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Abstract

A hierarchical multiscale coupling of the finite element method (FEM) and the discrete element method (DEM) is proposed
to model coupled thermo-mechanical behavior of granular materials. The DEM is employed to model the thermo-mechanical
responses of a representative volume element (RVE, a granular assembly) embedded at a Gauss (quadrature) point of the
FEM. The material responses derived from each Gauss point feed two superimposed FEMs to find global solutions subject
to two concurrent boundary value problems (BVPs), i.e., heat conduction and mechanical deformation. The two concurrent
FEMs exchange information on temperature change and fabric variation at their commonly shared Gauss points. The proposed
approach is benchmarked by two examples of transient and steady-state thermal conduction where analytical solutions are
available. It is further applied to investigating the thermo-mechanical responses of confined granular columns under cyclic
thermal loads with emphasis placed on the effect of boundary condition and inherent anisotropy of a granular column. The
proposed approach offers a novel multiscale pathway to model thermo-mechanical responses of granular media based on sound
physics.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Granular media are typically complex systems. They consist of discrete particles that form strongly heterogeneous
and amorphous internal structures interacting and giving rise to emerging phenomena that distinguish them from
solids and fluids. Subjected to external loadings or internal perturbations, granular materials may exhibit sensitive
fragility with irrecoverable (plastic) deformation that leads to strong history-dependent behavior [1,2]. For example,
sand experiences volumetric contraction and/or dilatancy when subjected to external mechanical loads such as shear,
which is well known as dilatancy in soil mechanics [3]. Temperature variation may also cause changes in contacts
and fabric among particles, resulting in interesting thermal responses in granular media. Indeed, cyclic thermal
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and/or mechanical loadings may induce accumulation of plastic deformation that leads to various distresses such
as granular ratcheting, liquefaction, and shakedown [4–7].

The coupling effect of thermal and mechanical behaviors greatly complicates the performance of already complex
granular materials, which is relevant to their design, operation, and risk management for critical applications
and infrastructures in industry and engineering. One highlighted practice is the application of thermal energy
storage (TES) [8] for balancing of energy between day and night or summer and winter as a promising attempt
to reduce CO2 emissions. For example, the packed-bed TES with granular materials such as rocks and sands
has been popularly employed in concentrated solar power plants due to its high efficiency and low cost [9].
Another noteworthy application is the so-called energy pile (or thermal pile) that serves as building foundation and
meanwhile exchanges thermal energy with its surrounding soils [10]. The granular materials within a TES system,
as aforementioned, suffer from cyclic thermo-mechanical loadings. A full understanding of their corresponding
responses such as shakedown and stability remains a challenging topic of multidisciplinary research. Indeed,
great efforts have been devoted from different disciplines including physics, thermal and geotechnical engineering.
Prevailing approaches can be broadly classified into two categories. One is the continuum-based, where a granular
material is homogenized as a continuum (with mixture theory employed for further consideration of multi-phase)
and is described by various sophisticated constitutive models, most often phenomenological in nature, to characterize
its thermo-mechanical response [11,12]. Frequently, these continuum models require the introduction of many
model parameters that either lack precise physical meanings or need challenging calibration by experiments in
order to capture complicated granular behaviors, such as anisotropy, non-coaxiality, history-dependency, and cyclic
hysteresis [13–15]. Nevertheless, continuum-based numerical methods such as the finite element method (FEM),
in conjunction with phenomenological constitutive models, have proven to be robust and efficient for large-scale
engineering problems. Also, there have been attempts to obtain the constitutive relation with machine learning
instead of conventional mathematical models [16]. In contrast to the continuum-based methods, the second category,
i.e., the micromechanics-based methods exemplified by the discrete element method (DEM) [17], can capture
the discrete nature of granular particles. Indeed, heat transfer through a granular material can be considered as
grain-scale heat flows, and the thermally-induced inter-particle force can be captured with a contact force model
in DEM [18–20]. In addition, coupling methods such as coupling DEM with the computational fluid dynamics
(CFD) [21] have been proposed to consider heat convection through granular materials. However, large-scale
(e.g., billions of particles and more) DEM simulations remain computationally too expensive to solve a practical
engineering problem, and even worse with additional coupling with CFD [22], although speed-up is possible by
parallelization of multi-core CPUs and/or the promising GPU acceleration technique [23].

Marrying the above two approaches to leverage their advantages appears to be appealing, and continuum–
discrete coupling has indeed been explored extensively. Among many, the concurrent and hierarchical couplings
have been two prevailing schemes. The concurrent coupling scheme typically partitions a domain into a subdomain
of interest (e.g., the soils near a pile for a pile installation problem) which is modeled by DEM, while the rest of
the domain is modeled by FEM rather than DEM to reduce the computational cost to some extent [24]. Another
popular concurrent coupling scheme is the FDEM that has been widely used to simulate the fragmentation of solids
subjected to external loadings [25,26], and further extended to model thermally-induced cracking [27] and granular
crushing [28]. The second scheme is hierarchical coupling, represented by the hierarchical FEM/DEM [29–32]
and the two-scale FEM (FE2) [33–35], typically using FEM to model an entire macro domain and the DEM or
FEM hierarchically embedded to each FEM Gauss point to provide required constitutive responses. Taking the
FEM/DEM coupling as an example [14,32,36], the hierarchical coupling approach brings two noteworthy features:
(1) the characteristics of a granular material can be readily modeled by FEM with DEM-simulated responses instead
of assumed phenomenological constitutive models; and (2) the DEM needs only to solve representative volume
elements (RVEs) at a finite number of Gauss points instead of having to deal with the entire domain, thereby
considerably reducing the computational cost. Therefore, it is of interest to extend this FEM/DEM coupling approach
in consideration of thermal–mechanical effects.

In this study, we propose a hierarchical multiscale approach to modeling the thermo-mechanical responses
of granular materials, as a significant extension of our group’s previous work [14,32,36,37]. In addition to
considering a thermal effect, this new hierarchical multiscale approach has the following two critical new features.
One is the model implementations of using non-spherical particles for the RVE due to the significance of
particle shape effect [38–41]. The other is the computational challenges in coupling the thermal and mechanical
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responses of a granular media in both micro and macro scales. Specifically, at the grain scale, a general thermo-
mechanical model will be proposed for non-spherical particles, which enables seamless coupling of the thermal and
mechanical effect on an RVE such as thermally-induced stress, deformation, and thermal conductivity change by
according deformation. At the macro scale, the thermo-mechanical problem is equivalently split into two concurrent
subproblems, i.e., thermal conduction and mechanical response, and are then solved by two concurrent FEMs with
the same mesh, respectively. The homogenized thermo-mechanical response of RVEs serves as the constitutive
relation of a granular material in conjunction with the two concurrent FEM solvers for smooth micro–macro
bridging. Benchmark and demonstrative examples are provided for the proposed hierarchical multiscale approach.

The rest of the paper is organized as follows. Section 2 provides detail of the approach and formulation.
The proposed approach is then benchmarked by two examples of transient and steady-state thermal conduction
in Section 3. Section 4 further investigates the thermo-mechanical response of a confined granular column, with
particular attention placed on the effect of boundary condition and inherent anisotropy. Conclusions are made in
Section 5. Tensorial indicial notations and Einstein summation convention are followed in the study, and boldface
letters for matrices are used.

