotation matrix of a particle from the global
oordinate system to the local with respect to the particle center,
nd T−1 is its inverse matrix, i.e., the inverse transformation; r is

the center location of particle mass, i.e., the particle position.

4.2. Candidate penetration and common normal

Given two candidate contact points pA and pB (see Fig. 10,
where the superscripts A and B stand for the two adjacent parti-
cles A and B hereafter), the candidate penetration d of a potential
contact is defined by d = (pB

− pA). By introducing the common-
normal concept [14,34], as shown in Fig. 10, the outward normal
nA at point pA shares a common normal with the contact normal
c , while the outward normal nB at point pB has an anti-direction
f c , i.e.,
A

= −nB
= c (15)

Considering Eqs. (14) and (15), the contact points pA and pB

are functions of the candidate contact normal c , given by

pA
= T−1

A SA(T Ac(α, β)) + rA (16a)
B −1 B B
p = T B S (−T Bc(α, β)) + r (16b)

7

where the symbols are mentioned in Eq. (14). Therefore, the
candidate penetration d is a function of the parametric angles
α, β , i.e.,

d = T−1
B SB(−T Bc(m)) + rB − T−1

A SA(T Ac(m)) − rA (17)

ith

= [α, β]
T (18)

In addition to the constraints given in Eq. (14), the candidate
enetration d is subject to such a constraint that d is anti-parallel

to the contact normal c . However, to consider both touching and
on-touching cases, as shown in Fig. 10, a weaker constraint
eeds to be applied, i.e.,

× c = 0 (19)

.3. Iterative PCN

The penetration depth d can be obtained by solving the follow-
ng unconstrained optimization problem with a parameter vector
, i.e.,

in
m

|d|= min
α,β

∥pB
− pA

∥ (20)

here iterative algorithms such as the Nelder–Mead simplex
lgorithm [35] and the Levenberg–Marquardt algorithm [36] are
pplicable to the optimization problem. Note that Eq. (19) is
ulfilled when Eq. (20) reaches a global minimum [14]. With
olutions of the optimized parameter m, other contact quantities
such as contact point p inside the inter-particle overlap can be
readily solved. In the above contact detection algorithm, it is
most important to obtain a parametric normal-surface relation
in Eq. (12) that establishes an explicit function between the
candidate contact penetration d and the searching parameter m.
Thus, we coined a name of this algorithm as parametric common
normal (PCN) algorithm, which is applicable to contact detec-
tion for any particle shape with a normal-surface relation. We
present the pseudo-codes of the contact detection algorithm in
Algorithm 1.

At each iteration, as listed at Line 3 in Algorithm 1, it is useful
to check the following condition

d · c > 0 (21)

If this condition is true, then the two particles are not touch-
ing each other, referring to Fig. 10(b) so that the routine can
be terminated. Meanwhile, a boolean flag touching is returned,
which can be further used in other parts of DEM computation.
With such a lightweight check, a large number of particle pairs
can be efficiently ruled out. Besides, the PCN routine will be
terminated at other proper conditions. For example, if either the
angle between d and c (see Line 5 in Algorithm 1) or the change
in m (see Line 15 in Algorithm 1) is sufficiently small, then we
can terminate the optimization routine accordingly. Interested
readers are referred to the source codes for more details.

4.4. Applied to superellipsoids and poly-superellipsoids

Taking superellipsoid as an example, the parametric function
of a superellipsoid is given as

x(θ, φ) =

[Sign(cos θ)rx|cos θ |
ϵ1 |cosφ|

ϵ2

Sign(sin θ)ry|sin θ |
ϵ1 |cosφ|

ϵ2

Sign(sinφ)rz |sinφ|
ϵ2

]
(22)

with θ ∈ [0, 2π), φ ∈ [−
π
2 , π

2] where rx, ry, and rz are semi-length
along the principal directions at the body-fixed coordinate sys-
tem; ϵi is in (0, 2). The term Sign(x) is the signum function. Given
a normal vector (n , n , n) on the surface, the corresponding
x y z

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670
Fig. 10. Candidate penetrations and common normals for two (a) touching and (b) non-touching particles.
φ

Algorithm 1: Parametric common normal algorithm.

Input: Particle positions rA and rB, surface functions SA and
SB, rotation matrices T A and T B; cached parameters
α0 and β0.

Output: Parameter m; flag touching; penetration depth d;
contact point pc .

1 m = [α0, β0]
T ;

d := T−1
B SB(−T Bc(m)) + rB − T−1

A SA(T Ac(m)) − rA;
2 for (k := 0; k < maxIteration and not stop; ++k) do
3 if d · c > 0 then
4 stop := true; touching := false; break; //particles do

not touch each other.
5 if |d · c|/∥d∥|> threshold then
6 stop := true; break; //the angle between d and c is

sufficiently small.
7 Compute the Jacobian matrix J of d with respect to m;
8 H := J T J ; G := −J Td;
9 if (∥G∥∞ ≤ ϵ1) then

10 stop := true; break;
11 if k==0 then
12 compute initial damping factor µ := τ max([G]ii);
13 while true do
14 Solve (H + µI)δm + G = 0;
15 if

m has a small change δm = [∆α, ∆β]
T , e.g., ∥δm∥ <

10−3 then
16 stop := true; break;
17 c := c(m + δm);

d
′

:= T−1
B SB(−T Bc) + rB − T−1

A SA(T Ac) − rA;
18 λ := (∥d∥ − ∥d

′

∥)/(δTm(µδm + G));
19 if λ > 0 then
20 λ := 1 − (2λ − 1)3; µ := µmax(λ, 1

3); ν := 2;
m := m + δm d := d

′

; break;
21 µ := µν; ν := 2ν;

22 d := −d · c;
pc :=

1
2 (T

−1
B SB(−T Bc(m)) + rB + T−1

A SA(T Ac(m)) + rA);
p

8

local spherical coordinate (θ, φ) is obtained through the following
function

θ = atan2(Sign(ny)|ryny|
1

2−ϵ1 , Sign(nx)|rxnx|
1

2−ϵ1) (23a)

= atan2(Sign(nz)|rznz |cos(θ)|2−ϵ2 |
1

2−ϵ2 , |rxnx|
1

2−ϵ2) (23b)

where the term atan2(x, y)1 is the arctangent function of x
y pro-

ducing results in the range (−π, π].
Consequently, the normal-surface relation can be established

by combining Eqs. (22) and (23), i.e., n → (θ, φ) → x. Some
important geometric properties (e.g., volume, the moment of
inertia, and curvature) of a superellipsoid are not presented here
for brevity, but we refer the reader to the literature [15,27]. Fig. 11
demonstrates three packing states of superellipsoidal particles
falling freely into a box using SudoDEM.