2. Approach and formulation

2.1. Governing equations for the macro-scale

2.1.1. Thermal conduction
At the macro scale, a granular material can be regarded as a continuum with anisotropy, in which the heat

conduction is expressed by the following differential equation

(−ki j T, j ),i + ρcT,t = Qt (1)

where T is the temperature [K]; t is the time [s]; ρc is the bulk volumetric heat capacity [J/(m3
·K)]; ki j is the

thermal conductivity tensor [W/(m·K)]; i, j are sequential indices in {1, 2, 3} for 3D or {1, 2} for 2D; Qt is a heat
source or sink. The heat flux vector qi is given by a linear combination of the temperature gradients along the x1,
x2, and x3 directions [42], i.e.,

qi = −ki j T, j (2)

We consider the general boundary and initial conditions for the heat conduction problem as follows

T (t) = T̄ on ΓT (3a)

q(t)i = q̄i on Γq (3b)

T (0) = Tre f (3c)

where ΓT and Γq are the prescribed temperature and heat flux boundaries of the problem domain Ω , respectively;
T̄ and q̄i are the prescribed boundary temperature on ΓT and boundary heat flux on Γq , respectively; Tre f is the
ambient or reference temperature; Eqs. (3a) and (3b) are Dirichlet (fixed temperature) and Neumann (fixed heat
flux) boundary conditions, respectively, while Eq. (3c) is the initial condition for temperature distribution at the
initial state.

The transient state governed by Eq. (1) with time dependence can be sequentially solved as a series of steady
states in a finite difference manner. With the backward Euler scheme, the temperature at time t is expressed as

T (t)
≈ T (t−∆t)

+ ∆tT (t)
,t (4)

where ∆t is the differential step of time. Therefore, the governing equation for a steady state during ∆t comes out
as

(−ki j T
(t)
, j ),i +

ρc
∆t

T (t)
= Qt +

ρc
∆t

T (t−∆t) (5)

Multiplying Eq. (5) by a weight function ω(T ) (with zeros on ΓT ) and integrating over the domain Ω with applying
integration by parts and Green’s formula, the weak form is obtained as follows∫

Ω

ω
(T )
,i ki j T

(t)
, j dΩ +

∫
Ω

ω(T ) ρc
∆t

T (t)dΩ =

∫
Ω

ω(T )(Qt +
ρc
∆t

T (t−∆t))dΩ −

∫
Γq

ω(T )q̄dΓ (6)
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In addition, the time step must be sufficiently small to maintain numerical stability and convergence in the coupled
thermo-mechanical system. Note that although the backward Euler scheme is unconditionally-stable for the thermal
transition, the mechanical system solved by the explicit DEM solver is only conditionally stable. Hence, to avoid
possible instability caused to the mechanical system in a thermal transition, the Courant–Friedrichs–Lewy condition
is applied as a strong condition for simplicity, and the maximum (critical) time step ∆tm is estimated as

∆tm =
l2
e ρc
bk

(7)

where b is an adjustable factor, set to 1 by default; le is the minimum element size of a mesh; k is the mean thermal
conductivity, i.e., average of the diagonal terms of the thermal conductivity tensor ki j .

2.1.2. Mechanical response
For a macro continuum of granular material, the balance of linear momentum for a quasi-static problem is given

as

σi j, j + ρbi = 0 (8)

where σi j is the Cauchy stress tensor; ρ is the bulk density of materials, and bi is the body force per unit of mass
possibly performed on materials (e.g., gravitational acceleration). The generally encountered boundary conditions
are written as

ui = ūi on Γu (9a)

σi j n j = t̄i on Γt (9b)

where n j is the boundary outward normal of the domain Ω ; ūi and t̄i are the prescribed material displacement on
Γu and boundary traction on Γt , respectively; Eqs. (9a) and (9b) are Dirichlet and Neumann boundary conditions,
respectively.

Multiplying Eq. (8) by a weight function ω
(u)
i (with zeros on Γu) and integrating over the domain Ω with applying

integration by parts and Green’s formula, the weak form is obtained as follows∫
Ω

ω
(u)
i, j σi j dΩ =

∫
Ω

ω
(u)
i ρbi dΩ +

∫
Γt

ω
(u)
i t̄i dΓ (10)

2.2. Ingredients at the micro-scale

2.2.1. Thermal conductivity tensor of an assembly
For the convenience of implementation, only the inter-particle heat conduction is considered here, i.e., heat

transferring from one grain to another only through their contacts. Empirical and numerical models for thermal
conductivity of granular materials have indeed been reported in the literature [18,43–45]; however, most of them
focus on establishing an overall thermal conductivity for the entire domain in a specified direction, thereby not
suitable for construction of the thermal conductivity tensor. In this work, we introduce an easy-to-use approach
for constructing the thermal conductivity tensor for non-spherical particles. Following the basic concept of heat
reservoirs for spherical particles used in the commercial code PFC [46], the thermal conductivity tensor is deduced
as follows. As illustrated in Fig. 1(a), the two contacting particles (exemplified by two ellipses in 2D) and their
contact can be regarded as three individual heat reservoirs (note that in PFC only two heat reservoirs are introduced).
Accordingly, an imaginary heat pipe joining the center of one particle to the contact is introduced. Therefore, the
heat flux throughout such a heat pipe is given as

qi = −
∆T ri

αl2 A
(11)

where l and A are the length and cross-sectional area of the heat pipe, respectively; α is the thermal resistance per
length; ∆T is the temperature difference between the two ends of the pipe; ri is the vector along the heat pipe. Note
that the heat flux throughout the contact is along the contact normal within a finite regime (not shown in Fig. 1(a)).

For an entire assembly, a homogeneous heat flux can be obtained with the following volume averaging

⟨qi ⟩ =
1
V

∑
p∈V

q (p)
i A(p)l (p) (12)
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Fig. 1. (a) Heat conduction through an inter-particle contact; (b) thermally-induced contact force due to particle expansion.

where p refers to as the p-th heat pipe, and V is the volume of the assembly. Assuming the mean temperature
gradient ∆T = r j T, j , and substituting Eq. (11) into Eq. (12) with applying the Fourier’s law given in Eq. (2), the
thermal conductivity tensor is obtained as

ki j =
1
V

M∑
p=1

r (p)
i r (p)

j

α(p)l (p) (13)

2.2.2. Interaction force between grains
In the DEM implementation, we employ the simple linear spring contact model to establish the relation between

contact force and relative displacement for each pair of contacting grains as follows

f n
i = − knun

i (14a)