As for poly-superellipsoids [24], the principal elongation along
the positive and negative directions of x, y and z axes r+

x , r+
y , r+

z
and r−

x , r−
y , r−

z are properly selected to substitute rx, ry and rz in
Eqs. (22) and (23) according to the following relations

rx = r+

x if nx ≥ 0 else r−

x (24a)

ry = r+

y if ny ≥ 0 else r−

y (24b)

rz = r+

z if nz ≥ 0 else r−

z (24c)

Clearly, the normal-surface relation for a poly-superellipsoid is
readily established with Eq. (24) based on that for a superel-
lipsoid, which implies that the contact detection among poly-
superellipsoids holds almost the same computational efficiency
as that among superellipsoids, but poly-superellipsoids provide a
broader range of particle shapes.

5. The Gilbert–Johnson–Keerthi algorithm

The Gilbert–Johnson–Keerthi (GJK) algorithm [37] is an ef-
ficient algorithm for contact detection of convex bodies, espe-
cially convex polyhedrons, which has been popularly applied in
computer games and graphic simulations [38], e.g., open-source
physics engines such as Bullet (https://pybullet.org/) and Chrono
(https://projectchrono.org/). As a sophisticated extension, we in-
troduce the GJK algorithm with some variants into granular mod-
eling with DEM. Since the underlying mathematics of GJK is
complicated in detail, only the concept and its implementation
are briefly depicted in this section.

1 It is the four-quadrant arctangent function as implemented in many
rogramming languages (see https://en.wikipedia.org/wiki/Atan2).

https://pybullet.org/
https://projectchrono.org/
https://en.wikipedia.org/wiki/Atan2

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

5

s

C

w

D

N
f
M
o
t
i

Fig. 11. Configurations of superellipsoids during packing under gravity.
Fig. 12. (a) A cube A and a sphere B and (b) their Minkowski sum C (a rounded cube).
d
w
o
m
i
s
m
n

c

S

.1. Minkowski sum and difference

Given two point sets A and B in dimension Rn, the Minkowski
um C of A and B is given by

= A ⊕ B = {a + b|a ∈ A, b ∈ B} (25)

hilst the Minkowski difference D of A and B is defined as

= A ⊖ B = {a − b|a ∈ A, b ∈ B} (26)

ote that Minkowski sum is commutative while Minkowski dif-
erence is not, i.e., A ⊕ B = B ⊕ A and A ⊖ B ̸= B ⊖ A. The
inkowski difference D can be regarded as the Minkowski sum
f A and the mirror of B, i.e., A⊖B = A⊕(−B) where ‘−’ denotes
he mirror of B with respect to the origin. Intuitively, as shown
n Fig. 12(a), given a cube A at the first octant of the coordinate
system and a sphere B centered at the origin, the Minkowski
sum C of A and B can be obtained by sweeping the sphere on
the surface of the cube, yielding a rounded cube as shown in
Fig. 12(b).

The Minkowski difference of two arbitrary convex bodies
holds an exciting property, which offers a quick check whether
the two bodies (convex sets) are touching with each other (with
overlap) or not. This property says [38], if the two bodies A and
B share an overlap, then their Minkowski difference D encloses
the origin, vice versa, as shown in Fig. 13(a); if there is no
overlap between the two bodies A and B, then the Minkowski
difference D does not enclose the origin and vice versa, as shown
in Fig. 13(b). The GJK algorithm provides an efficient approach
9

for checking whether the Minkowski difference D is enclosing the
origin or not regardless of body shapes of A and B.

5.2. Support point and support function

Given an arbitrary direction v, a support point p is defined
as the furthest point within a particle (a convex set) along v,
i.e., S(v) = sup{v · p|p ∈ Γ } where Γ is the particle surface.
Such a relation is denoted as a support function Ŝ(v). For a
smooth surface, e.g., a poly-superellipsoid, as shown in Fig. 14,
the support function is a one-to-one function between the surface
point p and the surface outward normal n, i.e., p = S(n). In
contrast, for a non-smooth surface, e.g., a polyhedron, there might
be several potential support points at a facet or edge for a given
direction v or only single support point at a vertex for several
irections. Special attention should be paid to the first case,
hich occurs when the direction v is perpendicular to a facet
r edge of the polyhedron. In general, the facet center or edge
iddle is taken as the support point for the sake of numerical

mplementation. It is worth noting that there might be a non-
mooth shift of force point for some special cases, but both the
agnitude and direction of the force can be smooth, which will
ot cause numerical issues.
The support function ŜC(v) for a Minkowski sum C of two

onvex sets A and B is given as

ˆ (v) = Ŝ (v) + Ŝ (v) (27)
C A B

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

r

F
r

S

T
D

S

5

i
f
a
p
i
t
e
o
e
s
s
i
t
a
R
s
A
e
r

Fig. 13. Minkowski difference D = A⊖B between two arbitrary convex shapes A and B (a) with contact and (b) without contact, where −B is the mirror of B with
espect to the origin.
or the mirror −B of Bwith respect to the origin, its support point
eads

ˆ
−B(v) = −ŜB(−v) (28)

herefore, the support function ŜD(v) for a Minkowski difference
of A and B can be obtained by

ˆD(v) = ŜA(v) − ŜB(−v) (29)