∆ f t
i = − ktδut

i (14b)

where f n
i and f t

i are normal and tangential contact forces along the normal nc
i and the tangential tc

i directions
at contact c, respectively, referring to Fig. 1(b); ∆ f t

i is the incremental tangential contact force at the current
time step; kn and kt are the normal and tangent contact stiffness, respectively; un

i is the penetration depth along
contact normal, δut

i is the relative tangential displacement of the two contacting particles at the current time step.
The contact normal is parallel to the outward normal of the two contacting particles at contact, i.e., the so-called
common normal. For non-spherical particles, finding the common normal is an optimization problem, which has
been discussed in our previous studies [47,48] and among others [49]. Thus, the detail on the computation of contact
geometrical properties such as contact normal, penetration depth and tangential displacement is not presented here
for brevity. Moreover, the Coulomb condition of friction is applied to constraining the tangential contact force, i.e.,√

f t
i f t

i ≤ µ

√
f n
i f n

i (15)

where µ is the coefficient of friction.
With respect to thermally-induced contact force between grains, it remains a challenge to propose a thermal

constitutive model as the force–displacement one above. As a workaround, we assume that particles exposed to
temperature change will expand or contract in the following manner [7,20,50]:

Ri = R(0)
i (1 + β∆T ) (16)

where R(0)
i is the initial principal length of a particle at the reference temperature; Ri is the current principal length

of a particle at a temperature change ∆T with respect to the reference temperature; β is the linear thermal expansion
coefficient. As a consequence, the thermally-induced change in particle profile yields an additional penetration δdi ,
referring to Fig. 1(b), thereby resulting in an increase or decrease in contact force (i.e., the thermally-induced contact
force) in the presence of the mechanical contact model given in Eq. (14).
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2.2.3. Stress and stiffness of an assembly
The averaged (homogenized) macroscopic stress tensor σi j of a granular assembly is given by the well-established

Love equation [51]

σi j =
1
V

∑
c∈V

f c
i l c

j (17)

where f c
i is the contact force at contact c; l c

j is the branch vector joining the two centers of the contacting particles;
V is the volume of the entire assembly. With the assumption of uniform deformation, the averaged stiffness tensor
can be obtained by partial derivative of the stress tensor with respect to the deformation as [52,53]

Dαβγφ =
1
V

∑
c∈V

(knnc
αlc

βnc
γ lc

φ + kt tc
αlc

β tc
γ lc

φ) (18)

where kc
n and kc

t are the normal and tangential contact stiffness at contact c, respectively. The stiffness tensor will
serve as the tangent operator in solving the mechanical system in Eq. (20b) with the Newton–Raphson method as
in the literature [14,32,36]. Note, of course, that there are some other potential operators having been proposed
(see [54]), but not introduced to avoid distractions in the presentation.

2.3. Hierarchical coupling for micro–macro bridging

2.3.1. FEM solvers
For the steady-state thermal conduction, the quasistatic thermo-mechanical problem is split into two concurrent

BVPs solved by two FEM solvers on the same mesh. Benefited from the Galerkin FEM, the weight functions
(ω(T )(x) and ω(u)(x)) and the trial solutions (T (x) and u(x)) can be approximated by the same shape function, i.e.,

T (x) ≈ NT T , ω(T )(x) ≈ NT ω(T ) (19a)

u(x) ≈ Nu u, ω(u)(x) ≈ Nuω
(u) (19b)

where NT and Nu are the matrices of shape functions for the temperature and displacement, respectively; T and
u are the matrices of nodal temperature and displacement, respectively; ω(T ) and ω(u) are the matrices of the nodal
values for the weight functions.

The weak forms given in Eqs. (6) and (10) are integrated over all finite elements, yielding the following compact
systems after eliminating the matrices of weight functions:

MT T = RT (20a)

Mu u = Ru (20b)

with

MT =

∫
Ω

(
ρc
∆t

NT
T NT + BT

T K BT )dΩ (21a)

RT =

∫
Ω

NT ( Q +
ρc
∆t

T (0))dΩ −

∫
Γq

NT
T q̄dΓ (21b)

Mu =

∫
Ω

BT
u DBudΩ (21c)

Ru =

∫
Ω

ρNT
u bdΩ −

∫
Ω

BT
u σ (0)dΩ +

∫
Γt

NT
u t̄dΓt (21d)

where K is the matrix of thermal conductivity; T (0) is the matrix of initial nodal temperature for a steady state; σ (0)

is the matrix of stress before applying nodal displacement u to the domain; D is the matrix of stiffness given in
Eq. (18); BT and Bu are the matrices of derivatives of shape functions for the temperature and displacement fields,
respectively. Note that all matrices in the two compact systems are assembled at the global level. It is straightforward
to solve the linear system of the thermal conduction given in Eq. (20a), whilst the mechanical response given in
Eq. (20b) is non-linear and needs iterative solutions due to the dependence of stiffness matrix Mu on the nodal
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displacement u. The Newton–Raphson method is utilized to solve Eq. (20b) with a convergence criterion
∥Ru∥2

∥R(0)
u ∥2

≤ ϵ f (22)

where ϵ f is the relative residual of the mechanical system; R(0)
u is the initial residual force before applying nodal

displacement u to the domain; ∥ • ∥2 denotes the L2-norm.

2.3.2. DEM solver
The Gauss quadrature is applied to the numerical integration (see Eq. (21)a-d) in the two concurrent FEM solvers.

In the hierarchical approach, the conventional phenomenological constitutive relation is no longer needed, which can
be, however, directly extracted from the DEM solver. That is to say, the homogenized response of a DEM assembly
(i.e., an RVE) composed of finite discrete particles serves as the response at each Gauss (quadrature) point. Hence,
the thermal conductivity matrix K in Eq. (21)a and the stiffness matrix D in Eq. (21)c can be assembled in terms
of the thermal conductivity tensor in Eq. (13) and the tangent operator in Eq. (18) over all DEM assemblies at all
Gauss points, respectively. For the sake of implementation without loss of generality, regular-shape (parallelogram
in 2D, parallelepiped in 3D) RVE assemblies with periodic boundaries are employed as in the literature [32]. Note
that each Gauss point has only one temperature so that the RVE assembly is exposed to an isothermal field, hereby
there is no need to model thermal conduction through the assembly. Nevertheless, the mechanically-induced change
in thermal conductivity needs to be taken into account [55].

In DEM, particles iteratively update their states (positions, velocities and accelerations) by the Newton’s law with
an explicit integration scheme, on which the detail of the background theory is not presented here for brevity but
referring to the literature [56] for interested readers. For a thermal–mechanical problem, the RVE assembly at each
Gauss point experiences both temperature variation and mechanical deformation. The temperature variation results in
the corresponding variation in particle size by Eq. (16) accordingly, and the accompanying thermally-induced force
is seamlessly embedded into the inter-particle force in Eq. (14). Meanwhile, with the deformation gradient ui, j , the
RVE assembly is deformed according to the strain ϵi j (= (ui, j +u j,i )/2) and the rigid body rotation wi j (= ui, j −ϵi j ),
and then the thermal conductivity tensor, the stress tensor and the tangent operator are obtained by Eqs. (13), (17)
and (18), respectively.