.3. Iterative GJK

The GJK algorithm works in a simplex-algorithm manner by
teratively searching the closest point within a Minkowski dif-
erence to the origin. For two contacting particles A′ and B′,
s shown in Fig. 15, it converges fast in general to find a sim-
lex enclosing the origin within the Minkowski difference D′,
ndicating that the GJK is efficient to query two contacting par-
icles. Nevertheless, the shortest distance (referred to as pen-
tration depth hereafter) between the two particles cannot be
btained directly, which instead is often solved by the so-called
xpanding-polytope algorithm (EPA) [38]. The EPA expands the
implexes iteratively in an inverse-like sequence of GJK, which
ignificantly increases the computational intensity. Thus, the EPA
s not adopted here to avoid such an additional heavy compu-
ation. Nevertheless, a special particle shape is introduced as
Minkowski sum of a kernel shape and a sweeping sphere.
esearchers coined such a shape as dilated polyhedron [39] or
pheropolyhedron [40] when the kernel shape is a polyhedron.
s shown in Fig. 15(a), particles A′ and B′ are constructed by
nlarging the kernel particles A and B with a sweeping sphere,
espectively. The radii of sweeping spheres are sufficiently large
10
Fig. 14. A support point p on a particle surface with a given direction vector v

and a support function S(n). Note: n is the outward normal of particle surface
at the support point p [24].

to ensure that the possible overlap occurs only in the sweeping
volume. That being said, the Minkowski difference D′ of the
enlarged particles encloses the origin, while the Minkowski dif-
ference D of the kernel particles does not, as shown in Fig. 15(b).
Therefore, the penetration depth d between particles A′ and B′ is

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

g

d

w
c
t

p

Fig. 15. (a) Particles A′ and B′ enlarged by a sphere sweeping over A and B, respectively; (b) Minkowski difference D = A ⊖ B and D′
= A′

⊖ B′ .
iven by

= δA′ + δB′ − dAB (30)

here δA′ and δB′ are the radii of the sweeping spheres for parti-
les A′ and B′, respectively; dAB is the shortest distance between
he two kernel particles A and B.

Algorithm 2: The GJK algorithm for searching contact
enetration depth.
Input: Kernel particles A and B; sweeping spheres δA′ and

δB′ ; support functions SA and SB, rotation matrices
T A and T B; cached contact normal c .

Output: Contact points pA
′

and pB
′

; penetration depth d;
flag touching .

1 d := 0; l := 0; v := −c; C := ∅;
2 do
3 v := v/∥v∥;
4 δA = vδA′ ; δB = vδB′ ;
5 p = T−1

A SA(−T Av) + rA;//support point of kernel A
6 q = T−1

B SB(T Bv) + rB;//support point of kernel B
7 w = p − q;//support point of Minkowski difference D
8 l := max(∥w∥, l);
9 if v · w > 0 and ∥w∥ > (δA′ + δB′) then

10 touching:= false;//no contact break;
11 if w is already a simplex vertex or d2 − v · w ≤ d2ϵ1

then
12 compute points pA and pB on particles A and B,

respectively;

13 pA
′

:= pA
− δA; pB

′

:= pB
+ δB;

14 touching:= true;
15 break;
16 C := C ∪ {w};//add another simplex vertex
17 v := the closest point in the simplex C ;
18 C := the smallest subset of C with its convex hull

containing v;
19 d := ∥v∥;
20 while ∥v∥ > ϵl;

21 c := −v/∥v∥; d := (pA
′

− pB
′

) · c;
11
With Eq. (30), it is clear that finding the penetration depth d
of two particles A′ and B′ is equivalent to finding the shortest
distance dAB between their kernel particles A and B. In addition,
dAB is equal to the shortest distance of the Minkowski difference
D to the origin that can be searched iteratively by using the GJK
algorithm. Algorithm 2 summarizes the pseudo-codes of solving
the penetration depth between particles A′ and B′. During the
iteration, the set of simplex vertexes C is updated with the
support point w of the Minkowski difference D with respect to
a searching direction −v. Referring to Lines 16–18 in Algorithm
2, C is initialized to an empty set and subsequently filled with 1,
2, 3, or up to 4 points corresponding to a simplex of a point, a
line segment, a triangle, or a tetrahedron, respectively; it is, then,
straightforward to compute the closest point v in the simplex to
the origin; the simplex is further reduced to be the smallest sub-
set of C such that its convex hull contains v. Clearly, the point v

is generally closer to the origin after each iteration. Nevertheless,
the support point w may become stationary once w is already a
simplex vertex at the last iteration. In addition, the change in v

is likely to be relatively small with sufficient iterations. Thus, we
terminate the searching routine for both cases as listed at Line
11 of Algorithm 2. The routine also stops either when there is no
contact between particles A′ and B′ or when ∥v∥ is significantly
small, as listed at Lines 9 and 15 of Algorithm 2.

5.4. Applied to cones, cylinders and polyhedrons

The critical ingredient of the GJK algorithm is its support
functions of the two kernel particles. With respect to the support
function, we group the kernel particle shapes into two broad
categories of primitive shapes, e.g., cones, cylinder, and poly-
hedrons, with/without analytical support functions, respectively.
For shapes with analytical support functions, a cone, a cylinder,
and a box are exemplified here, as shown in Fig. 16.

Given a cone with base radius r and height h, as shown in
Fig. 16(a), the support function S(v) is given by

S(v) =

⎧⎪⎪⎨⎪⎪⎩
3h
4 vh, if (vh · v)

√
r2 + h2 ≥ r,

−
h
4 vh + r v−(vh ·v)vh

∥v−(vh ·v)vh∥
, else if (vh · v)

√
r2 + h2 < r and vh × v ̸= 0,

−
h
4 vh, otherwise.
(31)

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

c

w
t
c
p

S

w
t
a
(
f
i
c
t
f
t
e
s
f
r

S

r

p

s

d

w
b

i

m

Fig. 16. (a) A cone, (b) a cylinder, and (c) a box with fixed local Cartesian
oordinate systems at their centers of mass.

here vh is a direction vector pointing from the base center to
he apex of the cone. By contrast, the support function S(v) of a
ylinder can be more simplified due to an extra centrosymmetric
roperty, as shown in Fig. 16(b), which can be given by

(v) =

{
h
2 (vh · v)vh + r v−(vh·v)vh

∥v−(vh·v)vh∥
, if vh × v ̸= 0,

h
2 (vh · v)vh, otherwise.

(32)

here vh is a direction vector pointing from the bottom center
o the top center of the cylinder; r and h are the base radius
nd height, respectively. So far, it has been clear that for a facet
e.g., the base of a cone) the candidate support point can only be
rom the edge of the center of the facet. Thus, for a polyhedron,
ts vertexes, edges, centers of edges, and centers of facets hold the
andidate support point for a given searching direction v. That is
o say, the support function S(v) cannot be expressed analytically
or a general polyhedron. Hence, special attention should be paid
o constructing the data structure for the adjacency in facets,
dges, and vertexes, thereby achieving an efficient search of the
upport point. Nevertheless, for simple polyhedrons, the support
unction can be readily obtained. Taking a box as an example,
eferring to Fig. 16(a), the support function is given by

(v(v1, v2, v3)) =
1
2
(Sign(v1)l1, Sign(v2)l2, Sign(v3)l3) (33)

where l1, l2 and l3 are the length, width, and height of the box,
respectively; Sign() is the signum function.

As a demonstration, we simulate the granular packings of
monodisperse cones, cylinders, and cubes under gravity in Su-
doDEM. The initial and final packing states of cones, cylinders,
and cubes are shown in Fig. 17, where the cubic container is not
shown for better visualization.

6. Hybrid algorithm of PCN and GJK

6.1. Bridging PCN and GJK

The candidate contact points pA and pB in Eq. (16) can be
ewritten as
A

= Ŝ
A
(c), pB

= Ŝ
B
(−c) (34)

uch that the candidate penetration d is given as

= Ŝ
B
(−c) − Ŝ

A
(c) = −ŜA−B(c) (35)

here ŜA−B is the support function of Minkowski difference D
etween particles A and B.
The optimization problem introduced in Eq. (20) can be recast

nto the following unconstrained optimization problem:

in|d|= min∥pB
− pA

∥ = min∥ŜA−B(c)∥ (36)

m α,β c

12
which suggests that the PCN and GJK algorithms can be utilized to
search the same contact penetration alternatively. That is to say,
both algorithms can be seamlessly switched from each other dur-
ing the searching routine. In general, the LM algorithm involved in
the PCN algorithm has an excellent performance of convergence
(most often less than ten iterations). However, the searching
routine may fail or converge significantly slowly either when the
computed contact point from one particle surface is outside the
other particle, or when the LM encounters an extremely small
step in ∥m∥ (e.g., 10−5 rad for very flat face-to-face contacts).

Algorithm 3: The hybrid algorithm of PCN and GJK.

Input: Particle positions rA and rB, surface functions SA and
SB, erosion δA′ and δB′ , rotation matrices T A and T B;
cached parameters α0 and β0.

Output: Parameter m; flag touching; penetration depth d;
contact point pc .

1 m = [α0, β0]
T ;

d := T−1
B SB(−T Bc(m)) + rB − T−1

A SA(T Ac(m)) − rA;
2 the main routine of PCN: Lines 2-21 of Algorithm 2;
3 if PCN converges slowly then
4 d := 0; l := 0; v := −c; C := ∅;
5 do
6 v := v/∥v∥;
7 δA = vδA′ ; δB = vδB′ ;
8 p = T−1

A SA(−T Av) + rA + δA;//support point of
eroded A

9 q = T−1
B SB(T Bv) + rB − δB;//support point of eroded

B
10 w = p− q;//support point of Minkowski difference D
11 l := max(∥w∥, l);
12 check the convergence of GJK: Lines 11-15 of

Algorithm 2;
13 update the simplex: Lines 16-18 of Algorithm 2;
14 d := ∥v∥;
15 while ∥v∥ > ϵl;

16 c := −v/∥v∥; d := (pA
′

− pB
′

);
17 d := −d · c;
18 pc :=

1
2 (T

−1
B SB(−T Bc(m)) + rB + T−1

A SA(T Ac(m)) + rA);

Therefore, a hybrid approach of PCN and GJK is proposed to
achieve a more robust and efficient solution, which has been
depicted in our previous work [24]. Algorithm 3 summarizes the
pseudo-codes of the hybrid algorithm. Note that the searching
direction v in GJK is a position vector of a point in the updated
simplex, which is anti-parallel to the contact normal (direction)
c that is assumed to point from particle A to particle B. Besides,
it is noteworthy that particles A and B in PCN will be eroded by
δA′ and δB′ , respectively, before searching with GJK, referring to
Lines 8 and 9 in Algorithm 3. Consequently, the entire searching
routine is implemented with GJK only, as mentioned in Section 5.
Nevertheless, the erosion procedure is not an inverse of sweeping
a sphere over a kernel particle, which may cause a side effect on
the eroded surface of a non-smooth particle. Taking a polyhedron
as an example, the joining vertex of two adjacent edges is not
identical after eroding along their corresponding inward normals.
Therefore, the hybrid algorithm is only applicable to smooth
particles.

6.2. Applied to poly-superellipsoids

For the sake of computational efficiency, the support function
S(n) of a poly-superellipsoid can be written without explicitly

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

y

w

a

α

g
o
h
c

Fig. 17. Initial and final packing configurations of (a) cones, (b) cylinders and (c) cubes.
Fig. 18. Example of two particles with a flat contact: (a) PCN and (b) the hybrid algorithm of PCN and GJK [24].
e
t
A
I

computing θ and φ in Eq. (23), given as [24]

x =
1
2
Sign(nx)

[
(1 + Sign(nx))r+

x + (1 − Sign(nx))r−

x

]
α

ϵ1/2
1 α

ϵ2/2
2

(37a)

=
1
2
Sign(ny)

[
(1 + Sign(ny))r+

y + (1 − Sign(ny))r−

y

]
× (1 − α1)ϵ1/2(1 − α2)ϵ2/2 (37b)

z =
1
2
Sign(nz)

[
(1 + Sign(nz))r+

z + (1 − Sign(nz))r−

z

]
(1 − α2)ϵ2/2

(37c)

here α1 and α2 are equal to cos2(θ) and cos2(φ), respectively,
given as follows

α1 =

{(
1 +

⏐⏐ ryny
rxnx

⏐⏐ 2
2−ϵ1

)−1
, if nx ̸= 0,

0, otherwise.

nd

2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 +

⏐⏐ rznz
rxnx

⏐⏐ 2
2−ϵ2

⏐⏐α1
⏐⏐ 2−ϵ1
2−ϵ2

)
−1, if nx ̸= 0,(

1 +
⏐⏐ rznz
ryny

⏐⏐ 2
2−ϵ2

⏐⏐1 − α1
⏐⏐ 2−ϵ1
2−ϵ2

)
−1, else if ny ̸= 0,

0, otherwise.