2.3.3. Coupling scheme
Fig. 2 summarizes the hierarchical coupling approach of the two concurrent FEMs and the DEM for thermo-

mechanical modeling, according to the following steps:

(1) Establishing two superposed FEM meshes (with shared nodes and Gauss points) for thermal and mechanical
solvers;

(2) Attaching an RVE assembly to each Gauss point shared by the two superposed meshes;
(3) Traversing all Gauss points, and obtaining the initial temperature T (0), thermal conductivity K , stress σ (0),

and tangent operator D from all RVE assemblies;
(4) Solving the thermal system in Eq. (20a) and obtaining the updated temperature for each Gauss point;
(5) Solving the mechanical system in Eq. (20b) and obtaining the deformation gradient for each Gauss point;
(6) Applying both deformation and thermal expansion to each RVE assembly, and obtaining the updated stress,

tangent operator, and thermal conductivity tensor for each Gauss point;
(7) Going back to Step (5) until the relative residual of the mechanical system is sufficiently small (ϵ f = 0.01 in

Eq. (22) in this study).

The open-source FEM code Esys-Escript [57] is employed to serve as the two (thermal and mechanical)
FEM solvers at the macroscopic scale. The microscopic thermo-mechanical model for non-spherical particles is
implemented in our open-source code SudoDEM [40,47]. SudoDEM is developed explicitly for DEM modeling
of non-spherical particles, which provides a rich of particle shapes such as superellipsoids, poly-superellipsoids,
polyhedrons, cylinders and cones for 3D, and disks, superellipses for 2D. For example, the profile of a superelliptic
particle as shown in Fig. 2 can be given by⏐⏐ x

rx

⏐⏐ 2
ϵ +

⏐⏐ y
ry

⏐⏐ 2
ϵ = 1 (23)
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Fig. 2. Illustration of the solution procedure for hierarchical multiscale modeling of thermo-mechanical response in granular media. Note:
particles in RVE packings are modeled by superellipses for considering the effect of particle shape.

where rx and ry are referred to as the semi-major axis lengths in the direction of x and y axes, respectively; ϵ is for
the surface squareness. It is noteworthy that the proposed thermo-mechanical coupling framework is general and
robust and can be applied to any grain shapes. The specific implementation and calculation of thermally-induced
contact forces, however, might vary for different particle shapes. For example, for the non-spherical shapes with
explicit principal axes (e.g., superellipsoids, poly-superellipsoids, and superellipses), as exemplified by superellipses
in Eq. (23), the principal axis length Ri in Eq. (16) takes the semi-major axis length. In contrast, for grain shapes
without explicit principal axes, e.g., polyhedrons, the distance between the i th vertex and the center of mass can
be taken as Ri .

2.3.4. Computational aspects
The proposed approach records the history of all RVEs during the course of a simulation. Therefore, the DEM

solver may become dominant in the usage of computer memory, which may potentially limit the solvable problem
size. Hence, it is instructive to provide a quick calculation of the usage of computer memory for a double-precision
floating-point computation as follows. For a two-dimensional simulation, there are three degrees of freedom (2 for
translation x and y, and 1 for rotation w) for a single particle which needs 112 bytes to store information about
particle shape (3 parameters for a superellipse, 24 bytes), mass (8 bytes), moment of inertia (8 bytes), position (16
bytes), orientation (8 bytes), translational and rotational velocities (24 bytes), and the resultant body force and torque
(24 bytes). As for inter-particle contact, we have vector measures including contact point, contact normal, tangential
vector, normal and tangential contact forces, tangential contact force at the previous time step (6 × 2 × 8 = 96
bytes), and scalar measures including contact penetration depth, and orientation of the tangent plane at the previous
time step (2 × 8 = 16 bytes). The storage of material properties is negligible here due to its independence of the
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problem size. In addition, given an N -particle system with a mean coordination number of 10, the contact number
is half of the particle number (i.e., 10×N/2 = 5N ) due to two particles sharing a contact. Therefore, the total usage
of computer memory for both particles and contacts is 112N + 112 × 5N = 672N bytes. For 1 GB (gibibytes) of
RAM, the maximum particle number is 1 GB / 672 bytes ≈ 1 597 830. As reported in our previous study, reliable
results can be achieved with 400 particles for each RVE. If we choose 400 particles for each RVE, then we have
3 994 RVEs (Gauss points). Accordingly, 998 quadrilateral elements with 8 nodes and 4 Gauss points each can be
handled per GB of RAM. Note that we have not considered in the above rough calculation the memory alignment
in C/C++ programming, which does not introduce a significant deviation.

A physical test is performed on a thick-walled hollow disk with the same configuration in Section 3.2 but a much
finer mesh (6 400 quadrilateral elements). The memory usage is examined by using the command top on Linux. The
FEM and DEM solvers take memory usage of 0.112 and 7.024 GB, respectively, where the DEM solver apparently
dominates the memory usage. Moreover, there are 6 400 × 4 × 400 = 10 240 000 particles in total, i.e., 1 457 858
particles and 911 quadrilateral elements per GB of RAM, which are close to the theoretical results. To sum up, the
proposed approach is not significantly memory-demanding. Indeed, in lights of the nature of asynchronization of
inter-RVE computation, the history of RVEs can be temporally dumped into a disk file, which is a possible way to
reduce the cost of computer memory when the simulation scale is excessively large.

3. Benchmark

In this section, we present two benchmark examples, including transient thermal conduction and steady-state
thermal conduction, to verify the proposed multi-scale modeling framework of thermo-mechanical coupling.

3.1. One-dimensional transient thermal conduction

Considering a bar with temperature and displacement fixed at both ends, as shown in Fig. 3(a), the governing
equation of thermal conduction i.e., Eq. (1), is simplified by assuming no heat source (Qt = 0) and k

ρc = 1, given
as

∂T
∂t

=
∂2T
∂x2 0 ≤ x ≤ L (24)

with boundary and initial conditions

T (0, t) = T1 (25a)

T (L , t) = T2 (25b)

T (x, 0) = T0 (25c)

In this benchmark example, we focus on two special cases: for Case 1, heating at the right end with reference
temperature fixed at the left end, i.e., T1 = T0 = 0 ◦C and T2 = 100 ◦C; and for Case 2, heating at both ends with
equal temperature i.e., T1 = T2 = 100 ◦C. Therefore, it is ready to deduce the analytical temperature distribution
along the bar as

T (x, t) =
T2

L
x +

2T2

π

∞∑
n=0

1
2n + 1

e−( (2n+1)π
L )2t sin(

(2n + 1)πx
L

) for Case 1, (26a)

T (x, t) = T1 −
4T1

π

∞∑
n=1

(−1)n

n
e−( nπ

L )2t sin(
nπx

L
) for Case 2. (26b)

Then, the analytical solutions of axial stress σx (x, t) and displacement u(x, t) can be obtained by the following
integration:

σx (x, t) = Kx
1
L

∫ L

0
βT (x, t)dx (27a)

u(x, t) = β

∫ x

0
T (x, t)dx −

βx
L

∫ L

0
T (x, t)dx (27b)
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Fig. 3. (a) A simplified granular bar; (b) mesh and boundary conditions; (c) element and RVE with regular packing of disks.

where β is the linear thermal expansion coefficient; Kx is the stiffness along the bar, which can be estimated from
the first component of the stiffness matrix, i.e., D1111 for 2D.