As aforementioned, the computation by the GJK part is trig-
ered when the PCN converges slowly in the hybrid algorithm
f PCN and GJK. To offer a glance at the improvement of the
ybrid algorithm, we set up a test of two particles with a flat
ontact, as shown in Fig. 18. Note that the initial guess of the
 R

13
Table 1
Major pros and cons of the three generic algorithms for contact detection.
Algorithm Pros Cons

PCN (with LM) Robust and efficient Prescribed n → S(n)
GJK
(sphero-shape)

Any convex kernel
shapes

Less efficient than
PCN

The hybrid
PCN–GJK

More robust and
efficient than PCN

Prescribed n → S(n)

contact normal c is the vector joining the mass centers of the
two particles. The PCN with the LM algorithm fails due to slow
convergence after 23 calls of the support function (Fig. 18(a)),
while the hybrid algorithm succeeds after 12 calls of the support
function (Fig. 18(b)). Notably, the hybrid algorithm has a much
better performance than the PCN, which inherits merits from
both PCN and GJK, thereby more robust and efficient. The major
pros and cons of the three generic algorithms are summarized in
Table 1.

7. Simulation demos

Three examples are demonstrated here to show the robustness
and versatility of SudoDEM. Interested readers can find more
xamples and their corresponding details of simulation setup in
he quick guide [41] or our other published work, e.g., [15,24,27].
ll demos run on an Ubuntu 18.04 Desktop with an Intel Core
7-6700 CPU (4 cores at 3.4 GHz, and 8 logic cores) and 16 GB
AM.

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

7

s
c
c
a
s
a

m
t
h
a

a
a
(
v
b
c
z

7

v
i
a
w
e
l
r
p
w
d

Fig. 19. Evolution of velocity of a cube sliding along a slope under gravity for
different slope angles and viscous damping βd .

.1. Test of the friction law

The friction law is tested first by releasing a cube to possibly
lide on a slope with an incline angle of θ under gravity. The
ube has a length of 10 mm, mass density of 2650 kg/m3. The
oefficient of friction µ is set to 1.0, corresponding to a critical
ngle of θc = 45◦. Both the normal and tangential contact
tiffnesses are set to 1×105 N/m. Besides, viscous damping with
coefficient βd = 0 or 0.5 is applied to the contact, where βd = 0

means no damping. Three slope angles θ = 30◦, 45◦ and 60◦ are
selected to run the test under a gravitational acceleration g of 9.8
/s2. A total of six simulations are conducted for 10 ms each (the

ime step is 1 × 10−6 s). The velocity of the cube along the slope
as been monitored with a sampling interval of 100 time steps,
s shown in Fig. 19.
For θ > θc , i.e., θ = 60◦ in Fig. 5(a), the cube slides with an

increasing velocity as expected. Moreover, the cube experiences a
 a

14
decrease in acceleration due to the development of the friction at
the very beginning, and the acceleration becomes stationary after
the friction reaching its maximum, i.e., µG cos(θ) (G is the weight
of the cube). The analytical acceleration of the cube is given by
a = g(sinθ − µcosθ). Notably, however, the simulated friction
is calculated in terms of the relative tangential displacement of
the cube with respect to the slope. It needs time for the cube to
develop the friction from zero to the maximum. Hence, it is not
surprising to see a larger acceleration than the analytical one at
the very beginning. Moreover, the velocity of the cube is reduced
to a smaller value at the beginning for the damped case. Changing
the damping coefficient βd can indeed render a match of the
velocity with the analytical one, which is, however, not the focus
of this work.

For θ < θc , i.e., θ = 30 in Fig. 5(b), the cube will stay
stationary on the slope in reality, while an oscillation can be
observed in the simulation. The oscillation has a small amplitude
but stays appreciable during the entire simulation for the non-
damped case. The velocity can be practically damped quickly to
zero if viscous damping is applied. It is worth noting that there
are two critical factors contributing to the oscillation: a similar
oscillation in the normal direction (normal oscillation) and the
computational manner of the friction as aforementioned. Note
that the normal oscillation makes the pressure oscillate around
Gsin(θ) such that the numerical maximum friction oscillates as
well.

For θ = θc , the cube maintains an initial velocity without
cceleration in reality. However, the simulated cube may obtain
non-zero velocity due to the numerical development of friction
see θ = 45 in Fig. 5(b)), even though the cube has no initial
elocity at all. For the non-damped case, a small oscillation can
e observed during the entire simulation, while the oscillation
an be reduced quickly with the damped velocity much closer to
ero for the damped case.

.2. Heap formation

The test of heap formation is conducted to further prove the
alidity of the implementation of inter-particle friction. As shown
n Fig. 20(a), an open channel with one end closed is set up under
particle generation box. A heap forms and gradually develops
ith continuous feeding of particles from the generation box. For
ach feeding, only a few particles are generated with random
ocations and orientations in the generation box before being
eleased into the channel under gravity. In the simulation, the
articles have an equivalent radius (i.e., the radius of a sphere
ith the same volume as the given particle) of 10 mm, mass
ensity of 2650 kg/m3, and friction coefficient of 0.5. The normal

4
nd tangential contact stiffnesses are set to 1 × 10 and 7 ×
Fig. 20. (a) Simulation setup of heap formation and (b) a heap of superellipsoidal particles at rest, after [42].

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

Fig. 21. Free falling of five hundred poly-superellipsoids under gravity: (a) variations of kinetic, potential and total energy of particles; snapshots at initial packing
(b), after 15 000 (c) and 35 000 (d) time steps, after [24]. Note: the box is not shown for a better visualization.

Fig. 22. Snapshots of a cubic specimen composed of 10 000 poly-superellipsoids at the initial (a) and final (b) states during triaxial compression, and its corresponding
normal contact force chains at the initial (c) and final (d) states. Note: the color bar is for the magnitude of normal contact force fn . The animation is available at
https://sudodem.github.io/docs/images/triaxialtest-1.gif.

15

https://sudodem.github.io/docs/images/triaxialtest-1.gif

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

t
p

Fig. 23. Loading paths (a) and deviatoric stress ratio q/p (b) for the dense, medium-dense and loose specimens during drained and undrained triaxial compression;
variation of void ratio (c) and volumetric strain (d) for the dense, medium-dense and loose specimens during drained triaxial compression. CSL: critical state line.
Source: From [33].
103 N/m, respectively. The channel has the same stiffness as
particles for all boundary walls. The coefficient of friction is 1.0
for the base and zero for the side walls.

Fig. 20(b) shows a heap of 8000 oblate superellipsoidal par-
ticles at rest, where an approximately straight slope can be
observed as expected, proving the validity of the numerical im-
plementation. It is worth noting that the ratio of kinetic energy
Ek to potential energy Ep can be tracked for checking whether
particles come to rest. For example, the heap slope stays almost
stationary for the energy ratio Ek/Ep below 10−7 so that it can be
considered reaching a relative equilibrium state. More details on
the analysis of particle shape effect on a heap are reported in [42]
by using SudoDEM.

7.3. Granular packing

As a demonstration, we simulate granular packing with poly-
superellipsoidal particles falling freely into a cubic box (1 m ×

1 m × 4 m) under gravity, which has already been done to
test the robustness of SudoDEM in our previous work [24]. In
he simulation, various particle shapes are generated with shape
arameters randomly selected in prescribed intervals, i.e., ϵ1, ϵ2 ∈

[0.4, 1.6], lx = 0.1 m, ly, lz ∈ [0.02, 0.1] m, ex, ey, ez ∈ [0.2, 0.8].
The material properties and other numerical parameters follow
the literature [24]: the particle mass density is set to 2650 kg/m3;
the normal and tangential contact stiffnesses are set to 1 × 105

and 7 × 104 N/m, respectively, and the coefficient of friction is
set to 0.1. At the initial configuration, 500 poly-superellipsoids
with random orientations are positioned at a 5-by-5-by-20 grid in
16
a lattice manner. During the course of deposition under gravity,
the free particles impact the top of a packing sequentially, and
particles may collide with their neighbors (particles or container
walls) and bounce back and forth. Fig. 21 shows the variation
of the energy of particles in conjunction with several snapshots
during packing, where the kinetic energy is

∑
(miv

2
i /2+ I iω2

i /2),
and the total mechanical energy includes the kinetic energy and
the gravitational potential energy defined as

∑
(mighi) (h is the

height of particle mass center from the box bottom).

7.4. Triaxial compression

Three numerical specimens composed of 10 000 poly-
superellipsoidal particles with random orientations and positions
are prepared within a cubic container. The parameters of par-
ticle shapes are randomly selected in the prescribed intervals,
i.e., ϵ1, ϵ2 ∈ [0.5, 1.4], lx, ly, lz ∈ [0.25, 0.75] mm, ex, ey, ez ∈

[0.2, 0.8]. The material properties follow the literature [33]: the
contact stiffness is empirically set as kn = ks = r × 100 MPa
(where r is the average particle size); the coefficient of friction
µ is set to 0.3. The specimens have initial void ratios of 0.429,
0.554 and 0.641 after consolidation with a confining stress σ0 of
100 kPa, corresponding to three different states, i.e., dense (D),
medium-dense (M) and loose (L), respectively. After that, the top
and bottom plates move towards at a constant axial strain rate ϵ̇z
to trigger a continuous shear process. All specimens are subjected
to two typical loading conditions (commonly encountered in soil
mechanics) during the course of shearing: drained and undrained.
Each test is labeled as A-B: A is for the loading conditions,

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

w

Fig. 24. Different views of landslides impacting flexible barriers: initial states (left) and final states (right) for the flexible barrier perpendicular to the horizon (a–d)
or the channel bottom (e–h). Note: the channel walls are not visualized.
drained (D) or undrained (U); B is for the initial state, dense (D),
medium-dense (M) or loose (L). For the drained case, the four side
plates remain a constant confining stress σ0 during shearing; for
the undrained case, a specimen remains a constant volume by
adjusting the positions of the four side plates according to ϵ̇x =

ϵ̇y = −ϵ̇z/2. It is worth noting that particles in the simulations are
dry, and the constant volume condition is imposed to mimic the
undrained case in the laboratory [3]. To ensure quasi-static shear,
the axial strain rate ϵ̇z is set to a small value of 0.01/s to fulfill the
criterion that the inertia number I = ϵ̇z⟨d⟩

√
ρ/σ0 ≤ 10−3 [27],

here ⟨d⟩ is the average particle diameter, and ρ is the material
17
mass density. More details on the numerical shear can be found
in [27]. Specimens subjected to the undrained loading except
for the loose ones are compressed to a sufficiently large level of
axial strain ϵz = 50% (where ϵz = ln(H0/H), H0 and H are the
specimen height at the initial and sheared states respectively),
at which the specimens reach the steady flow regime (or critical
state in soil mechanics). Fig. 22 shows snapshots and normal
contact force chains of the dense specimen at the initial and final
states during the drained triaxial compression. In the presented
demo, it takes about 24 h for each simulation with a single
CPU-thread.

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670

f

σ

w
f
c

w
s
s
a
a
t
s
c
o

s
s
c

The granular stress tensor can be defined in a volume-averaged
orm as [43]

ij =
1
V

∑
c∈V

f ci l
c
j (38)

here V is the total volume of the assembly; f c is the contact
orce at the contact c , and lc is the branch vector joining the
enters of the two contacting particles at contact c . The mean
stress p and the deviatoric stress q are defined as:

p =
1
3
σii, q =

√
3
2
σ ′

ijσ
′

ij (39)

here σ ′

ij is the deviatoric part of stress tensor σij. The volumetric
train ϵv is given by ϵv = ln(V/V0), where V0 and V are the
pecimen volume at the initial and sheared states, respectively,
nd positive values represent dilation. Note that the volume-
veraged stress is identical to the stress directly computed from
he boundary walls for quasi-static simulations. Hence, it is rea-
onable to use the volume-average stress and the strain directly
omputed from the boundary to show the stress–strain relation
f a granular material during triaxial shearing.
Fig. 23 shows the macroscopic mechanical responses of all

pecimens during drained and undrained triaxial compression. All
pecimens subjected to different loading paths reach a unique
ritical state line (CSL), i.e., maintaining a stationary q/p with
loading. For the drained tests (D–D, D–M and D–L), the dense
specimen D–D behaves in a strain-softening manner with volu-
metric dilation, whilst the loose one D–L has a strain-hardening
trend with volumetric contraction. Moreover, the volume or void
ratio also reaches a unique value at the critical state. For the
undrained tests (U–D, U–M and U–L), it can be seen that both p
and q are likely to approach zero for loose specimens, especially
U-L, i.e., reaching the so-called liquefaction state in soil mechan-
ics. The specimen can no longer undertake any external loading
after reaching the liquefaction state. Overall, the simulated results
are qualitatively in agreement with the well-known experimental
observation on sand in soil mechanics, proving the validity and
robustness of numerical implementation in SudoDEM.