The simulation setup is shown in Fig. 3(b). The bar is uniformly discretized into ten-by-one quadrilateral elements
with a dimension of 0.1 m × 0.1 m for each, and a constant confining stress σ0 of 100 kPa is applied to the
upper and lower sides. Each quadrilateral element has 8 nodes and 4 Gauss (quadrature) points, as shown in
Fig. 3(c). Identical RVE packings with periodic boundaries are then attached at each Gauss point after consolidation
(isotropic compression) with a confining stress of 100 kPa. The detail on the consolidation of the RVE packing is not
presented here for brevity, and interested readers are referred to the conventional procedures for DEM simulations
in the literature [48,58]. Moreover, given that the focus is on the response along the bar, a regular (simple cubic)
packing of 400 mono-sized disks (with radius r = 5 mm) is employed to maintain a changeless configuration,
thereby ensuring an almost invariant bulk elasticity parameter (i.e., Kx as introduced in Eq. (27)) for a better
comparison with the analytical solutions. Besides, the imagined third dimension z p for the 2D RVE packing is set
to 25 times of particle radius, which serves to calculate the RVE volume involved in the computation of stress and
stiffness tensors (see Eqs. (17)–(18)). It is worth noting that z p is not a magic number, which, however, should be
sufficiently small to avoid significantly large magnitudes of inter-particle contact forces which in turn demands the
use of high contact stiffness values to ensure small overlap between particles. Furthermore, the material properties
of particles are selected in experience as follows: the density of solid ρs = 2650 kg/m3, the contact stiffness
kn = kt = 1 × 106 N/m, the coefficient of friction µ = 0.001, and the linear thermal expansion coefficient
β = 1 × 10−4/K. The particles are assumed almost frictionless to ensure relatively small deviations in the material
properties (e.g., Young’s modulus) among all RVEs during the simulation, thereby rendering it reasonable to use
constant material properties in the analytical solutions. These selected parameter values will be used in all remaining
simulations unless otherwise stated. Note that these selected parameters need careful calibration (e.g., by using the
Bayesian filtering approach [59]) if one wants to obtain comparable numerical results with the experimental one.
We also note that the gravitational force is not considered in the quasistatic simulations due to negligible inertia
effects.

The time step is set to 0.01 s in terms of Eq. (7) for the integration of the transient thermal conduction for
both cases. The distributions of temperature and displacement at different times are shown in Fig. 4 for the two
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Fig. 4. Temperature (a) and displacement (b) distributions for the two cases at different times.

Fig. 5. Comparison between simulated and analytical results of temperature for (a) Case 1, (b) Case 2.

cases. Qualitatively, for Case 1, both the temperature and the displacement gradually increase along the bar from
right to left; for Case 2, the temperature gradually increases from both ends to the middle, while the displacement
decreases with thermal conduction. For a quantitative comparison with the analytical solutions, the temperature
and displacement distributions at different times are plotted in Figs. 5 and 6, respectively, in which solid symbols
denote the simulated results, and solid lines are for the analytical solutions. It can be seen that the results from
simulations are in good agreement with the analytical solutions for both temperature and displacement in the two
cases. However, one may find that the simulated displacement is, to some degree, under-estimated at the initial stage
(i.e., t = 0.03 s in the plot) compared with the analytical one. A possible reason is that the boundary effect of fixed
displacement at both ends is amplified due to coarse meshes used in the model. In addition, the evolution of axial
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Fig. 6. Comparison between simulated and analytical results of displacement for (a) Case 1, (b) Case 2.

Fig. 7. Comparison between simulated and analytical results of axial stress for 1D thermal conduction in a granular bar. The asymptote
lines indicate the maximum axial stress that can be reached at the final steady state of the thermal conduction.

stress for the two cases is plotted against time in Fig. 7. It is clear that the simulated and analytical results agree
well with each other. Moreover, the thermally-induced stress increases as expected with increasing temperature. The
maximum thermally-induced axial stress (i.e., the asymptote excluding the prescribed stress 100 kPa) that can be
reached for Case 2 is twice as high as that for Case 1.

3.2. Two-dimensional steady-state thermal conduction

In this benchmark example, we examine the thermal conduction and its thermally-induced stress within a thick-
walled hollow disk with inner and outer radii r0 = 0.5 m and r1 = 5.0 m, respectively. A constant pressure (or
confining stress) σ0 of 20 kPa is applied to both inner and outer surfaces. The inner surface of the thick-walled disk
is exposed to a temperature increase of T0, while the temperature T1 at the outer surface maintains 0 ◦C. Therefore,
with the assumption that the thermal and mechanical properties are homogeneous, the temperature profile across
the thickness at the steady state is given as [60]

T (r ) =
T0

ln r1
r0

ln
r1

r
(28)

where r is the distance from the center of the thick-walled disk. Accordingly, the stress can be deduced by
superposing the initial stress σ0 and the thermally-induced stress, i.e.,

σr =
EβT0

2r2 ln r1
r0

[ (r2
− r2

1 )r2
0

r2
1 − r2

0
ln

r0

r1
+ r2 ln

r
r1

]
+ σ0 (29a)
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Fig. 8. (a) Mesh and boundary conditions for the thicked-wall disk; (b) RVE packing of disks with a confining stress of σ0; (c) boundary
conditions for one-dimensional compression at the top (left) or the right (right) of a single element; (d) elasticity parameters of the bulk
granular assembly at small strains from the test in (c) with the largest and smallest element sizes of (a).

σθ =
EβT0

2r2 ln r1
r0

[ (r2
+ r2

1 )r2
0

r2
1 − r2

0
ln

r0

r1
+ r2 ln

r
r1

+ r2]
+ σ0 (29b)

σrθ = 0 (29c)

where σr , σθ and σrθ are radial, tangential, and shear stresses, respectively; E is the Young’s modulus, and β is the
linear thermal expansion coefficient.

The open-source mesh generator Gmsh [61] is utilized to generate 400 unevenly distributed eight-node quadri-
lateral elements. The mesh and boundary conditions for the domain are shown in Fig. 8(a). In this example, the
RVE is almost homogeneous random packing of disks with radius uniformly between 2.5 and 5.0 mm (the potential
effect of particle size distribution on packing [62] is not considered here without loss of generality), referring to
Fig. 8(b), whose elasticity parameters such as the bulk modulus K and the shear modulus G are estimated from
one-dimensional compression tests on a single element. Fig. 8(c) shows the boundary conditions of the element
tests with two specific loading directions (i.e., along the vertical and the horizontal) for considering the possible
deviation from the intrinsic anisotropy of the RVE packing. In addition, we also take into account two element sizes
0.06 m × 0.09 m and 0.58 m × 1.33 m, corresponding to the finest and the coarsest elements, respectively, in the
domain of the thick-walled disk. The small-strain mechanical responses of the total four element-tests are shown in
Fig. 8(d), where the stress–strain lines offer the following relations: ∆σ11/∆ϵ11 = K +G and ∆σ00/∆ϵ11 = K −G
in 2D. Note that the deviation of the four stress–strain slopes is negligibly small, indicating that the prepared RVE
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Fig. 9. Temperature (a), displacement (b) and shear strain (c) distributions at T0 = 50 ◦C.

packing is sufficiently homogeneous. Finally, the Poisson’s ratio is given as ν = (K − G)/(K + G) ≈ 0.372, and
the Young’s modulus reads as E = 2K (1 − ν) ≈ 8.8 MPa in 2D [63].