7.5. Landslides impacting a flexible barrier

In this demo, we simulate a more engineering system where
a landslide of rocks impacts a flexible resisting barrier, where the
rocks are simulated by DEM while the barrier is constructed by
FEs (finite elements). A granular packing is prepared in a cubic
container following the same protocol as depicted in Section 7.3,
which is composed of 10 000 polyhedral particles. Each polyhe-
dral particle is a convex hull of eight vertexes randomly selected
from the surface of a sphere with a radius of 0.15 m. We note
here that an advanced procedure of particle shape generation
may be deserved for an elegant simulation, which is however not
the focus of this demo. The dimension of the container bottom
is 6 m × 3 m, while the thickness of the granular packing
(hereafter referred to as the rock layer) is approximately 0.6 m
after reaching an equilibrium state. To trigger a slide, the rock
layer is further laid on the bottom of an inclined channel with
two side walls and one bottom wall confined, referring to the
left column in Fig. 24. All walls of the channel are assumed
frictionless, and the inter-particle coefficient of friction is set to
0.3. A linear spring contact model is applied, where both normal
and tangential contact stiffnesses are set to 1 × 105 N/m for all
particles and walls. The Young’s modulus and Poisson’s ratio of
the flexible barrier are set to 1 MPa and 0.3, respectively.

As a demonstration, only one case of angle of incline (i.e., 30◦)
is considered, while two different installations of the barrier are
18
taken into account: perpendicular to the horizon or the channel
bottom. Besides, the top-boundary nodes (excluding those situ-
ated at the two sides) of the barrier are free, while the other
nodes at the boundary are fixed in displacement. The rock layer
slides and impacts the barrier under gravity. For the computing
time, it takes about 12 h for each with a single CPU-thread. The
final states of the system at an equilibrium state are shown in
the right column of Fig. 24. It can be seen that the granular
surface is not straight but even subtly rounded, which is in
agreement with the experimental observations, e.g., in [44]. The
reason why the surface is not straight as observed in the heap
formation (e.g., with particles flowing out a hopper) is associated
to the sliding-induced impact against the barrier. A more detailed
analysis of the response of the system is beyond the scope of this
paper.

8. Summary

In this paper, we presented an open-source code SudoDEM
that is designed explicitly for modeling of non-spherical par-
ticles for both 2D and 3D in DEM. In addition to the built-in
prime shapes including poly-superellipsoid, superellipsoid, cylin-
der, cone, polyhedron for 3D, and disk, superellipse for 2D, it
is straightforward to customize much more shapes based on
the generic interface of the robust contact detection algorithms,
i.e., PCN, GJK, and the hybrid PCN–GJK. Benefiting from the hy-
brid programming of Python and C++, SudoDEM can be flexibly
coupled with other codes for further considering multi-phase or
hierarchical modeling by coupling FEMxDEM or MPMxDEM [45].
The source code is hosted in public domain at the GitHub repos-
itory (https://github.com/SudoDEM) under the GNU public li-
cense (GPL v3 or later). More details on the project are avail-
able at the home page (https://sudodem.github.io). Interested
researchers are welcome to use and/or make a contribution to
SudoDEM.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was financially supported by the Hong Kong Schol-
ars Program (2018), the National Natural Science Foundation of
China (by Project Nos. 51909095, 51679207 and
11972030), Guangdong Basic and Applied Basic Research Foun-
dation (2020A1515011525), the Fundamental Research Funds for
Central Universities, China (D2192710), Research Grants Council
of Hong Kong (by GRF Project No. 16207319, TBRS Project No.
T22-603/15N and CRF Project No. C6012-15G). Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the financial bodies.

References

[1] P.A. Cundall, O.D. Strack, Géotechnique 29 (1) (1979) 47–65.
[2] C. O’Sullivan, Particulate Discrete Element Modelling: A Geomechanics

Perspective, Taylor & Francis, 2011.
[3] N. Guo, J. Zhao, Comput. Geotech. 47 (2013) 1–15.
[4] J. Zhao, N. Guo, Acta Mech. Solida Sin. 27 (1) (2014) 1–14.
[5] H. Shin, J. Santamarina, J. Geotech. Geoenviron. Eng. 139 (2) (2012)

353–355.
[6] M. Payan, A. Khoshghalb, K. Senetakis, N. Khalili, Comput. Geotech. 72

(2016) 28–41.

https://github.com/SudoDEM
https://sudodem.github.io
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb1
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb2
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb2
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb2
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb3
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb4
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb6
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb6
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb6

S. Zhao and J. Zhao Computer Physics Communications 259 (2021) 107670
[7] A.G. Athanassiadis, M.Z. Miskin, P. Kaplan, N. Rodenberg, S.H. Lee, J. Merritt,
E. Brown, J. Amend, H. Lipson, H.M. Jaeger, Soft Matter 10 (1) (2013) 48–59.

[8] M. Jiang, Z. Shen, J. Wang, Comput. Geotech. 65 (2015) 147–163.
[9] C.-x. Miao, J.-j. Zheng, R.-j. Zhang, L. Cui, Comput. Geotech. 81 (2017)

249–261.
[10] D. Höhner, S. Wirtz, H. Kruggel-Emden, V. Scherer, Powder Technol. 208

(3) (2011).
[11] S. Zhao, T.M. Evans, X. Zhou, in: X. Li, Y. Feng, G. Mustoe (Eds.), Proceedings

of the 7th International Conference on Discrete Element Methods, in:
Springer Proceedings in Physics, no. 188, Springer Singapore, 2016, http:
//dx.doi.org/10.1007/978-981-10-1926-5_11.

[12] T.-T. Ng, Int. J. Numer. Anal. Methods Geomech. 33 (4) (2009) 511–527.
[13] Z.-Y. Zhou, R.-P. Zou, D. Pinson, A.-B. Yu, Ind. Eng. Chem. Res. 50 (16)

(2011) 9787–9798.
[14] C. Wellmann, C. Lillie, P. Wriggers, Eng. Comput. 25 (5) (2008) 432–442.
[15] S. Zhao, N. Zhang, X. Zhou, L. Zhang, Powder Technol. 310 (2017) 175–186.
[16] C. Boon, G. Houlsby, S. Utili, Comput. Geotech. 44 (2012) 73–82.
[17] S. Zhao, X. Zhou, W. Liu, Granul. Matter 17 (6) (2015) 793–806.
[18] K.-W. Lim, J.E. Andrade, Int. J. Numer. Anal. Methods Geomech. 38 (2)

(2014) 167–188.
[19] E. G. Nezami, Y. MA Hashash, D. Zhao, J. Ghaboussi, Int. J. Numer. Anal.

Methods Geomech. 30 (8) (2006) 783–801.
[20] A. Wachs, L. Girolami, G. Vinay, G. Ferrer, Powder Technol. 224 (2012)

374–389.
[21] J. Eliáš, Powder Technol. 264 (2014) 458–465.
[22] F. Zheng, Y.-Y. Jiao, M. Gardner, N. Sitar, Comput. Geotech. 87 (2017)

76–85.
[23] R. Kawamoto, E. Andò, G. Viggiani, J.E. Andrade, J. Mech. Phys. Solids 91

(2016) 1–13.
[24] S. Zhao, J. Zhao, Int. J. Numer. Anal. Methods Geomech. 43 (13) (2019)

2147–2169.
19
[25] J. Kozicki, F. Donzé, Eng. Comput. 26 (7) (2009) 786–805.
[26] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky,

J. Kozicki, C. Modenese, L. Scholtès, L. Sibille, et al., 2010, http://yade-
dem.org/doc/.

[27] S. Zhao, T. Evans, X. Zhou, Géotechnique 68 (12) (2018) 1085–1098.
[28] J. Ai, J.-F. Chen, J.M. Rotter, J.Y. Ooi, Powder Technol. 206 (3) (2011)

269–282.
[29] S. Zhao, T.M. Evans, X. Zhou, Int. J. Solids Struct. 150 (2018) 268–281.
[30] G.v.d. Bergen, J. Graph. Tools 2 (4) (1997) 1–13.
[31] S. Zhao, T.M. Evans, X. Zhou, Powder Technol. 323 (2018) 323–336.
[32] S. Zhao, X. Zhou, Granul. Matter 19 (2) (2017) 38.
[33] S. Zhao, J. Zhao, N. Guo, Phys. Rev. E 101 (1) (2020) 012906.
[34] K. Johnson, Contact Mechanics, Cambridge University Press, London, 1985.
[35] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9 (1)

(1998) 112–147.
[36] M.I. Lourakis, Found. Res. Technol. 4 (1) (2005) 1–6.
[37] E.G. Gilbert, D.W. Johnson, S.S. Keerthi, IEEE J. Robot. Autom. 4 (2) (1988)

193–203.
[38] G. Van Den Bergen, Collision Detection in Interactive 3D Environments,

CRC Press, 2003.
[39] S. Ji, S. Sun, Y. Yan, Procedia Eng. 102 (2015) 1793–1802.
[40] S. Galindo-Torres, D. Pedroso, Phys. Rev. E 81 (6) (2010) 061303.
[41] S. Zhao, J. Zhao, 2019, [Online; accessed March, 2020]. URL https://

sudodem.github.io/download.html.
[42] H. Chen, S. Zhao, X. Zhou, Particuology 50 (2020) 53–66.
[43] J. Christoffersen, M. Mehrabadi, S. Nemat-Nasser, J. Appl. Mech. 48 (2)

(1981) 339–344.
[44] Y.-J. Jiang, Y. Zhao, I. Towhata, D.-X. Liu, Powder Technol. 270 (2015)

53–67.
[45] S. Zhao, J. Zhao, Y. Lai, Comput. Methods Appl. Mech. Engrg. 367 (2020)

113100.

http://refhub.elsevier.com/S0010-4655(20)30325-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb8
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb10
http://dx.doi.org/10.1007/978-981-10-1926-5_11
http://dx.doi.org/10.1007/978-981-10-1926-5_11
http://dx.doi.org/10.1007/978-981-10-1926-5_11
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb12
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb14
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb15
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb16
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb17
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb21
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb22
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb22
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb22
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb24
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb24
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb24
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb25
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb27
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb29
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb31
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb32
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb33
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb34
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb35
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb35
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb35
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb36
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb37
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb37
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb37
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb38
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb38
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb38
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb39
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb40
https://sudodem.github.io/download.html
https://sudodem.github.io/download.html
https://sudodem.github.io/download.html
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb42
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb43
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb43
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb43
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb44
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb44
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb44
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb45
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb45
http://refhub.elsevier.com/S0010-4655(20)30325-8/sb45

	SudoDEM: Unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles
	Introduction
	Essential ingredients of SudoDEM
	Computation flowchart
	The motion of particle
	Contact model
	Contact detection

	Major features of SudoDEM
	Two- and three-dimensional packages
	Particle shape
	Flexible membranes
	Visualization tools
	Contact detection algorithms

	Parametric common normal algorithm
	Parametric surface and outward normal
	Candidate penetration and common normal
	Iterative PCN
	Applied to superellipsoids and poly-superellipsoids

	The Gilbert–Johnson–Keerthi algorithm
	Minkowski sum and difference
	Support point and support function
	Iterative GJK
	Applied to cones, cylinders and polyhedrons

	Hybrid algorithm of PCN and GJK
	Bridging PCN and GJK
	Applied to poly-superellipsoids

	Simulation demos
	Test of the friction law
	Heap formation
	Granular packing
	Triaxial compression
	Landslides impacting a flexible barrier

	Summary
	Declaration of competing interest
	Acknowledgments
	References