Three simulations are carried out with inner temperature T0 = 10, 25, and 50 ◦C, respectively. Fig. 9 shows
the distributions of temperature, displacement, and shear strain within the thick-walled disk for T0 = 50 ◦C.
As expected, the temperature decreases gradually and symmetrically from inner to outer surfaces in Fig. 9(a),
meanwhile, as shown in Fig. 9(b), the thick-walled disk expands radially outward nearly symmetrically. It is clear
that the displacement distributes not as symmetrically as the temperature does, which is, however, not surprising
due to the internal anisotropy of granular materials. Indeed, shear-induced anisotropy can be significant in granular
materials [15,64]. Nevertheless, the thermal perturbation is deliberately restrained small by a moderate temperature
T0 to ensure only weak shear occurring so that a constant Young’s modulus still works for the analytical solutions
given in Eq. (29). As can be seen in Fig. 9(c), the maximum shear strain (approximately 0.0006) locates at the
inner surface for the given problem, which is indeed negligibly small.

Fig. 10(a) shows that the simulated temperature profile is consistent with the analytical one given by Eq. (28)
for all the three inner temperatures. As for the stress within the thick-walled disk, we extract the stress state
(σxx , σxy, σyy in the Cartesian coordinate system) at each Gauss point and transfer it to the polar coordinate system
with the following relationship

σr = cos2 θσxx + 2 sin θ cos θσxy + sin2 θσyy (30a)

σθ = sin2 θσxx − 2 sin θ cos θσxy + cos2 θσyy (30b)

σrθ = sin θ cos θ (σyy − σxx ) + (cos2 θ − sin2 θ )σxy (30c)

where θ is the angular direction. Then, averaging the stress over all θ at the same radial distance r yields the
simulated radial, tangential, and shear stresses (σr , σθ , σrθ ), which are plotted together with the analytical solutions
given by Eq. (29) in Figs. 10(b), (c) and (d), respectively. The radial stress σr increases to reach a peak at a distance
of approximately 2r0, then decreases to the initial stress at the outer surface. By contrast, the tangential stress σθ

experiences a monotonic decrease with radial distance r increasing, and a stationary point (where σθ = σ0) appears
at a distance of approximate 4.5r0. Moreover, it is of interest to see two different trends for the radial and tangential
stresses with inner temperature T0 increasing: the radial stress σr increases for all points through the thickness, while
the tangential stress σθ increases at the left of the stationary point but decreases at the other side. The simulated
shear stress σrθ is negligibly small (less than 1 Pa) and can be regarded as zero, compared with the initial stress
σ0 of 20 kPa. Furthermore, one finds that the stress near the inner surface has a moderate deviation between the
simulated and analytical results, especially for T0 = 50 ◦C, and the deviation is likely to become more significant
with increasing T0. A reasonable explanation is that significantly inhomogeneous shear takes place near the inner
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Fig. 10. Profiles of temperature (a), radial stress (b), tangential stress (c) and shear stress (d) throughout the thickness of the thick-walled
disk for the three different inner temperatures.

surface as aforementioned (see Fig. 9(c)) so that the homogeneous assumption fails in deducing the analytical
solution. Overall, the simulated stress is consistent with the analytical one.

4. Responses of confined granular columns under thermal cycling

The proposed multiscale modeling approach is further applied to investigating the response of a granular column
under thermal cycling. As a demonstration, the emphasis is placed on two critical aspects of both external and
internal factors, i.e., boundary condition and inherent anisotropy of the granular column.

4.1. Effect of boundary condition

Considering a 2D granular column with a dimension of 1 m × 1 m, the entire domain is discretized into 8-by-
8 quadrilateral elements with 8 nodes and 4 Gauss points for each, as shown in Fig. 11, where four different
combinations of thermal and mechanical boundary conditions are introduced for the thermal cycling problem.
Figs. 11(a) and (b) show the constant stress (CS) boundary condition, by which the top of the domain is given
a prescribed stress σ0, while the other three sides are fixed in displacement along their corresponding outward
normals. As for the constant volume (CV) boundary condition, the displacement along the outward normal of the
entire boundary is fixed, as shown in Figs. 11(c) and (d). Besides, for the thermal boundary condition, a periodically
varying temperature T1 is given at the top (T) or the right (R) sides of the domain, while the other three sides
maintain a reference temperature T0. For the convenience of presentation, the four thermo-mechanical boundary
conditions are denoted by CSR, CST, CVR, and CVT, respectively, as shown in Figs. 11(a-d). Moreover, at the
initial state, i.e. time t = 0, the entire granular column situates at the reference temperature T0 = 0 ◦C with a
pre-stress of σ0 = 20 kPa.
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Fig. 11. Meshes and boundary conditions: constant stress with heating at the right (a) and top (b); constant volume with heating at the right
(c) and top (d).

Fig. 12. (a) The initial RVE packing with contact force-chains shown in red; (b) the distribution of contact normal within the initial RVE
packing where the curve is the best Fourier fitting; (c) the temperature T1 varying with time t , where the inset is a typical contour of
temperature for the case heating at the right.

The initial RVE packing of 400 disks with radii uniformly lying between 2.5 and 5.0 mm is consolidated with
a confining stress σ0 = 20 kPa, as shown in Fig. 12(a). In the preparation of the RVE packing, the inter-particle
coefficient of friction µ is set to 0.5 to obtain a frictional granular system, and the other parameters remain the same
as introduced in the benchmark examples (see Section 3). The distributions of contact force-chains in Fig. 12(a) and
contact normal in Fig. 12(b) suggest that the RVE packing is almost isotropic from both qualitative and quantitative
points of view. The RVE packing is then attached to each of the total 256 Gauss points of the domain. For simplicity,
the temperature T1 at the heating side of the granular column is assumed to vary in a square-wave manner, as shown
in Fig. 12(c), in which th and tc are the time intervals for heating (T1 = Th = 100 ◦C) and cooling (T1 = T0 = 0 ◦C)
phases, respectively. The inset of Fig. 12(c) shows a typical contour of temperature across the granular column after
heating at the right boundary. The thermal parameters are set as follows [18,50,65]. The thermal capacity of solid
is selected from quartz sands cs = 800 J/kg/K. The thermal resistance η = 1.5×105 K/W/m to meet a bulk thermal
conductivity of 2.4 W/m/K for sandy soils typically measured in the laboratory. The time intervals of heating and
cooling th = tc = 10∆ts , where ∆ts is the time step for solving the thermal transient problem, set to 3 h here which
does not exceed the estimated critical time step given by Eq. (7). Two linear thermal expansion coefficients β = β0
and β = 5β0 (where β0 = 1 × 10−5/K) are considered for sensitivity analysis.

Fig. 13 shows the evolution of temperature profile along the central-horizontal slice of the right heating case
(CSR) during one cycle of heating and cooling. It suggests that a 30-hour (10∆ts) time interval (i.e., th, tc) is
sufficient to make heating or cooling phases reach their final steady states during thermal conduction.

The mechanical response at the interface between granular materials and structures plays an essential role in the
safety design in engineering (e.g., interface-shear resistance of thermal piles [66] and other geostructures [67]) and
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Fig. 13. Evolution of temperature profile along the central-horizontal slice of the right heating case CSR) during a single cycle of heating
(a) and cooling (b) phases. The left and right boundaries of the granular column locate at x = 0 and 1 m, respectively.

Fig. 14. Evolution of the normal stress at the right boundary (NSR) for the four cases with linear thermal expansion coefficients of β0 (a,
c) and 5β0 (b, d) during thermal cycling. The dashed lines in (c) and (d) denote the evolution at the reference temperature.

industry (e.g., strength of silos [68]). It is thus of interest to examine the thermally-induced responses (e.g., stress
and displacement variation) at the boundary of the granular column. For convenience without loss of generality, only
one interface is focused on, i.e., the right boundary of the domain. The normal stress at the right boundary (averaged
over the boundary, hereafter referred to as NSR) is examined during the first thermal cycle, as shown in Fig. 14(a),
in which NSR increases to a plateau with temperature increasing during heating, then decreases to a relatively
steady value as temperature decreases during cooling. It is evident that the NSR for the constant volume boundary
condition (i.e., CVR and CVT) is more significant than that for the constant stress boundary condition (i.e., CSR
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Fig. 15. The normal stresses at the right boundary (NSR) and at the top boundary (NST) of CVR and CVT with linear thermal expansion
coefficients of β0 and 5β0 during thermal cycling.

and CST) at the first thermal cycle for both heating and cooling phases. A reasonable explanation is that the constant
volume constrains the plastic deformation of granular materials, thereby resulting in a higher plateau at heating and
a smaller stress relaxation after cooling. Moreover, as expected, heating at the right boundary makes NSR more
significant than that at the top boundary due to stronger thermal expansion in the horizontal, e.g., CSR vs. CST, and
CVR vs. CVT. However, there is no significant difference in NSR between the two heating locations after cooling. A
reasonable explanation is that the plastic deformation is not significant due to moderate thermal perturbation caused
by the small thermal expansion coefficient. That is to say, most of the deformation during the moderate thermal
cycling can be recoverable (i.e., elastic). Indeed, with a more significant thermal expansion coefficient, as shown
in Fig. 14(b), heating at the right boundary yields more significant stress relaxation after cooling. Meanwhile, the
thermally-induced stress is more significant compared with that for a small thermal expansion coefficient.

During thermal cycling, as shown in Figs. 14(c) and (d), NSR behaves in a wave manner with an almost constant
amplitude for all the studied cases. After joining the data points sequentially at the reference temperature, referring
to the dashed lines, a continuous decrease in NSR is observed. It indicates that thermal cycling can induce stress
relaxation, which can become significant due to accumulative effect. Also, the stress relaxation is expected to reach
a saturated point, i.e., the thermally-induced maximum relaxation, which is dominantly and positively related to the
input thermal perturbation (e.g., amplitude and frequency of thermal cycling). Here it is clear that the thermal
expansion coefficient is an active internal factor contributing to the thermal perturbation. As for the effect of
boundary conditions, the thermal loading boundary with the thermal source experiences stronger stress relaxation.
In addition, the constant volume boundary condition, to some degree, prevents the stress from dropping either for
small thermal perturbation or within limited thermal cycles. However, the constant volume boundary condition can
cause more significant stress relaxation than the constant stress boundary condition when the thermal perturbation
is sufficiently large. Furthermore, additional attention paid to the two constant volume cases, CVR and CVT, whose
boundary conditions are rotationally symmetric to each other. That is to say, the possible deviation between the
response of CVR and CVT could result only from the anisotropic structures of the granular column when excluding
numerical errors. Hence, the normal stress at the right boundary (NSR) from one case is plotted against that at the
top boundary (NST) from the other one in Fig. 15. It is not surprising to see all data points almost locating on the line
with a 1:1 slope since the RVE packing is almost isotropic (i.e., nearly without inherent anisotropy). We also point
out that thermal cycling with more substantial perturbation can make particles rearrange more remarkably, thereby
destroying the symmetry of fabric more severely. Thus, a more significant deviation can be seen with increasing
thermal perturbation (see 5β0).

Fig. 16 shows that different boundary conditions can result in significantly distinctive patterns of displacement
distribution after thermal cycling. Note that the case CVT is not presented here since its results are almost
rotationally symmetric to that of CVR. For the constant stress condition, a vortex of displacement can be observed
after moderate thermal cycling (see Figs. 16(a) and (b)), while the granular material flows inwards with more
significant displacement after stronger thermal cycling (see Figs. 16(d) and (e)). As for the constant volume
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Fig. 16. Distributions of displacement for CSR (left), CST (middle) and CVR (right) with linear thermal expansion coefficients of β0 (upper)
and 5β0 (lower) after 10 thermal cycles.

Fig. 17. Evolution of the displacement at the top-right corner for the two constant stress cases (CSR and CST) with linear thermal expansion
coefficients of β0 (a) and 5β0 (b) during thermal cycling. The dashed lines denote the evolution at the reference temperature.

condition, the granular material flows within narrow regimes near the boundary after moderate thermal cycling;
however, with more vigorous thermal cycling, as shown in Fig. 16(f), the granular material notably flows towards
the thermal loading boundary (i.e., the right side here). Furthermore, for the two constant stress cases, CSR and
CST, it is clear that CSR experiences a stronger granular flow through the entire column than CST. Quantitatively,
we plot the displacement of the top-right corner for CSR and CST during thermal cycling in Fig. 17, where
the cycling amplitude of displacement in CSR is approximately 2.5 times greater than that in CST, implying a
more significant thermal perturbation in CSR. Specifically, the top-right-corner displacement increases positively
for moderate thermal cycling in Fig. 17(a), but the deviation in displacement for CSR and CST is not significant.
With increasing thermal perturbation, i.e., 5β0 in Fig. 17(b), the top-right-corner displacement maintains a negative
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Fig. 18. Three anisotropic RVEs composed of 400 elliptic particles with an aspect ratio of 1.5: (a) packings with force-chains in red; (b)
distributions of particle orientation; and (c) distributions of contact normal.

increase after the first thermal cycle, in which we can see that the displacement in CSR is more significant than
that in CST.

4.2. Effect of inherent anisotropy

The inherent anisotropy of a granular material is induced by particle rearrangement during packing, which can
be significantly influenced by both packing approach and properties of constituent particles, especially particle
shape [39,69]. Thus, in this section, we use ellipses rather than disks to facilitate forming strong inherent anisotropy
within an RVE packing. With a similar packing approach proposed in the literature [37], all particles are first fixed
in rotation and confined to a medium state with a smaller confining stress (e.g., 0.5σ0), then free in rotation and
consolidated to the final state with σ0. Adjusting the confining stress at the first stage can yield final packings
with different void ratios. In this way, we prepare three different RVE packings (denoted by RVE A, B, and C,
respectively) with the same constituent particles and almost the same void ratio of 0.240, as shown in Fig. 18(a).
Each packing consists of 400 ellipses with major semi-axis length uniformly selected between 2.5 and 5.0 mm,
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Fig. 19. Evolution of the normal stress at the right boundary (NSR) (upper) and the displacement at the top-right corner (lower) with linear
thermal expansion coefficients of 5β0 (left) and 10β0 (right) during thermal cycling.

and all particles have an identical length ratio of major to minor axes (i.e., aspect ratio) of 1.5. The distributions
of particle orientation (defined as the direction of the major axis) and contact normal are plotted below the
corresponding packing in Fig. 18(b). It can be seen that RVEs A and B exhibit strong inherent anisotropy with most
of the particles aligning in the horizontal and vertical directions, respectively, while RVE C is almost isotropic with
particle orientations nearly uniformly distributed. It is also interesting to see that the distribution of contact normal
has a strong correlation with that of particle orientation. For example, their major principal directions are almost
orthogonal to each other. Nevertheless, we note here that this feature may not be universal for any particle shapes.
Further investigation of the effect of particle shape is beyond the scope of this work. Under the same boundary
condition and discretization, i.e., CSR, as introduced in Fig. 11(a), thermal cycling is performed on granular columns
with the three different RVEs (RVEs A, B, and C), and the corresponding simulations are denoted by Cases A, B,
and C, respectively.

Fig. 19 shows the evolution of the normal stress at the right boundary (NSR) and the displacement at the
top-right corner for the three anisotropic granular columns during thermal cycling. As a general observation, the
top-right-corner displacement negatively increases with stress relaxing at the boundary. With increasing thermal
perturbation, i.e., increasing the thermal expansion coefficient β from 5β0 in Fig. 19(a,b) to 10β0 in Fig. 19(c,d),
both the displacement and stress relaxation become more significant as aforementioned in Section 3. In addition,
the inherent anisotropy plays an important role in the thermo-mechanical responses of granular materials. As shown
in Fig. 19(a,c), the two considerably anisotropic granular columns Cases A and B have similar amplitudes of the
thermally-induced stress during thermal cycling, but Case A has a stronger stress relaxation. Compared with Cases
A and B, the almost isotropic granular column Case C has a much larger amplitude of the thermally-induced stress
during thermal cycling, hereby a stronger stress relaxation. In other words, the anisotropic granular column has an
enhanced resistance to stress relaxation induced by thermal cycling. This feature is analogous to the well-known fact
that anisotropy enables to enhance the shear strength of granular materials subjected to external loading [15,37,64].
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Fig. 20. Distributions of displacement (upper) and void ratio (lower) for Case A (left), Case B (middle) and Case C (right) with linear
thermal expansion coefficient of 5β0 after 20 thermal cycles. Note: the cross symbols in (a-c) denote the Gauss points of interest at the
top-right corner of the domain.

As for the thermally-induced displacement shown in Fig. 19(b,d), Case A has the most significant settlement. For
the other two cases, the settlement of the top-right corner in Case C is slightly larger than that in Case B for moderate
thermal perturbation in Fig. 19(b). However, Case C has the least average settlement over the displacement contour
of the entire granular column, as shown in Fig. 20. All in all, thermal cycling can densify granular materials, which
is in agreement with the report in both experiments and simulations [4,50,70]. Moreover, the local zone closer to the
thermal loading boundary (i.e., the right boundary here) suffers from more considerable densification. To sum up,
it can be concluded that the inherent anisotropy reduces the resistance of granular displacement/settlement induced
by thermal cycling, and the case with particles aligning along the horizontal has the maximum settlement. Recalling
the aforementioned effect of inherent anisotropy on the boundary stress, the inherent anisotropy can enhance the
resistance of stress relaxation but meanwhile reduce the resistance of settlement, especially in Case A. It is worth
noting that granular packing under gravity tends to the structure (the emphasis is on the inherent anisotropy) of
Case A due to the major axes of particles preferring to align in the horizontal [47].

With the hierarchical coupling approach, the microscopic behavior of the granular column is available by tracking
the local RVE assemblies. As a demonstration, we select the RVEs of the three granular columns at the Gauss point
indicated in Fig. 20 for further analysis. The RVE assemblies of interest undergo significant thermal perturbations
after thermal cycling with linear thermal expansion coefficients of 5β0 and 10β0. Their corresponding force chains
and particle orientation distributions are shown in Fig. 21. Compared with the initial RVEs in Fig. 18, the force
chains become more uniform and less anisotropic, and the distributions of particle orientation are less anisotropic
as well. In addition, with thermal perturbation increasing (i.e., 5β0 to 10β0), the deformation performing on the
RVEs is more significant, and the distributions of particle orientation become more isotropic.

5. Conclusions

We proposed a hierarchical approach based on two concurrent FEMs and DEM coupling for multiscale modeling
of thermo-mechanical behavior of granular media. At the macro continuum, the quasistatic thermo-mechanical
problem is split into two individual BVPs (thermal conduction and mechanical response) for thermal steady states,
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Fig. 21. The force chains of the RVEs of interest in Fig. 20(a-c) with linear thermal expansion coefficient of (a) 5β0 and (b) 10β0 and
their corresponding distributions of particle orientation for Case A (left), Case B (middle) and Case C (right) after 20 thermal cycles.

which are then solved by two concurrent FEM solvers. At the grain scale, the thermally-induced volume change is
seamlessly performed on individual grains, hereby yielding intrinsic coupling of thermo-mechanical response with
combining mechanical loading by using DEM. The homogenized response of DEM RVEs composed of finite grains
is transferred to the up-scale FEM solvers at Gauss points, and then the up-scale response (temperature change and
deformation) is performed back on RVEs. Such a back-and-forth information exchange via RVEs at Gauss points
makes the macroscopic thermo-mechanical response physically and smoothly coupled.

Also introduced are two benchmark examples of transient and steady-state thermal conduction with analytical
solutions to verify the thermo-mechanical response simulated by the proposed hierarchical coupling approach.
Simulated results such as temperature, stress, and deformation are consistent with the analytical solutions. Then, with
the proposed approach, we explored the responses of confined granular columns under thermal cycling. It is found
that thermal cycling induces granular settlement and stress relaxation, which are positively correlative to thermal
perturbation, as reported in the literature, no matter what boundary condition applied. However, the displacement
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pattern within a granular column is significantly influenced by both boundary condition and thermal perturbation.
We further investigated the effect of inherent anisotropy on the thermo-mechanical response of a granular column
composed of elliptic particles. The inherent anisotropy can enhance the resistance of stress relaxation but meanwhile
reduce the resistance of granular settlement. The granular column with particles orientating along the thermal cycling
direction experiences the most significant granular settlement. Thermal cycling can also make granular materials
more isotropic at the microscopic point of view.

Though two-dimensional applications of the proposed approach have been presented in the study. It, however,
can be readily extended to three-dimension with the open-source tools Esys-Escript [57] and our developed
SudoDEM [40,47] (https://sudodem.github.io) that formerly support three-dimension. The proposed approach can
be further applied to engineering-scale thermal problems, such as analysis of energy piles. Nevertheless, limitations
do exist for the proposed approach. Future efforts are required for further improvements such as taking into account
the thermal convection of pore fluid for saturated and unsaturated granular materials [71], considering higher fidelity
at the grain scale (e.g., thermally-induced particle crushing [72]), and accelerating the simulation with the hybrid
CPU/GPU parallelism technique [23,73].
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